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Abstract: The disease burden of neurodegenerative diseases is on the rise due to the aging population,
and neuroinflammation is one of the underlying causes. Spirulina platensis is a well-known superfood
with numerous reported bioactivities. However, the effect of S. platensis Universiti Malaya Algae
Culture Collection 159 (UMACC 159) (a strain isolated from Israel) on proinflammatory mediators
and cytokines remains unknown. In this study, we aimed to determine the anti-neuroinflammatory
activity of S. platensis extracts and identify the potential bioactive compounds. S. platensis extracts
(hexane, ethyl acetate, ethanol, and aqueous) were screened for phytochemical content and an-
tioxidant activity. Ethanol extract was studied for its effect on proinflammatory mediators and
cytokines in lipopolysaccharide (LPS)-induced BV2 microglia. The potential bioactive compounds
were identified using liquid chromatography-mass spectrometric (LC-MS) analysis. Ethanol extract
had the highest flavonoid content and antioxidant and nitric oxide (NO) inhibitory activity. Ethanol
extract completely inhibited the production of NO via the downregulation of inducible NO synthase
(iNOS) and significantly reduced the production of tumor necrosis factor (TNF)-α and interleukin
(IL)-6. Emmotin A, palmitic amide, and 1-monopalmitin, which might play an important role in cell
signaling, have been identified. In conclusion, S. platensis ethanol extract inhibited neuroinflamma-
tion through the downregulation of NO, TNF-α and IL-6. This preliminary study provided insight
into compound(s) isolation, which could contribute to the development of precision nutrition for
disease management.

Keywords: Spirulina platensis; neuroprotective; anti-neuroinflammation; antioxidants; nitric oxide;
BV2 microglia

1. Introduction

The global life expectancy was reported to increase to 73 years in 2017, accompanied
by an increase in age-related disease burdens, including neurodegenerative diseases. As
the major neurodegenerative disease, Alzheimer’s disease (AD) has contributed to a 38.3%
increment in disability-adjusted life-years (DALYs) within 10 years [1]. In addition, the
number of death caused by AD has increased from 1.004 million in 2010 to 1.639 million
in 2019, making AD the sixth leading cause of global deaths [2]. Neurodegenerative dis-
eases are characterized by gradual neuronal loss due to brain injuries and pathological
aging, which exaggerates age-related cognitive decline [3]. Neuroinflammation is one
of our body’s defense mechanisms, which maintains body homeostasis and protects the
central nervous system (CNS) against pathogenic insults [4]. As the primary mediator
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of neuroinflammation, microglia undergo activation upon detection of stimuli such as
infectious agents, damaged cells, and proinflammatory mediators in the brain [5,6]. Dys-
regulated neuroinflammation is an abnormal condition that occurs when persistent stimuli
or failure in the resolution mechanism triggers uncontrolled microglia activation [4,7].
Uncontrolled activation subsequently results in the overproduction of reactive oxygen
species (ROS), proinflammatory mediators (nitric oxide (NO) and prostaglandin E2 (PGE2)),
and cytokines (interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)) that gradually
damage the neuronal cell [8–10].

The Food and Drug Administration (FDA) -approved drugs for the treatment of AD are
mainly neurotransmitter regulators, where donepezil, galantamine, and rivastigmine are
cholinesterase inhibitors (ChEIs) that prevent the breakdown of a neurotransmitter called
acetylcholine (ACh), and memantine is an N-methyl-D-aspartic acid (NMDA) receptor
antagonist that prevents the overproduction of another neurotransmitter, glutamate [11].
However, these drugs are symptomatic treatments and are accompanied by adverse effects,
such as nausea, dizziness, and constipation [12]. Hence, there is an urgent need to discover
novel natural bioactive compounds with anti-neuroinflammatory activity and minimal side
effects. In the past decade, marine algae have shown promising neuroprotective properties
in preclinical and clinical studies [13]. For instance, the red macroalga Gracilaria manilaensis
has been reported with antioxidant, neuritogenic and anti-cholinesterase activities [14,15].
In 2019, sodium oligomannate (GV-971), an oligosaccharide derived from brown algae,
became the first AD drug approved by FDA since 2003 [16]. GV-971 ameliorated the
progression of AD by inhibiting gut dysbiosis-promoted neuroinflammation in an AD
mouse model [17]. This breakthrough highlighted the therapeutic potential of marine
algae for neurodegenerative diseases. Spirulina platensis (Arthrospira platensis) is a blue-
green microalga (cyanobacterium) with high content of proteins, vitamins, pigments, fatty
acids, and minerals [18]. Various therapeutic activities have been reported in S. platensis,
such as immunomodulatory [19], anticancer [20], antimicrobial [21,22], antioxidant [23],
and anti-inflammatory [24,25] activities. Antioxidant and anti-inflammatory activities of
S. platensis protected dopaminergic neurons in rat models of AD and Parkinson’s disease
(PD) [26,27]. Furthermore, S. platensis promoted neurite outgrowth in PC-12Adh cells [28]
and spinal cord injury recovery in rats [29]. However, there is a lack of evidence for the
neuroprotective activity of S. platensis via the regulation of neuroinflammation in microglia.

BV2 microglia is an immortalized murine microglia cell line that shows similar gene
expression as primary microglia upon lipopolysaccharide (LPS) stimulation [30]. LPS pro-
duced by gram-negative bacteria promoted the production of proinflammatory cytokines
by microglia, which in turn damage the neuronal cell [31,32]. Therefore, the present study
aimed to determine the anti-neuroinflammatory activity of S. platensis UMACC 159 cul-
ture strain extracts in LPS-induced BV2 microglia and to identify the potential bioactive
compound(s).

2. Materials and Methods
2.1. Chemicals and Reagents

Gallic acid (Shanghai, China), quercetin (Bangalore, India), aluminum chloride, 2,2-
diphenyl-1-picrylhydrazyl (DPPH) (Munich, Germany), ascorbic acid (Tokyo, Japan), Min-
imum Essential Medium Eagle (MEM; M3024), sodium bicarbonate, fetal bovine serum
(FBS), penicillin-streptomycin, LPS from Escherichia coli O55:B5, and N(γ)-nitro-L-arginine
methyl ester (L-NAME) (St. Louis, Mo, USA) were purchased from Sigma. The Folin
Ciocalteu reagent and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
were purchased from Merck KGaA (Darmstadt, Germany) and Merck & Co. (Rahway, NJ,
USA) respectively. The 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and
phenylmethylsulfonyl fluoride (PMSF) were purchased from Roche diagnostics (Mannheim,
Baden-Wurttemberg, Germany); the ELISA kits were purchased from R&D Systems (Min-
neapolis, MN, USA); protease inhibitor (A32865) and Pierce bicinchoninic acid assay (BCA)
protein assay kit were purchased from Thermo Fisher Scientific (Waltham, MA, USA);
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horseradish peroxidase (HRP)-conjugated goat anti-rabbit secondary antibody was pur-
chased from Invitrogen (Rockford, IL, USA); and WesternBright enhanced chemilumines-
cence (ECL) spray was purchased from Advansta (San Jose, CA, USA). The Griess reagent
nitrite measurement kit, cell lysis buffer (9803), and primary antibodies (iNOS (#13120);
COX-2 (#12282), and β-actin (#4970)) were purchased from Cell Signaling Technology
(Danvers, MA, USA).

2.2. Solvent Extracts Preparation

S. platensis UMACC 159 culture strain was obtained from the University of Malaya
Algae Culture Collection (UMACC). The culture strain was identified and authenticated by
experts in the Algae Research Laboratory at Universiti Malaya. S. platensis was freeze-dried
(LaboGene, Brigachtal, Germany) and stored at −20 ◦C prior to use. Solvent extracts were
prepared using ultrasound-assisted extraction (UAE) and sequential extraction (SE). Five g
of S. platensis were immersed in hexane and sonicated at 20 kHz, 120 W, for 30 min. The
sample was consecutively incubated in solvents with increasing polarity at the ratio of
1:10 (w/v) for the indicated incubation time (Figure 1). After each incubation, the extract
was filtered and dried using a rotary evaporator (Fisher Scientific EYELA N-1200A, Tokyo,
Japan) and vacuum concentrator (LaboGene, Brigachtal, Germany). Dried extracts were
stored at −20 ◦C prior to use. The yield (%) of the extract was calculated using Formula (1).

Yield (%) =
Dried mass of extract (g)

Initial weight of powder (g)
× 100% (1)
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Figure 1. Preparation of S. platensis extracts using ultrasound-assisted extraction (UAE) and sequential
extraction (SE). RT: room temperature; ddH2O: double distilled water.

2.3. Phytochemical Screening
2.3.1. Total Phenolic Content (TPC)

TPC was quantified according to Pang et al. [14]. Briefly, 5 µL samples diluted with
350 µL ddH2O were incubated with 25 µL Folin Ciocalteu reagent in the dark for 4 min. The
mixture was further diluted with 45 µL ddH2O and incubated with 75 µL of 20% sodium
carbonate in the dark for 1 h. Absorbance was measured at 750 nm using the UV-Vis
spectrophotometer microplate reader (Infinite 200 Pro, Mannedorf, Switzerland). TPC was
calculated with gallic acid as standard and expressed as mg of gallic acid equivalent (GAE)
per g of extract (mg GAE/g).
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2.3.2. Total Flavonoid Content (TFC)

TFC was quantified according to Pang et al. [14]. Briefly, 10 µL sample diluted with
490 µL ddH2O were incubated with 250 µL of 2% methanolic aluminum chloride and
250 µL of 1 M sodium acetic acid in the dark for 15 min. Absorbance was measured at
425 nm. TFC was calculated with quercetin as standard and expressed as mg of quercetin
equivalent (QE) per g of extract (mg QE/g).

2.4. Antioxidant Capacity
2.4.1. ABTS Scavenging Activity

Scavenging activity on ABTS radical was determined according to Pang et al. [14].
Briefly, 7 mM ABTS was activated with 2.45 mM potassium persulfate in the dark for 16 h.
Activated ABTS was diluted with ethanol to achieve an absorbance of 0.7 ± 0.02. Next, a
0.1 mL sample was incubated with 1 mL diluted ABTS in the dark for 6 min. Absorbance
was measured at 734 nm. Scavenging activity was calculated according to Formula (2)
and expressed as half-maximum effective concentration (EC50) at which the radicals were
scavenged by half. Ascorbic acid served as the positive control.

ABTS scavenging activity (%) = 1− Absorbance of samples
Initial absorbance of ABTS

× 100% (2)

2.4.2. DPPH Scavenging Activity

Scavenging activity on DPPH radical was determined according to Pang et al. [14].
Briefly, a 50 µL sample was incubated with 1 mL of 0.1 mM DPPH in the dark for 30 min.
Absorbance was measured at 518 nm. Scavenging activity was calculated according to
Formula (3) and expressed as EC50. Ascorbic acid served as the positive control.

DPPH scavenging activity (%) = 1− Absorbance of samples
Absorbance of sample at 0 mg/mL

× 100% (3)

2.4.3. Reducing Power

The reducing power was determined according to Pang et al. [14]. Briefly, 100 µL
samples were incubated with 250 µL of 0.2 M phosphate buffer and 250 µL of 1% potassium
ferricyanide at 50 ◦C for 20 min. The mixture was added with 250 µL of 10% trichloroacetic
acid and centrifuged at 3000 rpm for 10 min. 250 µL of the solution was mixed with
250 µL ddH2O and 250 µL of 0.1% iron (III) chloride. Absorbance was measured at 700 nm.
Reducing power was expressed as EC50, with ascorbic acid serving as the positive control.

2.5. Cell Culture

BV2 microglia (EP-CL-0493) was purchased from Elabscience. The cells were cul-
tured in MEM supplemented with 2.2 g sodium bicarbonate, 10% FBS, and 1% penicillin-
streptomycin in a 5% CO2-humidified incubator at 37 ± 2 ◦C.

2.6. Cell Viability

BV2 microglia were seeded at a cell density of 62.5 × 103 cells/well in a 96-well plate
overnight. The cells were treated with extracts dissolved in fresh medium for 24 h, followed
by incubation with 0.5 mg/mL MTT for 4 h. The culture medium was replaced with 100 µL
DMSO to dissolve the formazan in viable cells. Absorbance was measured at 570 nm with
630 nm as the reference wavelength. Cell viability was calculated using Formula (4). Cells
incubated in a medium only served as the negative control.

Cell viability (%) =
Absorbance of sample

Absorbance of negative control
× 100% (4)
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2.7. Anti-Neuroinflammatory Activity
2.7.1. Griess Assay

Inhibitory activity on the production of NO was determined by measuring the amount
of nitrite, a stable oxidation product of NO, in the culture medium using the Griess reagent
nitrite measurement kit. BV2 microglia were seeded at a cell density of 62.5× 103 cells/well
in a 96-well plate overnight. The cells were pre-treated with a fresh medium containing
a selected concentration of extracts or 250 µM L-NAME for 2 h, followed by incubation
with 1 µg/mL LPS for 24 h. The culture medium was mixed with an equal volume of
Griess reagent, and the absorbance was measured at 550 nm. The amount of NO (µM)
was calculated with sodium nitrite as the standard. To justify the inhibitory effect on NO
production by the extracts, the cell viability of the treated cells was tested using MTT, as
mentioned above (Experiment 2.6). NO production (%) was calculated using Formula (5).
Cells incubated with medium only served as the negative control; LPS only served as the
LPS control; L-NAME and LPS served as the positive control. Extract with the highest NO
inhibitory activity was chosen for the subsequent assays.

NO production (%) =
Amount of NO in sample

Amount of NO in LPS control
× 100% (5)

2.7.2. Enzyme-Linked Immunosorbent Assay (ELISA)

BV2 microglia were seeded at a cell density of 625 x 103 cells/well in a 6-well plate
overnight. The cells were pre-treated with a fresh medium containing a selected concen-
tration of ethanol extract for 2 h, followed by incubation with 1 µg/mL LPS for 24 h. The
amount of PGE2, TNF-α, and IL-6 in the culture medium was measured using the ELISA kit
according to the manufacturer’s instructions. Briefly, the culture medium (with the addition
of mouse anti-PGE2 detection antibody for PGE2) was incubated in the well pre-coated
with the respective capture antibody for the indicated incubation period. The wells were
washed (only for TNF-α and IL-6) and further incubated with HRP-conjugated antibody
or PGE2 for 2 h. The wells were washed and incubated with a substrate solution in the
dark for 30 min. A stop solution was added, and absorbance was measured at 450 nm with
570 nm as the reference wavelength. The inhibition (%) was calculated using Formula (6).
Cells incubated with medium only served as the negative control; LPS only served as the
LPS control.

Inhibition (%) =
Amount in LPS control − Amount in sample

Amount in LPS control
× 100% (6)

2.7.3. Western Blot Analysis

BV2 microglia were seeded at a cell density of 625 × 103 cells/well in a 6-well plate
overnight. The cells were treated as mentioned in Experiment 2.7.2. Cells were washed
with ice-cold phosphate-buffered saline (PBS) and lysed with cell lysis buffer containing
PMSF and protease inhibitor on ice for 5 min. Cell lysates were collected and centrifuged
at 150,000 rpm at 4 ◦C for 10 min to remove the cell debris. Protein concentration was
quantified using the BCA protein assay kit. An equal amount of protein was separated
using 8% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
electrophoretically transferred onto a nitrocellulose membrane. The membrane was blocked
with 5% nonfat milk for 1 h and subsequently incubated with the primary antibody (COX-2
(1:1000), iNOS (1:500), or β-actin (1:1000)) at 4 ◦C overnight. The membrane was washed
and incubated with HRP-conjugated goat anti-rabbit secondary antibody (1:10,000) for 1 h.
After washing, the membrane was added with ECL, and the signal was visualized using
the G:BOX Chemi XX9 gel doc system and GeneSys image acquisition software (Syngene,
Cambridge, UK). Band intensity was quantified using Image J software (version 1.50,
Wayne Rasband, National Institutes of Health, Bethesda, MD, USA). The original Western
blot images were shown in Figure S1.
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2.8. Bioactive Compounds Identification

The ethanol extract was sent for liquid chromatography-mass spectrometric (LC-MS)
analysis at Monash University (Malaysia). Compounds separation was performed on
the Agilent 1290 Infinity LC system coupled to Agilent 6520 Accurate-Mass quadrupole
time-of-flight (Q-TOF) mass spectrometer with dual electrospray ionization (ESI) source
(Agilent Technologies, Santa Clara, CA, USA), operated in the positive-ion mode. The
ethanol extract was loaded into a Narrow-Bore 2.1 × 150 mm, 3.5 µm particle size Agilent
Zorbax Eclipse XDB-C18 column (P/N: 930990-902). Separation was performed using
solvent A (0.1% formic acid in water) and solvent B (0.1% formic acid in acetonitrile) with
the gradient setting of 5% B at the 0 and 5 min, followed by 100% B at the 20 min and
25 min. The total run time was 30 min (including 5 min post-run time) at a flow rate of
0.5 mL/min. Autosampler temperature was maintained at 4 ◦C with an injection volume
of 1 µL, while column temperature was set at 25 ◦C. The settings of the mass spectrometer
included: capillary voltage: 4000 V, fragmentor voltage: 125 V, skimmer: 65 V, and liquid
nebulizer: 45 psig. The drying gas temperature was maintained at 300 ◦C at a flow rate of
10 L/min. The acquisition rate was 1.03 spectra/sec, and the mass spectrum was scanned
from m/z 100 to 3200.

The data were processed using Agilent MassHunter Qualitative Analysis B.07.00 soft-
ware (Agilent Technologies, Santa Clara, CA, USA) with the Molecular Feature Extraction
(MFE) small molecule algorithm. Compounds were identified using the Molecular Formula
Generator (MFG) software (Agilent Technologies, Santa Clara, CA, USA) and through
matching with the Metlin_AM_PCDL-N-170502.cdb database.

2.9. Statistical Analysis

All experiments were repeated three times. All data were expressed as mean ± standard
error (SE) and statistically analyzed using 1-way ANOVA with post hoc testing (GraphPad
Prism ver. 5.02, Dotmatics, San Diego, CA, USA). Values of p ≤ 0.05 were considered to
have a significant difference.

3. Results
3.1. Yield Percentage and Phytochemical Content

The aqueous extract had the highest yield (27.75 ± 0.877%), and the yield was signifi-
cantly (p ≤ 0.05) higher than ethyl acetate, ethanol, and hexane extracts by approximately
5.23-, 8.04-, and 9.31-fold, respectively. Based on Table 1, all solvent extracts showed posi-
tive results for TPC, and the amount increased as solvent polarity increased from hexane to
aqueous. Notably, aqueous, ethanol, and ethyl acetate extracts showed positive results for
TFC but not for hexane extract. In contrast with TPC, TFCs were not affected by solvent
polarity, as ethanol extract had the highest content (83.41 ± 2.049 mg QE/g) while ethyl
acetate extract had the lowest content (0.29 ± 0.191 mg QE/g).

Table 1. Yield percentage and phytochemical content of S. platensis extracts.

Extract Yield (%) TPC (mg GAE/g) TFC (mg QE/g)

Hexane 2.98 ± 0.442 a 4.63 ± 0.594 a 0.00 ± 0.000 a

Ethyl acetate 5.31 ± 0.766 a 10.26 ± 0.864 b 0.29 ± 0.191 a

Ethanol 3.45 ± 0.042 a 27.35 ± 0.400 c 83.41 ± 2.049 b

Aqueous 27.75 ± 0.877 b 32.40 ± 0.515 d 7.24 ± 0.389 c

Data expressed as mean ± standard error (SE; n = 3). Means with different letters indicate significant differences
(p ≤ 0.05; Tukey’s test).

3.2. Antioxidant Capacity of Solvent Extracts

The antioxidant activity of the solvent extracts was examined by the ABTS scavenging
activity, DPPH scavenging activity, and reducing power assays (Table 2). Ascorbic acid
(or vitamin C) is a well-known antioxidant and was used as the positive control in the
antioxidant assays. All solvent extracts had an EC50 below 1 mg/mL for the scavenging
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activity on ABTS and DPPH radicals, in which ethanol extract was the lowest for ABTS
(0.097 ± 0.00035 mg/mL) and second lowest for DPPH (0.107 ± 0.00598 mg/mL) after
ethyl acetate extract (0.052 ± 0.00350 mg/mL). Similarly, all solvent extracts had an EC50
below 2 mg/mL for reducing power, with only the ethanol extract showing an EC50 below
1 mg/mL. The EC50 of ethanol extract in ABTS scavenging activity and reducing power
was two-fold lower than ethyl acetate extract. In contrast, EC50 of ethanol extract in DPPH
scavenging activity was double that of ethyl acetate extract. Overall, ethanol extract had
the highest antioxidant activity, followed by ethyl acetate, aqueous, and hexane extract.

Table 2. Antioxidant activities of S. platensis extracts.

Extract/Control
EC50 (mg/mL)

ABTS DPPH Reducing Power

Extract

Hexane 0.692 ± 0.02157 a 0.175 ± 0.00202 a 1.683 ± 0.02121 a

Ethyl acetate 0.206 ± 0.00060 b 0.052 ± 0.00350 b 1.533 ± 0.01966 b

Ethanol 0.097 ± 0.00035 c 0.107 ± 0.00598 c 0.8078 ± 0.03707 c

Aqueous 0.305 ± 0.01583 d 0.367 ± 0.01493 d 1.025 ± 0.01155 d

Positive control

Ascorbic acid 0.009 ± 0.00013 e 0.001 ± 0.00002 e 0.008 ± 0.00047 e

Data expressed as mean ± SE (n = 3). Means with different alphabets indicate significant differences
(p ≤ 0.05; Tukey’s test). A lower EC50 (half-maximum effective concentration) indicates a higher antioxidant
activity. Ascorbic acid served as the positive control.

3.3. Effect of Solvent Extracts on Cell Viability

As shown in Figure 2, the effect of all solvent extracts on cell viability in BV2 microglia
was maintained above 69%, with the cell treated with ethanol extract (8 mg/mL) having the
lowest cell viability (75.22 ± 5.40%). However, ethanol extract up to 4 mg/mL maintained
cell viability above 90%. Meanwhile, ethyl acetate extract up to 2 mg/mL (80.94 ± 0.43%)
and hexane and aqueous extracts at all tested concentrations maintained cell viability above
80%. Extract concentrations with >80% cell viability were chosen for the subsequent study
on the anti-neuroinflammatory activity in BV2 microglia.

3.4. Solvent Extracts Inhibited LPS-Induced Production of NO

Under normal conditions, BV2 microglia did not produce NO (negative control). The
addition of 1 µg/mL LPS induced NO production (LPS control) ranging from 10.36 to
25.9 µM, with each expressed as 100% NO production. Whereas the positive control L-
NAME is a NO inhibitor that inhibited NO production to the range between 36.95% to
59.77% (Figure 3).

Pre-treatment with ethanol or ethyl acetate extracts significantly (p ≤ 0.001) inhibited
NO production in a dose-dependent manner without significant effect on cell viability at
all tested concentrations (Figure 3B,C). At 2 mg/mL, ethanol extract completely inhibited
NO production, whereas ethyl acetate extract inhibited NO production to 31.38 ± 3.53%;
both showed higher inhibitory activity than the positive control (49.83 ± 2.52% and
59.77 ± 2.67% NO production, respectively). Aqueous extract at all tested concentrations,
except 4 mg/mL, significantly (p ≤ 0.01) inhibited NO production to the range between
74.02 ± 2.85% to 82.38 ± 3.40%. However, the inhibitory activity was lower than the
positive control (47.77 ± 1.67% NO production; Figure 3D). Hexane extract inhibited NO
production in a dose-dependent manner. At 8 mg/mL (37.90 ± 5.81% NO production), the
inhibitory activity was comparable with the positive control (44.39± 1.25% NO production),
but the cell viability was reduced by approximately 28.76% (Figure 3A).
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Figure 2. Effect of S. platensis extracts on cell viability in BV2 microglia. The cell viability was
expressed as a percentage of the negative control (0 mg/mL). Data represent the mean ± SE (n = 3).
*** p ≤ 0.001, ** p ≤ 0.01 and * p ≤ 0.05 significant difference in cell viability relative to the negative
control by Dunnett’s multiple comparison test. EA: ethyl acetate.

At the concentration of 2 mg/mL, only ethanol (0% NO production) and ethyl acetate
(20.83 ± 2.53% NO production) extracts showed higher NO inhibitory activity than the
positive control (36.95 ± 1.08% NO production; Figure 2E), which corresponded with
the dose-dependent result (Figure 3A–D). Overall, ethanol extract had the highest NO
inhibitory activity, followed by ethyl acetate and aqueous extracts. Hexane extract did not
possess inhibitory activity, as the decrease in NO level might be due to the reduction in the
viable cell. Ethanol extract that showed the highest antioxidant and NO inhibitory activities
was chosen for the subsequent assays.

3.5. Ethanol Extract Inhibited LPS-Induced Production of PGE2, TNF-α, and IL-6

Overnight LPS stimulation (LPS control) significantly induced a 17.27-fold increase
in PGE2 production by BV2 microglia and was expressed as zero inhibition percentage.
Hence, the basal level of PGE2 in BV2 microglia (negative control: 39.21± 27.53 pg/mL) was
calculated as 96.15% inhibition. Ethanol extract inhibited 10.61 ± 9.15% and 8.64 ± 10.95%
PGE2 production at 1 and 2 mg/mL, respectively (Figure 4A).

Meanwhile, BV2 microglia did not produce TNF-α and IL-6 (negative controls) under
normal conditions. Overnight LPS stimulation (LPS control) induced TNF-α and IL-6
production to 7010 ± 88.32 and 12 912 ± 219.20 pg/mL, respectively. The LPS control was
expressed as zero inhibition percentage, while the negative control was 100% inhibition.
Ethanol extract significantly (p ≤ 0.001) inhibited the TNF-α and IL-6 production in a dose-
dependent manner, with higher inhibitory activity on the IL-6 production (Figure 4B,C).
Ethanol extract inhibited > 50% of IL-6 production (58.03 ± 0.54% inhibition) at 0.5 mg/mL,
but a four-fold increase in concentration was needed to inhibit > 50% of TNF-α production
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(62.17 ± 1.55% inhibition). Nevertheless, ethanol extract at 2 mg/mL inhibited > 90% of
IL-6 production (93.73 ± 1.00% inhibition).
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Figure 3. NO inhibitory activity of S. platensis solvent extracts in LPS-induced BV2 microglia. Dose-
dependent effect of (A) hexane, (B) ethyl acetate, (C) ethanol, (D) aqueous extracts, and (E) the effect
of all solvent extracts at 2 mg/mL on the NO production (bar chart) and cell viability (line chart).
NO production and cell viability were expressed as a percentage of the LPS and negative control,
respectively. Data represented the mean ± SE (n = 3). *** p ≤ 0.001 and ** p ≤ 0.01 significant in NO
production; ### p ≤ 0.001, ## p ≤ 0.01 and # p ≤ 0.05 significant difference in cell viability relative to
the LPS control by Dunnett’s multiple comparison test. L-NAME served as the positive control. EA:
ethyl acetate.

3.6. Ethanol Extract Downregulated LPS-Induced Expression of iNOS but Upregulated COX-2

As shown in Figure 5, unstimulated BV2 microglia did not express iNOS and COX-2
(negative controls), whereas overnight LPS stimulation (LPS control) induced the expression
of both proteins. Ethanol extract exhibited an opposite effect on the iNOS and COX-2
protein expression in a dose-dependent manner: significantly (p ≤ 0.01) inhibited iNOS
expression but enhanced COX-2 expression (Figure 5B,C). In relation to the previous results
(Figure 3C,E), the NO inhibitory activity of ethanol extract was achieved by downregulating
iNOS protein expression.

3.7. Bioactive Compounds Profile of Ethanol Extract

The chromatogram showed 59 peaks in ethanol extract (Figure S2), but only 35 com-
pounds had the MFG scores above 90% and ± 5 ppm difference. Twenty-one compounds
were tentatively identified in the Metlin database: compound methenamine (i), (morpholi-
noimino)acetonitrile (ii), benazeprilat (iii), rauwolscine (iv), uncarine C (v), 2-carboxy-4-
dodecanolide (vi), 4,5-di-o-methyl-8-prenylafzelechin-4beta-ol (vii), (±)13-azaprostanoic
acid (viii), estra-1,3,5(10)-triene-2,17beta-diol (ix), 15(S)-15-methyl PGF2α ethyl amide
(x), emmotin A (xi), 3-butylidene-7-hydroxyphthalide (xii), N-cis-tetradec-9Z-enoyl-L-
homoserine lactone (xiii), stigmatellin Y (xiv), palmitic amide (xv), 1-monopalmitin (xvi),
harderoporphyrin (xvii), hexadecyl acetyl glycerol (xviii), 3α,12α-dihydroxy-5β-chol-8(14)-
en-24-oic acid (xix), docosanedioic acid (xx), and hexacosanedioic acid (xxi; Table 3). Em-
motin A (xi), palmitic amide (xv), and 1-monopalmitin (xvi) have been reported in studies
related to neurodegenerative diseases (Table 3). In fact, emmotin A (xi) and 1-monopalmitin
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(xvi) are the major compounds in the ethanol extract, represented by the top 2 peaks
at 16.743 and 19.299 min, respectively (Figures S2 and S3). The 14 unidentified com-
pounds recorded in Table 4 indicated the presence of unexplored bioactive compounds in
S. platensis.
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Figure 5. Regulation by S. platensis ethanol extract on the expression of the proinflammatory enzymes
in LPS-induced BV2 microglia. Dose-dependent effects were observed on (A) iNOS and COX-2 protein
expression. The blot shown was the representative results of three independent experiments. β-actin
served as an internal control. (B,C) Quantification of relative band intensities from three independent
experimental results was determined by densitometry. *** p ≤ 0.001 and ** p ≤ 0.01 significant
difference in protein expression relative to LPS control by Dunnett’s multiple comparison test.
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Table 3. Tentatively identified compounds in S. platensis ethanol extract.

No. Compound Name Molecular
Formula

Molecular
Mass

m/z Ratio
[Ion] Molecular Structure Classification Bioactivity

i Methenamine C6H12N4 140.106 141.1132
[M + H]+
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Table 3. Cont.

No. Compound Name Molecular
Formula

Molecular
Mass

m/z Ratio
[Ion] Molecular Structure Classification Bioactivity
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[M + H]+

Metabolites 2022, 12, 1147 24 of 32 
 

 

iv Rauwolscine C21H26N2O3 354.1938 
355.2013 
[M + H]+ 

 

Alkaloid 

An α2C-adrenoceptor antagonist that 
protects against peripheral 
antinociception [38], hypertension [39], 
myocardial ischemia [40], hyperactivity 
[41], psychosis [42] and breast cancer 
[43]. 

v Uncarine C C21H24N2O4 368.1734 
369.1806 
[M + H]+ 

 

Alkaloid 

Antigenotoxic, antioxidant, and 
immunomodulatory activity [44]. 
Anticancer activity in medullary thyroid 
cancer [45], bladder cancer [46], and 
lymphoblastic leukemia [47]. 

vi 
2-Carboxy-4-
dodecanolide 

C13H22O4 242.152 
243.1593 
[M + H]+ 

 

γ-
butyrolactone 

N/A 

vii 

4,5-Di-O-methyl-
8-

prenylafzelechin-
4beta-ol 

C22H26O6 386.1734 
404.2063 

[M + NH4]+ 

 

Flavonoid N/A 

Alkaloid

Antigenotoxic, antioxidant, and
immunomodulatory activity [44].
Anticancer activity in medullary thyroid
cancer [45], bladder cancer [46], and
lymphoblastic leukemia [47].

vi 2-Carboxy-4-dodecanolide C13H22O4 242.152 243.1593
[M + H]+

Metabolites 2022, 12, 1147 24 of 32 
 

 

iv Rauwolscine C21H26N2O3 354.1938 
355.2013 
[M + H]+ 

 

Alkaloid 

An α2C-adrenoceptor antagonist that 
protects against peripheral 
antinociception [38], hypertension [39], 
myocardial ischemia [40], hyperactivity 
[41], psychosis [42] and breast cancer 
[43]. 

v Uncarine C C21H24N2O4 368.1734 
369.1806 
[M + H]+ 

 

Alkaloid 

Antigenotoxic, antioxidant, and 
immunomodulatory activity [44]. 
Anticancer activity in medullary thyroid 
cancer [45], bladder cancer [46], and 
lymphoblastic leukemia [47]. 

vi 
2-Carboxy-4-
dodecanolide 

C13H22O4 242.152 
243.1593 
[M + H]+ 

 

γ-
butyrolactone 

N/A 

vii 

4,5-Di-O-methyl-
8-

prenylafzelechin-
4beta-ol 

C22H26O6 386.1734 
404.2063 

[M + NH4]+ 

 

Flavonoid N/A 

γ-butyrolactone N/A

vii 4,5-Di-O-methyl-8-
prenylafzelechin-4beta-ol C22H26O6 386.1734 404.2063

[M + NH4]+

Metabolites 2022, 12, 1147 24 of 32 
 

 

iv Rauwolscine C21H26N2O3 354.1938 
355.2013 
[M + H]+ 

 

Alkaloid 

An α2C-adrenoceptor antagonist that 
protects against peripheral 
antinociception [38], hypertension [39], 
myocardial ischemia [40], hyperactivity 
[41], psychosis [42] and breast cancer 
[43]. 

v Uncarine C C21H24N2O4 368.1734 
369.1806 
[M + H]+ 

 

Alkaloid 

Antigenotoxic, antioxidant, and 
immunomodulatory activity [44]. 
Anticancer activity in medullary thyroid 
cancer [45], bladder cancer [46], and 
lymphoblastic leukemia [47]. 

vi 
2-Carboxy-4-
dodecanolide 

C13H22O4 242.152 
243.1593 
[M + H]+ 

 

γ-
butyrolactone 

N/A 

vii 

4,5-Di-O-methyl-
8-

prenylafzelechin-
4beta-ol 

C22H26O6 386.1734 
404.2063 

[M + NH4]+ 

 

Flavonoid N/A Flavonoid N/A

viii (±)13-Azaprostanoic acid C19H37NO2 311.2822 329.3163
[M + NH4]+

Metabolites 2022, 12, 1147 25 of 32 
 

 

viii 
(±)13-

Azaprostanoic 
acid 

C19H37NO2 311.2822 
329.3163 

[M + NH4]+ 
 

Fatty acid 

Antagonist of 
thromboxane/endoperoxide receptor 
that protects against thrombosis [48], 
hypertension [49], and endotoxic shock 
[50]. 

ix 
Estra-1,3,5(10)-
triene-2,17beta-

diol 
C18H24O2 272.1774 

273.1848 
[M + H]+ 

 

Terpenoid N/A 

x 
15(S)-15-methyl 

PGF2α ethyl 
amide 

C23H41NO4 395.3029 
396.3106 
[M + H]+ 

 

N/A N/A 

xi Emmotin A C16H22O4 278.1521 
279.1594 
[M + H]+ 

 

Terpenoid 

An enzyme inhibitor that has binding 
interaction with AChE, BChE, α-
glucosidase, α-amylase, and tyrosine 
[51]. 

Fatty acid

Antagonist of thromboxane/endoperoxide
receptor that protects against thrombosis
[48], hypertension [49], and endotoxic
shock [50].



Metabolites 2022, 12, 1147 17 of 29

Table 3. Cont.

No. Compound Name Molecular
Formula

Molecular
Mass

m/z Ratio
[Ion] Molecular Structure Classification Bioactivity
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Table 4. Unknown compounds present in S. platensis ethanol extract.

No. Molecular
Formula Molecular Mass m/z Ratio Ion

i C36H66N6O6 678.5048 679.5121 [M + H]+

ii C13H20O4 240.1365 241.1435 [M + H]+

iii C9H19NO 157.1463 158.1536 [M + H]+

iv C8H4O3 148.0157 149.023 [M + H]+

v C18H38O4 318.2766 336.3108 [M + NH4]+

vi C16H34O3 274.2506 275.258 [M + H]+

vii C37H74N2O7S 690.5213 691.5291 [M + H]+

viii C18H38O3 302.2813 325.2736 [M + Na]+

ix C35H42O10 622.2766 623.2835 [M + H]+

x C36H38N4O5 606.2846 607.2916 [M + H]+

xi C37H40N4O5 620.2998 621.3072 [M + H]+

xii C38H36N8O 620.3005 621.3076 [M + H]+

xiii C38H51N3O 565.4037 566.4108 [M + H]+

xiv C44H58N2O3 662.4455 663.4537 [M + H]+

4. Discussion

S. platensis is well-known for its high capacity in antioxidant production. S. platen-
sis supplement and polysaccharides protect dopaminergic neurons in the rat models of
PD and AD through the regulation of antioxidant and inflammatory mechanisms [26,27].
S. platensis supplement and ethanol extract also promote the regeneration of neurons [28,29].
However, this study is the first to study the regulation of neuroinflammation in microglia
by the metabolites in the ethanol extract of S. platensis. The majority of phytochemicals
are secondary metabolites synthesized by plants as part of their defense mechanism [77].
Phytochemicals can be classified into six main groups: carbohydrates, lipids, terpenoids,
phenolic, alkaloids, and other nitrogen-containing metabolites [78]. Phenolic compounds
have high nutraceutical and pharmaceutical value due to their ability to scavenge ROS, as
oxidative stress plays a key role in the progression of multiple diseases, including neurode-
generative diseases [79]. Flavonoids are a subgroup of phenolic compounds, and regular
consumption of a flavonoid-rich diet has been reported to reduce the risk of neurodegen-
erative diseases [80]. The extraction efficiency of the phytochemicals can be influenced
by multiple factors such as temperature and incubation period, but solvent for extraction
has been the main factor due to the intermolecular forces [81]. In this study, four solvents
with different polarities were used for extraction, aimed to maximize the phytochemical
extraction from S. platensis. The amount of TPC and TFC extracted by solvents with high
polarity (water and ethanol) were significantly higher than solvent with lower polarity
(ethyl acetate and hexane), as expected since polyphenols are hydrophilic [82]. A study
found that phenolic compounds, mainly flavonoids, contributed to the 2.5% dry weight of
the polar extract of S. platensis [83]. Based on the high-performance liquid chromatography
(HPLC) studies, phenolic compounds in S. platensis can be categorized into four subgroups:
(a) polyphenol (phloroglucinol, resveratrol and pyrogallol); (b) phenolic acids (protocate-
chuic, succinic, quinic, 4-hydroxybenzoic, citric, vanillic, salicylic, syringic, gallic, caffeic,
chlorogenic, rosmarinic, p-coumaric, ferulic, and hydroxycinnamic acid); (c) aldehyde
(4-hydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde); and (d) flavonoids (apigenin,
catechin, rutin, quercetin and quercitrin) [84–86].

Based on our results, ethanol extract with the highest TFC also showed the highest
ABTS scavenging activity and reducing power. In comparison, DPPH scavenging activ-
ity was the highest in ethyl acetate extract, followed by ethanol, hexane, and aqueous
extracts. These results inferred that the flavonoids in S. platensis contribute to the ABTS
scavenging activity and reducing power but not DPPH scavenging activity since hexane
extract with zero flavonoid content showed higher activity than aqueous extract. This
was justified when ethyl acetate extract with low TFC (0.29 ± 0.191 mg QE/g) showed
the highest DPPH scavenging activity. In agreement with Bellahcen et al., we found that
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organic solvents showed higher efficacy in the extraction of antioxidants from S. platensis
compared to water [87]. Furthermore, organic solvents with high polarity have a higher
capability in the extraction of antioxidants compared to non-polar organic solvents. This is
consistent with the reported finding, which showed S. platensis ethanol extract exhibited
higher antioxidant activity than hexane extract [88]. This finding also applies to macroalgae,
where a similar finding has been reported in the brown macroalga Padina australis [89]. A
study that utilized both thin-layer chromatography (TLC) and HPLC-diode array detection
(DAD) reported that active antioxidants in S. platensis ethanol extract include β-carotene,
zeaxanthin, carotenoids, and phenolic compounds [88]. LC-MS analysis also identified a
list of potential antioxidants in S. platensis, including carotenoids (siphonein, zeaxanthin,
myxoxanthophyll fucoside, astaxanthin, and β-carotene), chlorophyll and the derivatives
(chlorophyll a, pheophytin a, pyropheophytin a, and pheophorbide a) and phenolic com-
pounds [90]. Both carotenoids and phenolic compounds are popular antioxidants [77,91].
As such, carotenoids may be the active compound for DPPH scavenging activity in the
solvent extracts since flavonoid has been excluded (as mentioned above). Regardless of the
DPPH scavenging activity, our results suggested flavonoids as the predominant antioxidant
in S. platensis. It had been presumed that microalgae were unable to synthesize flavonoids
until the genes involved in the flavonoid synthesis pathway were detected in microalgae in
2008 [84]. Hence, further investigations are essential to gather sufficient information on the
flavonoid synthesis in S. platensis.

The neuroinflammatory response is a cascade of proinflammatory mediators and
cytokine production by neuroglia until the resolution mechanism takes place. Proinflam-
matory cytokines or ROS trigger the expression of enzymes, iNOS, and COX-2, in microglia
to produce NO and PGE2, respectively [92,93]. Overproduction of NO can be detrimental
to neuronal cells by increasing the level of ROS to prolong the neuroinflammatory cas-
cade [94], reacting with superoxide radicals to produce neurotoxins, and modifying the
proteins to promote neuronal cell death and protein aggregation [95,96]. Similarly, PGE2
binds to the receptors located on microglia to amplify the production of proinflammatory
cytokines [93]. Overproduction of proinflammatory cytokines, such as TNF-α, can activate
the caspase cascade, which results in neuronal apoptosis [97]. As illustrated in Figure 6, we
found that ethanol extract inhibited neuroinflammation by reducing the NO production via
downregulation of iNOS protein expression in LPS-induced BV2 microglia. Ethanol extract
also reduced the production of TNF-α and IL-6 in a dose-dependent manner but showed
no significant inhibition on neither the PGE2 production nor COX-2 protein expression.
Studies have reported that the acetone and ethyl acetate extracts of S. platensis also reduced
the expression of iNOS, TNF-α and IL-6, with the ethyl acetate extract suppressing the
expression of COX-2 [98,99]. COX-2 has been labeled as a proinflammatory mediator
since it was mainly expressed during inflammation, but its role in neuroinflammation
remains controversial.

Studies reported that the absence of COX-2 favored the proinflammatory response [100],
and acetylation of COX-2 induced the production of anti-inflammatory mediators [101].
Chen et al. (2012) reported that the expression of iNOS, COX-2, TNF-α, and IL-6 was
inhibited by C-phycocyanin (C-PC) present in S. platensis [102]. Since our ethanol extract did
not inhibit the expression of COX-2, we can safely assume that C-PC is not the responsible
bioactive compound in the ethanol extract. Inhibitory activity on the production of NO,
PGE2, TNF-α, IL-1β and IL-6 by ethanol extract of another species, S. maxima, increased
as the concentration of chlorophylls increased, indicating the potential of chlorophylls in
Spirulina as anti-neuroinflammatory agent [103]. Carotenoids, another group of natural
pigments isolated from the microalgae Nitzschia laevis and Euglena gracilis, also exhibited
similar anti-neuroinflammatory activities [104,105].
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Figure 6. Illustration of neuroprotective effect by S. platensis ethanol extract via downregulation of 
the LPS-induced production of proinflammatory mediators and cytokines in BV2 microglia. TLR4: 
Toll-like receptor 4; EP1-4: Prostaglandin E2 receptor 1-4; TNFR1: Tumor necrosis factor receptor 1; 
IL6R: Interleukin 6 receptor. 
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Figure 6. Illustration of neuroprotective effect by S. platensis ethanol extract via downregulation of
the LPS-induced production of proinflammatory mediators and cytokines in BV2 microglia. TLR4:
Toll-like receptor 4; EP1-4: Prostaglandin E2 receptor 1-4; TNFR1: Tumor necrosis factor receptor 1;
IL6R: Interleukin 6 receptor.

The tentatively identified compounds in ethanol extract comprise different groups of
metabolites: amines, nitriles, dipeptides, alkaloids, γ-butyrolactones, phenolic compounds,
fatty acids, terpenoids, phthalides, porphyrins, glycerolipids, and ethers. We proposed em-
motin A (terpenoid), palmitic amide (fatty acid amide) and 1-monopalmitin (glycerolipid)
that involved in neurodegenerative diseases as the bioactive compounds in ethanol extract.
Terpenoids are a major group of phytochemicals, with carotenoids and steroids as the
subgroups [106]. Emmotin A showed strong binding interaction with acetylcholinesterase
(AChE) and butyrylcholinesterase (BChE) in an in silico molecular docking study [51].
Other terpenoids with positive interaction in the study showed in vitro AChE inhibitory
and antioxidant activities [107]. As mentioned above, the FDA-approved drugs for AD
ameliorated cognitive impairment by inhibiting the breakdown of ACh by both AChE and
BuChE [11]. Furthermore, these drugs suppressed microglia activation and inhibited proin-
flammatory cytokines production, supporting the role of cholinergic neurotransmission in
the regulation of neuroinflammation [108]. These studies suggested the neuroprotective
potential of emmotin A by maintaining the level of ACh and suppressing neuroinflam-
mation. Similarly, fucosterol, a steroid isolated from P. australis, has been reported with
anti-cholinesterase and anti-neuroinflammatory activity in BV2 microglia [109]. Astaxan-
thin [110], fucoxanthin [111], and fucoxanthinol [112] are marine carotenoids reported to
inhibit the production of NO and proinflammatory cytokines through the regulation of
nuclear factor kappa B (NF-κB) pathway. The anti-neuroinflammatory and antioxidant ac-
tivities of fucoxanthin and fucoxanthinol also involved the regulation of mitogen-activated
protein kinase (MAPK) and nuclear erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1
(HO-1) pathways [104,111].

Lipids play an important role in brain development and can be divided into eight
subgroups: fatty acids, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids,
prenol lipids, saccharolipids, and polyketides [112]. Palmitic amide is a ligand of per-
oxisome proliferator-activated receptor alpha (PPARα) with the capability to penetrate
CNS and promote the synaptic function of hippocampal neurons via upregulation of the
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cAMP-response element-binding protein (CREB) [59,113]. PPARα is a transcription factor
with neuroprotective effects reported in various neurological disease models, including AD
and PD. The effect was mainly attributed to the antioxidant and anti-neuroinflammatory
activities [108]. Palmitic amide and 1-monopalmitin have been identified as a biomarker
for AD [57] and CNS inflammatory demyelinating diseases (IDDs) [61], respectively. CNS
IDDs are a group of diseases with inflammatory lesions, including multiple sclerosis.
1-Monopalmitin was upregulated in the cerebrospinal fluid of CNS IDDs patients, indicat-
ing that 1-monopalmitin plays a role in neuroinflammation [61]. Recently, 1-monopalmitin
has been identified in the methanol extract of a red macroalga Kappaphycus malesianus, that
suppressed the proinflammatory mediators and cytokines production by downregulat-
ing the protein kinase B (AKT)/NF-κB and extracellular signal-regulated kinase 1 and 2
(ERK1/2) pathways [114]. Despite the lack of study on palmitic amide and 1-monopalmitin,
other algae-derived lipids have shown neuroprotective effects by modulating the proinflam-
matory mediators and cytokines. Hexadecanoic acid, a fatty acid isolated from Myagropsis
myagroides, inhibited the production of proinflammatory mediators and cytokines via
NF-κB, ERK1/2, and c-Jun NH2-terminal kinase (JNK) pathways in BV2 microglia [115].
Besides macroalgae, lipids isolated from Chlorella sorokiniana and Tetraselmis chui also
showed NO inhibitory activity in BV2 microglia [116,117]. Lipid extracts from Porphyra
dioica, Palmaria palmata, Chondrus crispus, and Pavlova lutheri downregulated the expression
of 14 proinflammatory genes in LPS-induced human THP-1 macrophages and inhibited the
production of IL-8. However, only extracts from P. lutheri and P. palmata showed inhibition
on IL-6 and TNF-α [118].

5. Conclusions

Our result revealed that S. platensis ethanol extract possesses anti-neuroinflammatory
activity by regulating the production of proinflammatory mediators and cytokines in
LPS-induced BV2 microglia. Emmotin A, palmitic amide, and 1-monopalmitin were
proposed as potential bioactive compounds in our ethanol extract with bioactivity linked
to neuroinflammation. However, further investigation on bioassay-guided isolation and
characterization is required for the identification of the bioactive compound(s). In addition,
investigation of the underlying mechanisms and in vivo study involving the proposed
bioactive compounds are essential for the development of the compounds into functional
food. Currently, the field of nutrition is working towards precision nutrition to provide
tailored nutritional advice in the prevention and management of the disease. This study
serves as the preliminary assessment for the compound(s) isolation and characterization,
which is essential in the development of precision nutrition.
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