Why Do High-Risk Patients Develop or Not Develop Coronary Artery Disease? Metabolic Insights from the CAPIRE Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
- -
- Family history: History of CAD in first-degree relatives, with onset <55 years for men and <65 years for women;
- -
- Arterial hypertension: History of hypertension, current antihypertensive treatment, or recent blood pressure >140/90 mmHg;
- -
- Hypercholesterolemia: Total cholesterol >200 mg/dL or <200 mg/dL with lipid-lowering medications
- -
- Diabetes mellitus: Fasting plasma glucose >126 mg/dL, two-hour oral glucose tolerance test ≥200 mg/dL, isolated glycated hemoglobin ≥6.5%, or current use of insulin or oral hypoglycemic agents
- -
- Smoking: Current or abstention <1 year.
- Subjects with CAD in >5/16 segments according to the American Heart Association classification and ³3 CVRFs (CAD/High-RFs; cases);
- Subjects without CAD but ³3 CVRFs (No-CAD/High-RFs; controls).
4.2. Preparation
4.3. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Hajar, R. Risk factors for coronary artery disease: Historical perspectives. Hear Views 2017, 18, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Peden, J.F.; Farrall, M. Thirty-five common variants for coronary artery disease: The fruits of much collaborative labour. Hum. Mol. Genet. 2011, 20, R198–R205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeBlanc, M.; Zuber, V.; Andreassen, B.K.; Witoelar, A.; Zeng, L.; Bettella, F.; Wang, Y.; McEvoy, L.K.; Thompson, W.K.; Schork, A.J.; et al. Identifying Novel gene variants in coronary artery disease and shared genes with several cardiovascular risk factors. Circ. Res. 2016, 118, 83–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deidda, M.; Piras, C.; Dessalvi, C.C.; Congia, D.; Locci, E.; Ascedu, F.; De Candia, G.; Cadeddu, M.; Lai, G.; Pirisi, R.; et al. Blood metabolomic fingerprint is distinct in healthy coronary and in stenosing or microvascular ischemic heart disease. J. Transl. Med. 2017, 15, 112. [Google Scholar] [CrossRef] [Green Version]
- Magnoni, M.; Andreini, D.; Gorini, M.; Moccetti, T.; Modena, M.G.; Canestrari, M.; Berti, S.; Casolo, G.; Gabrielli, D.; Marraccini, P.; et al. Coronary atherosclerosis in outlier subjects at the opposite extremes of traditional risk factors: Rationale and preliminary results of the Coronary Atherosclerosis in outlier subjects: Protective and novel Individual Risk factors Evaluation (CAPIRE) study. Am. Hear. J. 2015, 173, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Deidda, M.; Noto, A.; Dessalvi, C.C.; Andreini, D.; Andreotti, F.; Ferrannini, E.; Latini, R.; Maggioni, A.P.; Magnoni, M.; Maseri, A.; et al. Metabolomic correlates of coronary atherosclerosis, cardiovascular risk, both or neither. Results of the 2 × 2 phenotypic CAPIRE study. Int. J. Cardiol. 2021, 336, 14–21. [Google Scholar] [CrossRef]
- Zhloba, A.A.; Subbotina, T.F.; Molchan, N.; Polushin, Y.S. The level of circulating humanin in patients with ischemic heart disease. Klin. lab Diagn. 2019, 63, 466–470. [Google Scholar]
- Possik, E.; Madiraju, S.M.; Prentki, M. Glycerol-3-phosphate phosphatase/PGP: Role in intermediary metabolism and target for cardiometabolic diseases. Biochimie 2017, 143, 18–28. [Google Scholar] [CrossRef]
- Bianchi, C.; Penno, G.; Miccoli, R.; Del Prato, S. Blood glucose control and coronary heart disease. Herz 2010, 35, 148–159. [Google Scholar] [CrossRef]
- Howard, B.V.; Wylie-Rosett, J. Sugar and cardiovascular disease. Circulation 2002, 106, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Horton, J.L.; Davidson, M.T.; Kurishima, C.; Vega, R.B.; Powers, J.C.; Matsuura, T.R.; Petucci, C.; Lewandowski, E.D.; Crawford, P.A.; Muoio, D.M.; et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight 2019, 4, e124079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grajeda-Iglesias, C.; Aviram, M. Specific amino acids affect cardiovascular diseases and atherogenesis via protection against macrophage foam cell formation: Review article. Rambam Maimonides Med. J. 2018, 9, e0022-11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Canela, M.; Toledo, E.; Clish, C.; Hruby, A.; Liang, L.; Salas-Salvadó, J.; Razquin, C.; Corella, D.; Estruch, R.; Ros, E.; et al. Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial. Clin. Chem. 2016, 62, 582–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobias, D.K.; Lawler, P.R.; Harada, P.H.; Demler, O.V.; Ridker, P.M.; Manson, J.E.; Cheng, S.; Mora, S. Circulating Branched-Chain Amino Acids and Incident Cardiovascular Disease in a Prospective Cohort of US Women. Circ. Genom. Precis. Med. 2018, 11, e002157. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Zhang, Z.; Kolwicz, S.C.; Abell, L.; Roe, N.D.; Kim, M.; Zhou, B.; Cao, Y.; Ritterhoff, J.; Gu, H.; et al. Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury. Cell Metab. 2017, 25, 374–385. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Wang, S.; Sun, L.; Liu, J.; Li, H.; Sui, X.; Wang, M.; Xiu, H.; He, Q.; Dong, J.; et al. Association of branched-chain amino acids with coronary artery disease: A matched-pair case–control study. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 937–942. [Google Scholar] [CrossRef]
- Razquin, C.; Ruiz-Canela, M.; Clish, C.B.; Li, J.; Toledo, E.; Dennis, C.; Liang, L.; Salas-Huetos, A.; Pierce, K.A.; Guasch-Ferré, M.; et al. Lysine pathway metabolites and the risk of type 2 diabetes and cardiovascular disease in the PREDIMED study: Results from two case-cohort studies. Cardiovasc. Diabetol. 2019, 18, 151. [Google Scholar] [CrossRef] [Green Version]
- Priyadarsini, S.; McKay, T.B.; Sarker-Nag, A.; Allegood, J.; Chalfant, C.; Ma, J.-X.; Karamichos, D. Complete metabolome and lipidome analysis reveals novel biomarkers in the human diabetic corneal stroma. Exp. Eye Res. 2016, 153, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Go, Y.-M.; Jones, D.P. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic. Biol. Med. 2011, 50, 495–509. [Google Scholar] [CrossRef] [Green Version]
- McLeay, Y.; Stannard, S.; Houltham, S.; Starck, C. Dietary thiols in exercise: Oxidative stress defence, exercise performance, and adaptation. J. Int. Soc. Sports Nutr. 2017, 14, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Trøseid, M.; Andersen, G.Ø.; Broch, K.; Hov, J.R. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMed. 2020, 52, 102649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, L.D.; Abyad, S.; Honan, A.M.; Bryniarski, M.A.; McSkimming, D.I.; Stahura, C.M.; Wells, S.C.; Ruszaj, D.M.; Morris, M.E.; Quigg, R.J.; et al. Unconjugated p-cresol activates macrophage macropinocytosis leading to increased LDL uptake. JCI Insight 2021, 6, e144410. [Google Scholar] [CrossRef]
- Chang, M.-C.; Chang, H.-H.; Chan, C.-P.; Yeung, S.-Y.; Hsien, H.-C.; Lin, B.-R.; Yeh, C.-Y.; Tseng, W.-Y.; Tseng, S.-K.; Jeng, J.-H. p-Cresol affects reactive oxygen species generation, cell cycle arrest, cytotoxicity and Inflammation/Atherosclerosis-Related modulators production in endothelial cells and mononuclear cells. PLoS ONE 2014, 9, e114446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witkowski, M.; Weeks, T.L.; Hazen, S.L. Gut microbiota and cardiovascular disease. Circ. Res. 2020, 127, 553–570. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016, 165, 111–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Wang, Z.; Tang, W.H.W.; Hazen, S.L. Gut Microbe-Generated Trimethylamine N-Oxide from dietary choline is prothrombotic in subjects. Circulation 2017, 135, 1671–1673. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Buffa, J.A.; Wang, Z.; Warrier, M.; Schugar, R.; Shih, D.M.; Gupta, N.; Gregory, J.C.; Org, E.; Fu, X.; et al. Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. J. Thromb. Haemost. 2018, 16, 1857–1872. [Google Scholar] [CrossRef] [Green Version]
- Roncal, C.; Martínez-Aguilar, E.; Orbe, J.; Ravassa, S.; Fernandez-Montero, A.; Saenz-Pipaon, G.; Ugarte, A.; De Mendoza, A.E.-H.; Rodriguez, J.A.; Fernández-Alonso, S.; et al. Trimethylamine-N-Oxide (TMAO) Predicts cardiovascular mortality in peripheral artery disease. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dunn, W.B.; Broadhurst, D.; Atherton, H.J.; Goodacre, R.; Griffin, J.L. Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 2011, 40, 387–426. [Google Scholar] [CrossRef]
CAD/High-RF (Case, N = 56) | No-CAD/High-RF (Control, N = 56) | |
---|---|---|
Age | 61.8 ± 6.8 | 60.9 ± 7.5 |
M/F | 34/22 | 34/22 |
Height (cm) | 167.95 ± 8.75 | 167.61 ± 8.53 |
Weight (kg) | 79.40 ± 15.08 | 76.98 ± 13.68 |
BMI (Kg/m2) | 22.59 ± 5.51 | 21.95 ± 5.66 |
Abdominal circumference (cm) | 100.04 ± 12.90 | 97.17 ± 11.60 |
CAD family history | 34/56 | 34/56 |
Hypertension | 52/56 | 53/56 |
Hypercholesterolemia | 54/56 | 52/56 |
Diabetes mellitus | 20/56 | 17/56 |
Tobacco | 33/56 | 24/56 |
No CV-RFs | 0/56 | 0/56 |
CAD/High-RF (Case, N = 56) | No-CAD/High-RF (Control, N = 56) | |
---|---|---|
No therapy | 11/56 | 24/56 * |
β-Blockers | 10/56 | 16/56 |
ACE inhibitors | 15/56 | 10/56 |
ARBs | 8/56 | 13/56 |
CCB—dihydropyridines | 5/51 | 3/53 |
CCB—no dihydropyridines | 2/54 | 2/54 |
Diuretics | 7/56 | 7/56 |
Potassium-sparing diuretics | 0/56 | 0/56 |
Other antihypertensive drugs | 0/56 | 0/56 |
Antiarrhythmic drugs | 0/56 | 1/56 |
ASA | 22/56 | 11/56 * |
Clopidogrel | 1/56 | 0/56 |
Statins | 21/56 | 13/56 |
Other hypolipidemic drugs | 1/56 | 5/56 |
Insulin | 0/56 | 0/56 |
Other hypoglycemic drugs | 5/56 | 7/56 |
Allopurinol | 0/56 | 0/56 |
Metabolite | Trend in CAD/High-RFs | VIP Value |
---|---|---|
Pyruvic acid | ↑ | 3.09 |
Pipecolic acid | ↑ | 2.44 |
p-Cresol | ↑ | 2.37 |
3-Aminoisobutyric acid | ↑ | 2.28 |
Isoleucine | ↑ | 2.18 |
Cholesterol | ↓ | 1.96 |
Lactic acid | ↑ | 1.64 |
Sucrose | ↑ | 1.63 |
Hypoxanthine | ↓ | 1.51 |
Phosphoric acid | ↑ | 1.39 |
Trimethylamine-N-oxide | ↑ | 1.27 |
3-hydroxy-3-methylglutaric acid | ↑ | 1.14 |
Erythritol | ↑ | 1.12 |
3-hydroxybutyric acid | ↑ | 1.09 |
Glycerol-3-P | ↓ | 1.08 |
Glucose | ↑ | 1.03 |
Leucine | ↑ | 1.01 |
Cysteine | ↓ | 1.00 |
Glutamic acid | ↑ | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deidda, M.; Noto, A.; Cadeddu Dessalvi, C.; Andreini, D.; Andreotti, F.; Ferrannini, E.; Latini, R.; Maggioni, A.P.; Magnoni, M.; Mercuro, G.; et al. Why Do High-Risk Patients Develop or Not Develop Coronary Artery Disease? Metabolic Insights from the CAPIRE Study. Metabolites 2022, 12, 123. https://doi.org/10.3390/metabo12020123
Deidda M, Noto A, Cadeddu Dessalvi C, Andreini D, Andreotti F, Ferrannini E, Latini R, Maggioni AP, Magnoni M, Mercuro G, et al. Why Do High-Risk Patients Develop or Not Develop Coronary Artery Disease? Metabolic Insights from the CAPIRE Study. Metabolites. 2022; 12(2):123. https://doi.org/10.3390/metabo12020123
Chicago/Turabian StyleDeidda, Martino, Antonio Noto, Christian Cadeddu Dessalvi, Daniele Andreini, Felicita Andreotti, Eleuterio Ferrannini, Roberto Latini, Aldo P. Maggioni, Marco Magnoni, Giuseppe Mercuro, and et al. 2022. "Why Do High-Risk Patients Develop or Not Develop Coronary Artery Disease? Metabolic Insights from the CAPIRE Study" Metabolites 12, no. 2: 123. https://doi.org/10.3390/metabo12020123
APA StyleDeidda, M., Noto, A., Cadeddu Dessalvi, C., Andreini, D., Andreotti, F., Ferrannini, E., Latini, R., Maggioni, A. P., Magnoni, M., Mercuro, G., & on behalf of the CAPIRE Investigators. (2022). Why Do High-Risk Patients Develop or Not Develop Coronary Artery Disease? Metabolic Insights from the CAPIRE Study. Metabolites, 12(2), 123. https://doi.org/10.3390/metabo12020123