Characterization of Constituents with Potential Anti-Inflammatory Activity in Chinese Lonicera Species by UHPLC-HRMS Based Metabolite Profiling
Abstract
:1. Introduction
2. Results
2.1. Lonicera Extracts Displayed High Chemical Diversity
2.2. Lonicera Extracts Displayed Distinct In Vitro Anti-Inflammatory Activities
2.3. Candidate Compounds from Different Compound Classes Were Annotated from OPLS-DA Models Correlating UHPLC-HRMS and Activity Data
2.4. Eight OPLS-DA Candidates Were Isolated from L. hypoglauca Leaves
2.5. Several Candidate Compounds Displayed In Vitro Anti-Inflammatory Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material, Authentication and Extraction
4.3. UHPLC-HRMS Metabolite Profiling and Data Processing
4.4. Cellular In Vitro Assays
4.5. Data Treatment and Multivariate Data Analysis (MVDA)
4.6. Annotation of OPLS-DA Candidates
4.7. Isolation and Structure Elucidation of OPLS-DA Candidates
Experimental Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- China Medical Science Press. Pharmacopoeia of the People’s Republic of China: 2015, 10th ed.; Medical Science Press: Beijing, China, 2017; ISBN 7506789299. [Google Scholar]
- Royal Botanical Gardens, Kew: Medicinal Plant Names Services. Available online: https://mpns.science.kew.org/mpns-portal/searchName? (accessed on 9 November 2020).
- Shang, X.; Pan, H.; Li, M.; Miao, X.; Ding, H. Lonicera japonica Thunb.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2011, 138, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, W.; Fu, C.; Song, Y.; Fu, Q. Lonicerae japonicae flos and Lonicerae flos: A systematic review of ethnopharmacology, phytochemistry and pharmacology. Phytochem. Rev. 2020, 19, 1–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Cai, W.; Weng, X.; Li, Q.; Wang, Y.; Chen, Y.; Zhang, W.; Yang, Q.; Guo, Y.; Zhu, X.; et al. Lonicerae japonicae flos and Lonicerae Flos: A systematic pharmacology review. Evid.-Based Complement. Altern. Med. 2015, 2015, 905063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, H.; Tang, Q.L.; Shang, Y.X.; Liang, S.B.; Yang, M.; Robinson, N.; Liu, J.P. Can Chinese medicine be used for prevention of Corona Virus Disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin. J. Integr. Med. 2020, 26, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.K.; Zhou, Z.; Jiang, X.M.; Zheng, Y.; Chen, X.; Fu, Z.; Xiao, G.; Zhang, C.Y.; Zhang, L.K.; Yi, Y. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discov. 2020, 6, 4–7. [Google Scholar] [CrossRef]
- Cai, Z.; Liao, H.; Wang, C.; Chen, J.; Tan, M.; Mei, Y.; Wei, L.; Chen, H.; Yang, R.; Liu, X. A comprehensive study of the aerial parts of Lonicera japonica Thunb. based on metabolite profiling coupled with PLS-DA. Phytochem. Anal. 2020, 31, 786–800. [Google Scholar] [CrossRef]
- Kellogg, J.J.; Todd, D.A.; Egan, J.M.; Raja, H.A.; Oberlies, N.H.; Kvalheim, O.M.; Cech, N.B. Biochemometrics for natural products research: Comparison of data analysis approaches and application to identification of bioactive compounds. J. Nat. Prod. 2016, 79, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Caesar, L.K.; Montaser, R.; Keller, N.P.; Kelleher, N.L. Metabolomics and genomics in natural products research: Complementary tools for targeting new chemical entities. Nat. Prod. Rep. 2021, 38, 2041–2065. [Google Scholar] [CrossRef]
- Wolfender, J.L.; Litaudon, M.; Touboul, D.; Queiroz, E.F. Innovative omics-based approaches for prioritisation and targeted isolation of natural products-new strategies for drug discovery. Nat. Prod. Rep. 2019, 36, 855–868. [Google Scholar] [CrossRef] [Green Version]
- Demarque, D.P.; Dusi, R.G.; de Sousa, F.D.M.; Grossi, S.M.; Silvério, M.R.S.; Lopes, N.P.; Espindola, L.S. Mass spectrometry-based metabolomics approach in the isolation of bioactive natural products. Sci. Rep. 2020, 10, 1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, N.; Saleem, A.; Musallam, L.; Walshe-Roussel, B.; Badawi, A.; Cuerrier, A.; Arnason, J.T.; Haddad, P.S. Novel approach to identify potential bioactive plant metabolites: Pharmacological and metabolomics analyses of ethanol and hot water extracts of several Canadian medicinal plants of the cree of eeyou istchee. PLoS ONE 2015, 10, e0135721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikzad-Langerodi, R.; Ortmann, S.; Pferschy-Wenzig, E.M.; Bochkov, V.; Zhao, Y.M.; Miao, J.H.; Saukel, J.; Ladurner, A.; Heiss, E.H.; Dirsch, V.M.; et al. Assessment of anti-inflammatory properties of extracts from Honeysuckle (Lonicera sp. L., Caprifoliaceae) by ATR-FTIR spectroscopy. Talanta 2017, 175, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Westerhuis, J.A.; van Velzen, E.J.J.; Hoefsloot, H.C.J.; Smilde, A.K. Multivariate paired data analysis: Multilevel PLSDA versus OPLSDA. Metabolomics 2010, 6, 119–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiklund, S.; Johansson, E.; Sjöström, L.; Mellerowicz, E.J.; Edlund, U.; Shockcor, J.P.; Gottfries, J.; Moritz, T.; Trygg, J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 2008, 80, 115–122. [Google Scholar] [CrossRef]
- Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E.A.; Durand, T.; Ejsing, C.S.; Fedorova, M.; Feussner, I.; Griffiths, W.J.; Köfeler, H.; et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020, 61, 1539–1555. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Blaženović, I.; Kind, T.; Ji, J.; Fiehn, O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites 2018, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.H.; Hu, X.; Shi, S.Y.; Huang, L.Q.; Chen, W.; Chen, L.; Cai, P. Typical ultraviolet spectra in combination with diagnostic mass fragmentation analysis for the rapid and comprehensive profiling of chlorogenic acids in the buds of Lonicera macranthoides. Anal. Bioanal. Chem. 2016, 408, 3659–3672. [Google Scholar] [CrossRef]
- Gao, W.; Wang, R.; Li, D.; Liu, K.; Chen, J.; Li, H.J.; Xu, X.; Li, P.; Yang, H. Comparison of five Lonicera flowers by simultaneous determination of multi-components with single reference standard method and principal component analysis. J. Pharm. Biomed. Anal. 2016, 117, 345–351. [Google Scholar] [CrossRef]
- Xiong, J.; Li, S.; Wang, W.; Hong, Y.; Tang, K.; Luo, Q. Screening and identification of the antibacterial bioactive compounds from Lonicera japonica Thunb. leaves. Food Chem. 2013, 138, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Yang, H.; Qi, L.W.; Liu, E.H.; Ren, M.T.; Yan, Y.T.; Chen, J.; Li, P. Unbiased metabolite profiling by liquid chromatography-quadrupole time-of-flight mass spectrometry and multivariate data analysis for herbal authentication: Classification of seven Lonicera species flower buds. J. Chromatogr. A 2012, 1245, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Z.; Qiao, X.; Bo, T.; Wang, Q.; Guo, D.A.; Ye, M. Low energy induced homolytic fragmentation of flavonol 3-O-glycosides by negative electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2014, 28, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Amaral, J.G.; Bauermeister, A.; Pilon, A.C.; Gouvea, D.R.; Sakamoto, H.T.; Gobbo-Neto, L.; Lopes, J.L.C.; Lopes, N.P. Fragmentation pathway and structural characterization of new glycosylated phenolic derivatives from Eremanthus glomerulatus less (Asteraceae) by electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 2017, 52, 783–787. [Google Scholar] [CrossRef]
- Choi, C.W.; Hyun, A.J.; Sam, S.K.; Jae, S.C. Antioxidant constituents and a new triterpenoid glycoside from Flos Lonicerae. Arch. Pharm. Res. 2007, 30, 1. [Google Scholar] [CrossRef]
- Yao, H.; Chen, B.; Zhang, Y.; Ou, H.; Li, Y.; Li, S.; Shi, P.; Lin, X. Analysis of the total biflavonoids extract from Selaginella doederleinii by HPLC-QTOF-MS and its in vitro and in vivo anticancer effects. Molecules 2017, 22, 325. [Google Scholar] [CrossRef] [Green Version]
- Son, K.H.; Park, J.O.; Chung, K.C.; Chang, H.W.; Kim, H.P.; Kim, J.S.; Kang, S.S. Flavonoids from the aerial parts of Lonicera japonica. Arch. Pharm. Res. 1992, 15, 365–370. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Wang, F.; Chen, X. New secoiridoid glycosides from the buds of Lonicera macranthoides. Nat. Prod. Commun. 2012, 7, 1561–1562. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhou, R.; Shen, B.; Chen, L.; Zhou, Q.; Wan, D.; Huang, L.; Zhang, S. Determination and isolation of four anti-tumour saponins from Lonicera macranthoides by HPLC-ESI-QTOF/MS and HSCCC. Curr. Pharm. Biotechnol. 2018, 18, 1106–1114. [Google Scholar] [CrossRef]
- Yu, C.; Xu, F.; Ming, W.; Xiaodong, J.; Youyi, Z.; Yunfa, D. Triterpene glycosides from Lonicera. II. Isolation and structural determination of glycosides from flower buds of Lonicera macranthoides. Chem. Nat. Compd. 2009, 45, 514–518. [Google Scholar] [CrossRef]
- Hartler, J.; Triebl, A.; Ziegl, A.; Trötzmüller, M.; Rechberger, G.N.; Zeleznik, O.A.; Zierler, K.A.; Torta, F.; Cazenave-Gassiot, A.; Wenk, M.R.; et al. Deciphering lipid structures based on platform-independent decision rules. Nat. Methods 2017, 14, 1171–1174. [Google Scholar] [CrossRef] [PubMed]
- Valsecchi, M.; Mauri, L.; Casellato, R.; Ciampa, M.G.; Rizza, L.; Bonina, A.; Bonina, F.; Sonnino, S. Ceramides as possible nutraceutical compounds: Characterization of the ceramides of the moro blood orange (Citrus sinensis). J. Agric. Food Chem. 2012, 60, 10103–10110. [Google Scholar] [CrossRef] [PubMed]
- Hartler, J.; Armando, A.M.; Trötzmüller, M.; Dennis, E.A.; Köfeler, H.C.; Quehenberger, O. Automated annotation of sphingolipids including accurate identification of hydroxylation sites using MSn data. Anal. Chem. 2020, 92, 14054–14062. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Jiang, X.; Gao, Y.; Zheng, W.; He, M.; Gao, Q. Chemical constituents of effective fraction of honeysuckle on inhibition of Escherichia coli biofilms. Zhongguo Shiyan Fangjixue Zazhi 2012, 18, 122–125. [Google Scholar]
- Kumar, N.; Singh, B.; Gupta, A.P.; Kaul, V.K. Lonijaposides, novel cerebrosides from Lonicera japonica. Tetrahedron 2006, 62, 4317–4322. [Google Scholar] [CrossRef]
- Horie, T.; Ohtsuru, Y.; Shibata, K.; Yamashita, K.; Tsukayama, M.; Kawamura, Y. 13C NMR spectral assignment of the A-ring of polyoxygenated flavones. Phytochemistry 1998, 47, 865–874. [Google Scholar] [CrossRef]
- Jin, Y.; Dayun, S.; Xuwen, L.; Xiaofeng, Y.; Mingyu, G. Use of Flavone and Flavanone Derivatives in the Preparation of Sedative and Hypnotic Drugs. U.S. Patent 20150196529A1, 16 July 2015. [Google Scholar]
- Wang, L.; Jiang, Q.; Hu, J.; Zhang, Y.; Li, J. Research progress on chemical constituents of Lonicerae japonicae flos. Biomed Res. Int. 2016, 2016, 8968940. [Google Scholar] [CrossRef] [Green Version]
- Ren, M.T.; Chen, J.; Song, Y.; Sheng, L.S.; Li, P.; Qi, L.W. Identification and quantification of 32 bioactive compounds in Lonicera species by high performance liquid chromatography coupled with time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 2008, 48, 1351–1360. [Google Scholar] [CrossRef]
- Liu, W.; Bai, S.; Liang, H.; Yuan, Y. Chemical compositions of Lonicera microphylla. Zhongcaoyao 2010, 41, 1065–1068. [Google Scholar]
- Jang, H.; Lee, J.W.; Jin, Q.; Kim, S.Y.; Lee, D.; Hong, J.T.; Kim, Y.; Lee, M.K.; Hwang, B.Y. Biflavones and furanone glucosides from Zabelia tyaihyonii. Helv. Chim. Acta 2015, 98, 1419–1425. [Google Scholar] [CrossRef]
- Seipold, L.; Gerlach, G.; Wessjohann, L. A New type of floral oil from Malpighia coccigera (Malpighiaceae) and chemical considerations on the evolution of oil flowers. Chem. Biodivers. 2004, 1, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr. 2017, 57, 1874–1905. [Google Scholar] [CrossRef]
- Ginwala, R.; Bhavsar, R.; Chigbu, D.G.I.; Jain, P.; Khan, Z.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants 2019, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018, 225, 342–358. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yu, X.; Sun, H.; Zhang, W.; Liu, G.; Zhu, L. Flos Lonicerae flavonoids attenuate experimental ulcerative colitis in rats via suppression of NF-κB signaling pathway. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 2481–2494. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, W.; Li, Y.; Zhang, S.; Lou, H.; Lu, X.; Fan, X. Reduning injection and its effective constituent luteoloside protect against sepsis partly via inhibition of HMGB1/TLR4/NF-κB/MAPKs signaling pathways. J. Ethnopharmacol. 2021, 270, 113783. [Google Scholar] [CrossRef] [PubMed]
- Palombo, R.; Savini, I.; Avigliano, L.; Madonna, S.; Cavani, A.; Albanesi, C.; Mauriello, A.; Melino, G.; Terrinoni, A. Luteolin-7-glucoside inhibits IL-22/STAT3 pathway, reducing proliferation, acanthosis, and inflammation in keratinocytes and in mouse psoriatic model. Cell Death Dis. 2016, 7, e2344. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Zhu, Z.H.; Zhang, L.; Wang, Q.; Xu, M.M.; Lu, C.; Zhu, Y.; Zeng, J.; Duan, J.A.; Zhao, M. Anti-inflammatory property and functional substances of Lonicerae japonicae Caulis. J. Ethnopharmacol. 2021, 267, 113502. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Rho, H.S.; Yang, Y.; Yoon, J.Y.; Lee, J.; Hong, Y.D.; Kim, H.C.; Choi, S.S.; Kim, T.W.; Shin, S.S.; et al. Extracellular signal-regulated kinase is a direct target of the anti-inflammatory compound amentoflavone derived from Torreya nucifera. Mediators Inflamm. 2013, 2013, 761506. [Google Scholar] [CrossRef] [Green Version]
- Trang, D.T.; Huyen, L.T.; Nhiem, N.X.; Quang, T.H.; Hang, D.T.T.; Yen, P.H.; Tai, B.H.; Anh, H.L.T.; Binh, N.Q.; Van Minh, C.; et al. Tirucallane glycoside from the leaves of Antidesma bunius and inhibitory NO production in BV2 Cells and RAW264.7 Macrophages. Nat. Prod. Commun. 2016, 11, 935–937. [Google Scholar] [CrossRef] [Green Version]
- Sakthivel, K.M.; Guruvayoorappan, C. Amentoflavone inhibits iNOS, COX-2 expression and modulates cytokine profile, NF-κB signal transduction pathways in rats with ulcerative colitis. Int. Immunopharmacol. 2013, 17, 907–916. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Li, Z.; Dong, Y.; Ren, J.; Huo, J. Amentoflavone protects against psoriasis-like skin lesion through suppression of NF-κB-mediated inflammation and keratinocyte proliferation. Mol. Cell. Biochem. 2016, 413, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Khan, S.I.; Wang, M.; Zhao, J.; Ren, S.; Khan, I.A.; Steffek, A.; Pfund, W.P.; Li, X.C. Chemometrics-assisted identification of anti-inflammatory compounds from the green alga Klebsormidium flaccidum var. Zivo. Molecules 2020, 25, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benning, C. Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol. Annu. Rev. Plant Biol. 1998, 49, 53–75. [Google Scholar] [CrossRef]
- Arunkumar, K.; Selvapalam, N.; Rengasamy, R. The antibacterial compound sulphoglycerolipid 1-0 palmitoyl-3-0(6′-sulpho-α-quinovopyranosyl)-glycerol from Sargassum wightii Greville (Phaeophyceae). Bot. Mar. 2005, 48, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Tang, L.; Liu, Y. An isomeric mixture of novel cerebrosides isolated from Impatiens pritzellii reduces lipopolysaccharide-induced release of IL-18 from human peripheral blood mononuclear cells. Lipids 2009, 44, 759–763. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.W.; Chung, C.P.; Kuo, Y.H.; Lin, Y.L.; Chiang, W. Identification of compounds in Adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seed hull extracts that inhibit lipopolysaccharide-induced inflammation in RAW 264.7 macrophages. J. Agric. Food Chem. 2009, 57, 10651–10657. [Google Scholar] [CrossRef]
- Caesar, L.K.; Kellogg, J.J.; Kvalheim, O.M.; Cech, N.B. Opportunities and Limitations for Untargeted Mass Spectrometry Metabolomics to Identify Biologically Active Constituents in Complex Natural Product Mixtures. J. Nat. Prod. 2019, 82, 469–484. [Google Scholar] [CrossRef]
- Vogl, S.; Atanasov, A.G.; Binder, M.; Bulusu, M.; Zehl, M.; Fakhrudin, N.; Heiss, E.H.; Picker, P.; Wawrosch, C.; Saukel, J.; et al. The Herbal Drug Melampyrum pratense L. (Koch): Isolation and Identification of Its Bioactive Compounds Targeting Mediators of Inflammation. Evid.-Based Complement. Altern. Med. 2013, 2013, 395316. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.V.A.; Malainer, C.; Schwaiger, S.; Atanasov, A.G.; Heiss, E.H.; Dirsch, V.M.; Stuppner, H. NF-κB inhibitors from Eurycoma longifolia. J. Nat. Prod. 2014, 77, 483–488. [Google Scholar] [CrossRef]
- Blunder, M.; Liu, X.; Kunert, O.; Winkler, N.A.; Schinkovitz, A.; Schmiderer, C.; Novak, J.; Bauer, R. Polyacetylenes from Radix et Rhizoma Notopterygii incisi with an inhibitory effect on nitric oxide production in vitro. Planta Med. 2014, 80, 415–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, L.; Trygg, J.; Wold, S. CV-ANOVA for significance testing of PLS and OPLS® models. J. Chemom. 2008, 22, 594–600. [Google Scholar] [CrossRef]
- Haug, K.; Cochrane, K.; Nainala, V.C.; Williams, M.; Chang, J.; Jayaseelan, K.V.; O’Donovan, C. MetaboLights: A resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 2020, 48, D440–D444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Assay | OPLS-DA Model Parameters | p-Value of CV ANOVA | ||||
---|---|---|---|---|---|---|
A | N | R2X (cum) | R2Y (cum) | Q2 (cum) | ||
NF-κB | 1 + 3 + 0 | 51 | 0.384 | 0.959 | 0.837 | 3.45 × 10−14 |
IL-8 | 1 + 4 + 0 | 57 | 0.409 | 0.984 | 0.894 | 4.75 × 10−19 |
NO | 1 + 6 + 0 | 57 | 0.540 | 0.996 | 0.978 | 3.99 × 10−30 |
Nr | Monoisotopic Mass (Calculated) | RT (min) | m/z (Experimental) | Molecular Formula | ∆ (ppm) | IL-8 Priority | NFκB Priority | NO Priority | Annotation ID level | Compound Class |
---|---|---|---|---|---|---|---|---|---|---|
1 | 180.042 | 10.71 | 179.033 | C9H8O4 | −3.5 | 8 | caffeic acid 2 | hydroxycinnamic acid derivative | ||
2 | 338.100 | 12.63 | 337.092 | C16H18O8 | 1.7 | 12 | coumaroylquinic acid 2 | hydroxycinnamic acid derivative | ||
3 | 338.100 | 13.42 | 337.093 | C16H18O8 | 2.2 | 20 | coumaroylquinic acid 2 | hydroxycinnamic acid derivative | ||
4 | 404.132 | 15.62 | 403.124 | C17H24O11 | 1.5 | 9 | Secoxyloganin 1 | iridoid glycoside | ||
5 | 610.153 | 18.27 | 609.145 | C27H30O16 | 0.7 | 30 | luteolin-dihexoside 2 | flavonoid-O-glycoside | ||
6 | 580.143 | 19.99 | 579.134 | C26H28O15 | 1.7 | 10 | 13 | luteolin-hexoside-pentoside 2 | flavonoid-O-glycoside | |
7 | 448.101 | 20.91 | 447.092 | C21H20O11 | −0.9 | 27 | luteolin-7-O-glucoside 1 | flavonoid-O-glycoside | ||
8 | 594.159 | 21.59 | 593.150 | C27H30O15 | 0.0 | 15 | 2 | kaempferol-3-hexoside-7-deoxyhexoside 2 | flavonoid-O-glycoside | |
9 | 478.111 | 21.99 | 477.104 | C22H22O12 | 1.7 | 26 | isorhamnetin-7-O-hexoside 2 | flavonoid-O-glycoside | ||
10 | 594.159 | 22.00 | 593.150 | C27H30O15 | −0.3 | 25 | lonicerin (luteolin hexoside deoxyhexoside) isomer 2 | flavonoid-O-glycoside | ||
11 | 516.127 | 22.19 | 515.189 | C25H24O12 | 0.1 | 24 | dicaffeoylquinic acid 2 | hydroxycinnamic acid derivative | ||
12 | 516.127 | 24.18 | 515.118 | C25H24O12 | −1.5 | 11 | dicaffeoylquinic acid 2 | hydroxycinnamic acid derivative | ||
13 | 448.101 | 25.16 | 447.092 | C21H20O11 | 0.6 | 2 | kaempferol-3-hexoside (astragalin isomer) 2 | flavonoid-O-glycoside | ||
14 | 478.111 | 25.50 | 477.104 | C22H22O12 | 1.6 | 30 | isorhamnetin-3-O-hexoside 2 | flavonoid-O-glycoside | ||
15 | 484.137 | 26.69 | 483.129 | C25H24O10 | 1.8 | 22 | 3,5-di-O-p-coumaroylquinic acid 2 | hydroxycinnamic acid derivative | ||
16 | 610.132 | 28.94 | 609.124 | C30H26O14 | 0.8 | 29 | luteolin-O-caffeoyl-O-hexoside 3 | flavonoid-O-glycoside derivative | ||
17 | 484.137 | 29.84 | 483.129 | C25H24O10 | 0.8 | 16 | 4,5-di-O-p-coumaroylquinic acid 2 | hydroxycinnamic acid derivative | ||
18 | 286.048 | 30.06 | 285.040 | C15H10O6 | 2.3 | 28 | 3 | luteolin 1 | flavonoid aglycone | |
19 | 316.058 | 30.89 | 315.050 | C16H12O7 | 2.1 | 39 | 21 | isorhamnetin 2 | flavonoid aglycone | |
20 | 594.137 | 31.73 | 593.129 | C30H26O13 | 0.7 | 27 | luteolin-O-coumaroyl-O-hexoside 3 | flavonoid-O-glycoside derivative | ||
21 | 270.053 | 32.50 | 269.045 | C15H10O5 | 2.7 | 25 | apigenin 1 | flavonoid aglycone | ||
22 | 358.105 | 32.64 | 357.098 | C19H18O7 | 3.0 | 8 | 7 | 7-hydroxy-5,3′,4′,5′-tetramethoxyflavone0 | flavonoid aglycone | |
23 | 300.063 | 32.79 | 299.056 | C16H12O6 | 1.6 | 26 | diosmetin/chrysoeriol 2 | flavonoid aglycone | ||
24 | 328.225 | 33.76 | 327.217 | C18H32O5 | −0.7 | 23 | trihydroxyoctadecadienoic acid isomer I 2 | fatty acid | ||
25 | 328.225 | 33.98 | 327.217 | C18H32O5 | −0.8 | 19 | 1 | trihydroxyoctadecadienoic acid isomer II 2 | fatty acid | |
26 | 538.090 | 35.07 | 537.083 | C30H18O10 | 1.6 | 17 | 1 | cupressuflavone0 | biflavonoid | |
27 | 568.101 | 35.29 | 567.093 | C31H20O11 | 1.1 | 6 | 14 | 6 | 3′-methoxycupressuflavone0 | biflavonoid |
28 | 330.241 | 35.42 | 329.233 | C18H34O5 | −0.9 | 32 | trihydroxyoctadecenoic acid 2 | fatty acid | ||
29 | 598.111 | 35.51 | 597.104 | C32H22O12 | 1.5 | 36 | 20 | 10 | 3′,3′′-dimethoxy-cupressuflavone0 | biflavonoid |
30 | 928.503 | 36.92 | 973.502 [M+HCOO]- | C47H76O18 | 1.4 | 2 | Akebia saponin D 2 | triterpene glycoside | ||
31 | 444.205 | 36.99 | 443.197 | C27H28O4N2 | −0.5 | 9 | aurantiamide acetate 2 | alkaloid | ||
32 | 538.090 | 37.24 | 537.082 | C30H18O10 | −0.9 | 4 | 31 | amentoflavone 1 | biflavonoid | |
33 | 552.106 | 40.28 | 551.098 | C31H20O10 | −0.5 | 18 | 25 | podocarpusflavone A 1 | biflavonoid | |
34 | 538.0900 | 40.96 | 537.081 | C30H18O10 | −2.5 | 12 | hinokiflavone 2/ochnaflavone 2 | biflavonoid | ||
35 | 538.09 | 41.43 | 537.082 | C30H18O10 | −0.4 | 29 | hinokiflavone 2/ochnaflavone 2 | biflavonoid | ||
36 | 294.430 | 41.93 | 293.212 | C18H30O3 | 2.8 | 5 | oxo-octadecadienoic acid 2 | fatty acid | ||
37 | 766.450 | 41.95 | 765.440 | C41H66O13 | −2.8 | 34 | Akebia saponin C 2 | triterpene glycoside | ||
38 | 604.398 | 42.77 | 603.389 | C35H56O8 | −2.0 | 16 | Akebia saponin PA 2 | triterpene glycoside | ||
39 | 676.367 | 43.50 | 721.363 [M+HCOO]− | C33H56O14 | −0.7 | 26 | gingerglycolipid A isomer 2 | glycolipid | ||
40 | 517.317 | 44.07 | 562.314 [M+HCOO]− | C26H48NO7P | −1.6 | 23 | LPC 18:3 2 | phospholipid | ||
41 | 602.476 | 47.19 | 601.468 | C34H66O8 | 0.3 | 5 | 14 | 4 | trihydroxy-monoacetoxy-dotriacontanoic acid I 3 | fatty acid |
42 | 602.476 | 47.55 | 601.468 | C34H66O8 | 0.4 | 15 | 13 | trihydroxy-monoacetoxy-dotriacontanoic acid II 3 | fatty acid | |
43 | 644.486 | 47.96 | 643.469 | C36H68O9 | 0.6 | 6 | 22 | 5 | trihydroxy-diacetoxy-dotriacontanoic acid I2 | fatty acid |
44 | 644.486 | 48.24 | 643.479 | C36H68O9 | 0.4 | 17 | 31 | 9 | trihydroxy-diacetoxy-dotriacontanoic acid II2 | fatty acid |
45 | 482.265 | 48.42 | 481.256 | C22H43O9P | −0.4 | 35 | LPG 16:1 2 | phospholipid | ||
46 | 644.486 | 48.45 | 643.479 | C36H68O9 | 0.1 | 11 | 6 | 3 | trihydroxy-diacetoxy-dotriacontanoic acid III2 | fatty acid |
47 | 630.507 | 48.60 | 629.499 | C36H70O8 | 1.2 | 32 | 14 | tetrahydroxy-monoacetoxy-tetratriacontanoic acid I 3 | fatty acid | |
48 | 556.291 | 48.91 | 555.283 | C25H48O11S | −0.7 | 21 | palmitoyl-sulfoquinovosyl-glycerol 2 | glycolipid | ||
49 | 630.507 | 48.96 | 629.499 | C36H70O8 | 1.1 | 13 | 11 | tetrahydroxy-monoacetoxy-tetratriacontanoic acid II 3 | fatty acid | |
50 | 686.497 | 49.16 | 685.489 | C38H70O10 | 1.3 | 40 | 18 | dihydroxy-triacetoxy-dotriacontanoic acid 3 | fatty acid | |
51 | 672.518 | 49.24 | 671.510 | C36H72O9 | 0.6 | 17 | trihydroxy-diacetoxy- tetratriacontanoic acid I 3 | fatty acid | ||
52 | 592.269 | 49.32 | 591.260 | C35H36N4O5 | −0.0 | 7 | pheophorbide A 1 | chlorophyll breakdown product | ||
53 | 672.518 | 49.52 | 671.510 | C38H72O9 | 1.5 | 31 | 15 | trihydroxy-diacetoxy-tetratriacontanoic acid II 3 | fatty acid | |
54 | 672.518 | 49.75 | 671.510 | C38H72O9 | 1.3 | 10 | 6 | trihydroxy-diacetoxy-tetratriacontanoic acid III2 | fatty acid | |
55 | 484.280 | 49.77 | 483.272 | C22H45O9P | 0.5 | 7 | LPG 16:0 2 | phospholipid | ||
56 | 714.528 | 50.34 | 713.521 | C40H74O10 | 1.4 | 24 | dihydroxy-triacetoxy-tetratriacontanoic acid 3 | fatty acid | ||
57 | 713.544 | 51.99 | 712.535 | C40H75O9N | −2.0 | 21 | soyacerebroside isomer (HexCer 18:2;O2/16:0;O) 2 | glucocerebroside | ||
58 | 384.360 | 52.47 | 383.354 | C24H48O3 | 1.4 | 19 | hydroxytetracosanoic acid 2 | fatty acid | ||
59 | 669.591 | 54.33 | 668.582 | C40H79O6N | −0.8 | 39 | Cer 18:1;O3/22:0;O2 2 | ceramide | ||
60 | 653.596 | 55.44 | 652.587 | C40H79O5N | −1.1 | 14 | Cer 18:1;O3/22:0;O 2 | ceramide | ||
61 | 697.622 | 55.60 | 696.613 | C42H83O6N | −1.1 | 4 | 16 | Cer 18:1;O3/24:0;O2 2 | ceramide | |
62 | 667.612 | 56.15 | 780.595 [M+CF3COO]− | C41H81O5N | −1.1 | 30 | Cer 18:1;O3/23:0;O 2 | ceramide | ||
63 | 681.627 | 56.95 | 680.618 | C42H83O5N | −1.1 | 1 | Cer 18:1;O3/24:0;O 2 | ceramide | ||
64 | 683.643 | 57.83 | 796.627 [M+CF3COO]− | C42H85O5N | −0.4 | 20 | Cer 18:0;O3/24:0;O 2 | ceramide | ||
65 | 709.659 | 58.85 | 822.642 [M+CF3COO]− | C44H87O5N | −1.5 | 37 | Cer 18:1;O3/26:0;O 2 | ceramide |
Position | δC, Type | δH (J in Hz) |
---|---|---|
2 | 160.3, C | - |
3 | 109.2, CH | 6.99 s |
4 | 176.7, C | - |
4a | 108.6, C | - |
5 | 161.9, C | - |
6 | 97.8, CH | 6., d (1.8) |
7 | 164.6, C | - |
8 | 96.5, CH | 6.99, brs |
8a | n. d. | - |
1′ | 127.7, C | - |
2′ | 104.4, CH | 7.29, s |
3′ | 154.2, C | - |
4′ | 141.5, C | - |
5′ | 154.2, C | - |
6′ | 104.4, CH | 7.29, s |
5-CH3 | 56.22, CH3 | 3.87, s |
3′-CH3 | 56.3, CH3 | 3.82, s |
4′-CH3 | 60.7, CH3 | 3.94, s |
5′-CH3 | 56.3, CH3 | 3.82, s |
Position | δC, Type | δH |
---|---|---|
1 | 176.9, C | - |
2 | 43.7, CH2 | 2.36 m, 2.42 m |
3 | 69.6, CH | 3.97 m |
4 | 38.2, CH2 | 1.49, 1.49 |
5 | 22.4 | 1.61, 1.61 |
29 | 30.7, CH2 | n.d. |
30 | 33.1, CH2 | n.d. |
31 | 23.8, CH2 | 1.31 |
32 | 14.5, CH3 | 0.89 t (6.6) |
2 positions with CH3COO moieties | 75.4, CH | 4.85 |
2 CH3COO moieties | 172.9, C 21.2, CH3 | - 2.02 s |
2 additional positions containing OH moieties | 72.3, CH 72.3, CH | 3.50 3.54 |
Compound Nr. # | Identity | IL-8 | NFκB | NO | |||
---|---|---|---|---|---|---|---|
% Inhibition (30 µM) | IC50 (µM) | % Inhibition (30 µM) | IC50 (µM) | % Inhibition (30 µM) | IC50 (µM) | ||
4 | secoxyloganin | −0.96 ± 6.01 | nd | −17.25 ± 9.25 | nd | 5.85 ± 4.58 | nd |
7 | luteolin-7-glucoside | 7.42 ± 2.04 | nd | 0.68 ± 4.29 | nd | 4.68 ± 9.82 | nd |
18 | luteolin | 74.84 ± 2.15 | 13.5 | 95.83 ± 0.01 | 6.84 | 56.39 ± 12.68 | 31.75 |
21 | apigenin | 64.79 ± 3.03 | 18.9 | 100.01 ± 0.01 | 4.11 | 24.28 ± 10.85 | nd |
22 | 7-hydroxy-5,3′,4′,5′-tetramethoxyflavone | 13.16 ± 2.49 | nd | 51.11 ± 2.86 | nd | 8.22 ± 11.91 | nd |
26 | cupressuflavone | −2.05 ± 3.02 | nd | 3.42 ± 3.15 | nd | 9.61 ± 11.44 | nd |
27 | 3′-methoxycupressuflavone | 3.50 ± 4.58 | nd | 78.11 ± 8.86 | 19.6 | 1.45 ± 7.78 | nd |
29 | 3′, 3″-dimethoxycupressuflavone | 2.97 ± 9.92 | nd | 31.25 ± 15.51 | nd | −0.85 ± 3.84 | nd |
32 | amentoflavone | 9.35 ± 2.78 | nd | 90.83 ± 3.43 | 6.45 | 7.06 ± 10.62 | nd |
33 | podocarpusflavone A | 40.24 ± 29.78 | 47.88 | 99.23 ± 1.25 | 3.44 | 3.42 ± 3.94 | nd |
43 | trihydroxy-diacetoxydotriacontanoic acid I | 3.84 +,b | nd | −27.52 ± 9.75 | nd | 2.73 ± 6.84 | nd |
44 | trihydroxy-diacetoxydotriacontanoic acid II | 31.36 +,b | nd | 10.12 ± 12.01 | nd | 12.82 ± 8.10 | nd |
46 | trihydroxy-diacetoxydotriacontanoic acid III | 84.92 +,b | nd | 66.25 ± 3.75 + | nd | 47.6 ± 14.62 + | nd |
52 | pheophorbide A | 95.8 +,b | nd | 74.68 ± 13.64 | 3.04 | 5.48 ± 7.55 | nd |
54 | trihydroxy-diacetoxytetracontanoic acid II | 89.32 +,b | nd | 8.25 ± 13.74 | nd | 78.35 ± 7.19 + | nd |
Nr | Identity | IL-8 Priority | Activity | NF-κB Priority | Activity | NO Priority | Activity |
---|---|---|---|---|---|---|---|
4 | secoxyloganin | 9 | i | - | i | - | i |
7 | luteolin-7-glucoside | - | i | 27 | i | - | i |
18 | luteolin | 28 | a | 3 | a | - | a |
21 | apigenin | - | a | 25 | a | - | i |
22 | 7-hydroxy-5,3′,4′,5′-tetramethoxyflavone | 8 | i | - | a | 7 | i |
26 | cupressuflavone | - | i | 17 | i | 1 | i |
27 | 3′-methoxycupressuflavone | - | i | 24 | a | 8 | i |
29 | 3′,3″-dimethoxycupressuflavone | 36 | i | 20 | (a) | 10 | i |
32 | amentoflavone | - | i | 4 | a | 31 | i |
33 | podocarpusflavone A | - | a | 18 | a | 25 | i |
43 | trihydroxy-diacetoxydotriacontanoic acid I | 6 | i/ct | 22 | i | 5 | i |
44 | trihydroxy-diacetoxydotriacontanoic acid II | 17 | i/ct | 31 | i | 9 | i |
46 | trihydroxy-diacetoxydotriacontanoic acid III | 11 | a/ct | 6 | a/ct | 3 | a/ct |
52 | phaeophorbide A | a/ct | 7 | a | - | i | |
54 | trihydroxy-diacetoxytetracontanoic acid III | a/ct | 10 | i | 6 | a/ct |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pferschy-Wenzig, E.-M.; Ortmann, S.; Atanasov, A.G.; Hellauer, K.; Hartler, J.; Kunert, O.; Gold-Binder, M.; Ladurner, A.; Heiß, E.H.; Latkolik, S.; et al. Characterization of Constituents with Potential Anti-Inflammatory Activity in Chinese Lonicera Species by UHPLC-HRMS Based Metabolite Profiling. Metabolites 2022, 12, 288. https://doi.org/10.3390/metabo12040288
Pferschy-Wenzig E-M, Ortmann S, Atanasov AG, Hellauer K, Hartler J, Kunert O, Gold-Binder M, Ladurner A, Heiß EH, Latkolik S, et al. Characterization of Constituents with Potential Anti-Inflammatory Activity in Chinese Lonicera Species by UHPLC-HRMS Based Metabolite Profiling. Metabolites. 2022; 12(4):288. https://doi.org/10.3390/metabo12040288
Chicago/Turabian StylePferschy-Wenzig, Eva-Maria, Sabine Ortmann, Atanas G. Atanasov, Klara Hellauer, Jürgen Hartler, Olaf Kunert, Markus Gold-Binder, Angela Ladurner, Elke H. Heiß, Simone Latkolik, and et al. 2022. "Characterization of Constituents with Potential Anti-Inflammatory Activity in Chinese Lonicera Species by UHPLC-HRMS Based Metabolite Profiling" Metabolites 12, no. 4: 288. https://doi.org/10.3390/metabo12040288
APA StylePferschy-Wenzig, E. -M., Ortmann, S., Atanasov, A. G., Hellauer, K., Hartler, J., Kunert, O., Gold-Binder, M., Ladurner, A., Heiß, E. H., Latkolik, S., Zhao, Y. -M., Raab, P., Monschein, M., Trummer, N., Samuel, B., Crockett, S., Miao, J. -H., Thallinger, G. G., Bochkov, V., ... Bauer, R. (2022). Characterization of Constituents with Potential Anti-Inflammatory Activity in Chinese Lonicera Species by UHPLC-HRMS Based Metabolite Profiling. Metabolites, 12(4), 288. https://doi.org/10.3390/metabo12040288