The Occurrence of a Negative Energy Balance in Holstein-Friesian and Simmental Cows and Its Association with the Time of Resumption of Reproductive Activity
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Description of Herds
4.2. Cow Diet
4.3. Sample Collection and Analyses
4.4. Indicators of Metabolic Changes and Negative Energy Balance (NEB)
4.5. Fertility Indicators
4.6. Statistical Analysis of the Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esposito, G.; Irons, P.C.; Webb, E.C.; Chapwanya, A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci. 2014, 144, 60–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarrin, M.; Wellnitz, O.; van Dorland, H.A.; Gross, J.J.; Bruckmaier, R.M. Hyperketonemia during LPS induced mastitis affects systemic and local intramammary metabolism in dairy cows. J. Dairy Sci. 2014, 97, 3531–3541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Młynek, K.; Głowińska, B.; Salamończyk, E. The relationship of body condition indicators with the level of plasma cocaine and amphetamine regulated transcript and energy metabolism indicators in dairy cows. Acta Vet. Brno 2019, 88, 11–18. [Google Scholar] [CrossRef]
- Floyd, W. Weckerly Conspecific body weight, food intake, and rumination time affect food processing and forage behawior. J. Mammal. 2013, 94, 120–126. [Google Scholar]
- Butler, W.R. Energy balance relationships with follicular development, ovulation and fertility in postpartum dairy cows. Livest. Prod. Sci. 2003, 83, 211–218. [Google Scholar] [CrossRef]
- Santos, J.E.; Rutigliano, H.M.; Sá Filho, M.F. Risk factors for resumption of postpartum estrous cycles and embryonic survival in lactating dairy cows. Anim. Reprod. Sci. 2009, 110, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Waldmann, A.; Reksen, O.; Landsverk, K.; Kommisrud, E.; Dahl, E.; Refsdal, A.; Ropstad, E. Progesterone concentrations in milk fat at first insemination effects on non-return and repeat breeding. Anim. Reprod. Sci. 2001, 65, 33–41. [Google Scholar] [CrossRef]
- Lemley, C.O.; Vonnahme, K.A.; Tager, L.R.; Krause, K.M.; Wilson, M.E. Diet-induced alterations in hepatic progesterone (P4) catabolic enzyme activity and P4 clearance rate in lactating dairy cows. J. Endocrinol. 2010, 205, 233–241. [Google Scholar] [CrossRef]
- Walker, C.; Browning, L.; Stecher, L.; West, A.; Madden, J.; Jebb, S.; Calder, P. Fatty acid profile of plasma NEFA does not reflect adipose tissue fatty acid profile. Br. J. Nutr. 2015, 114, 756–762. [Google Scholar] [CrossRef] [Green Version]
- Drackley, J.K.; Overton, T.R.; Douglas, G.N. Adaptations of Glucose and Long-Chain Fatty Acid Metabolism in Liver of Dairy Cows during the Periparturient Period. J. Dairy Sci. 2001, 84, 100–112. [Google Scholar] [CrossRef]
- Vargová, M.; Petrovič, V.; Konvičná, J.; Kadaši, M.; Zaleha, P.; Kováč, G. Hormonal profile and body condition scoring in dairy cows during pre-partum and postpartum periods. Acta Vet. Brno 2015, 84, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Holtenius, K.; Agenäs, A.S.; Delavaud, C.; Chilliard, Y. Effects of feeding intensity during the dry period. 2. Metabolic and hormonal responses. J. Dairy Sci. 2003, 86, 883–891. [Google Scholar] [CrossRef]
- Taylor, V.J.; Beever, D.E.; Wathes, D.C. Physiological adaptations to milk production that affect fertility in high yielding dairy cows. BSAP Occas. Publ. 2003, 29, 37–71. [Google Scholar] [CrossRef]
- Kuhla, B.; Metges, C.C.; Hammon, H.M. Endogenous and dietary lipids influencing feed intake and Energy metabolism of periparturient dairy cows. Domest. Anim. Endocrinol. 2016, 56, S2–S10. [Google Scholar] [CrossRef] [PubMed]
- Habel, J.; Sundrum, A. Mismatch of Glucose Allocation between Different Life Functions in the Transition Period of Dairy Cows. Animals 2020, 10, 1028. [Google Scholar] [CrossRef]
- Walsh, R.B.; Walton, J.S.; Kelton, D.F.; LeBlanc, S.J.; Leslie, K.E.; Duffield, T.F. The effect of subclinical ketosis in early lactation on reproductive performance of postpartum dairy cows. J. Dairy Sci. 2007, 90, 2788–2796. [Google Scholar] [CrossRef] [Green Version]
- Zarrin, M.; Grossen-Rösti, L.; Bruckmaier, R.M.; Gross, J.J. Elevation of blood β-hydroxybutyrate concentration affects glucose metabolism in dairy cows before and after parturition. J. Dairy Sci. 2017, 100, 2323–2333. [Google Scholar] [CrossRef]
- González-Recio, O.; Pérez-Cabal, M.A.; Alenda, R. Economic Value of Female Fertility and its Relationship with Profit in Spanish Dairy Cattle. J. Dairy Sci. 2004, 87, 3053–3061. [Google Scholar] [CrossRef]
- Walsh, S.W.; Williams, E.J.; Evans, A.C. A review of the causes of poor fertility in high milk producing dairy cows. Anim. Reprod. Sci. 2011, 123, 127–138. [Google Scholar] [CrossRef]
- Green, M.P.; Hunter, M.G.; Mann, G.E. Relationships between maternal hormone secretion and embryo development on day 5 of pregnancy in dairy cows. Anim. Reprod. Sci. 2005, 88, 179–189. [Google Scholar] [CrossRef]
- Duffield, T. Subclinical Ketosis in Lactating Dairy Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 231–253. [Google Scholar] [CrossRef]
- Řehák, D.; Volek, J.; Bartoň, L.; Vodková, Z.; Kubešová, M.; Rajmon, R. Relationships among milk yield, body weight, and reproduction in Holstein and Czech Fleckvieh cows. Czech J. Anim. Sci. 2012, 57, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Li, R.; Xu, Z.; Zhang, Q. Identification of Crucial Genetic Factors, Such as PPARγ, that Regulate the Pathogenesis of Fatty Liver Disease in Dairy Cows Is Imperative for the Sustainable Development of Dairy Industry. Animals 2020, 10, 639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuer, C.; Schukken, Y.H.; Dobbelaar, P. Postpartum body condition score and results from the first test day milk as predictors of disease, fertility, yield, and culling in commercial dairy herds. J. Dairy Sci. 1999, 82, 295–304. [Google Scholar] [CrossRef]
- Lucy, M.C.; Verkerk, G.A.; Whyte, B.E.; Macdonald, K.A.; Burton, L.; Cursons, R.T.; Roche, J.R.; Holmes, C.W. Somatotropic axis components and nutrient partitioning in genetically diverse dairy cows managed under different feed allowances in a pasture system. J. Dairy Sci. 2009, 92, 526–539. [Google Scholar] [CrossRef] [PubMed]
- Hellmuth, C.; Demmelmair, H.; Schmitt, I.; Peissner, W.; Blüher, M.; Koletzko, B. Association between plasma nonesterified fatty acids species and adipose tissue fatty acid composition. PLoS ONE 2013, 8, e74927. [Google Scholar] [CrossRef] [Green Version]
- Lock, A.L.; Garnsworthy, P.C. Seasonal variation in milk conjugated linoleic acid and Δ9-desaturase activity in dairy cows. Livest. Prod. Sci. 2003, 79, 47–59. [Google Scholar] [CrossRef]
- Harvatine, K.J.; Boisclair, Y.R.; Bauman, D.E. Recent advances in the regulation of milk fat synthesis. Animal 2009, 3, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Rukkwamsuk, T.; Geelen, M.J.; Kruip, T.A.; Wensing, T. Interrelation of fatty acid composition in adipose tissue, serum, and liver of dairy cows during the development of fatty liver postpartum. J. Dairy Sci. 2000, 83, 52–59. [Google Scholar] [CrossRef]
- Vanbergue, E.; Delaby, L.; Peyraud, J.L.; Colette, S.; Gallard, Y.; Hurtaud, C. Effects of breed, feeding system, and lactation stage on milk fat characteristics and spontaneous lipolysis in dairy cows. J. Dairy Sci. 2017, 100, 4623–4636. [Google Scholar] [CrossRef] [Green Version]
- Delaby, L.; Faverdin, P.; Michel, G.; Disenhaus, C.; Peyraud, J. Effect of different feeding strategies on lactation performance of Holstein and Normande dairy cows. Animal 2009, 3, 891–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dann, H.M.; Morin, D.E.; Murphy, M.R.; Bollero, G.A.; Drackley, J.K. Prepartum intake, postpartum induction of ketosis, and periparturient disorders affect the metabolic status of dairy cows. J. Dairy Sci. 2005, 88, 3249–3264. [Google Scholar] [CrossRef]
- Ehrhardt, R.A.; Slepetis, R.M.; Siegal-Willott, J.; Van Amburgh, M.E.; Bell, A.W.; Boisclair, Y.R. Development of a specific radioimmunoassay to measure physiological changes of circulating leptin in cattle and sheep. J. Endocrinol. 2000, 166, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, J.L.; Sangsritavong, S.; Tsai, S.J.; Wiltbank, M.C. Acute reduction in serum progesterone concentrations after feed intake in dairy cows. Theriogenology 2003, 60, 795–807. [Google Scholar] [CrossRef]
- Radcliff, R.P.; McCormack, B.L.; Crooker, B.A.; Lucy, M.C. Plasma hormones and expression of growth hormone receptor and insulin-like growth factor-I mRNA in hepatic tissue of periparturient dairy cows. J. Dairy Sci. 2003, 86, 3920–3926. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.G.; Lee, W.J.; Garnsworthy, P.C.; Webb, R. Effect of dietary-induced increases in circulating insulin concentrations during the early postpartum period on reproductive function in dairy cows. Reproduction 2002, 123, 419–427. [Google Scholar] [CrossRef]
- Veronesi, M.C.; Gabai, G.; Battocchio, M.; Mollo, A.; Soldano, F.; Bono, G.; Cairoli, F. Ultrasonographic appearance of tissue is a better indicator of CL function than CL diameter measurement in dairy cows. Theriogenology 2002, 58, 61–68. [Google Scholar] [CrossRef]
- Block, S.; Butler, W.; Ehrhardt, R.; Bell, A.; Van Amburgh, M.; Boisclair, Y. Decreased concentration of plasma leptin in periparturient dairy cows is caused by negative energy balance. J. Endocrinol. 2001, 171, 339–348. [Google Scholar] [CrossRef]
- Kessel, S.; Stroehl, M.; Meyer, H.H.; Hiss, S.; Sauerwein, H.; Schwarz, F.J. Bruckmaier RM. Individual variability in physiological adaptation to metabolic stress during early lactation in dairy cows kept under equal conditions. J. Anim Sci. 2008, 86, 2903–2912. [Google Scholar] [CrossRef]
- Council of Europe (CoE). The European Convention for the Protection of Pet Animals, European Treaty Series No. 125. 1987. Available online: https://www.coe.int/en/web/conventions/full-list?module=treaty-detail&treatynum=125 (accessed on 30 October 2007).
- Horwitz, W.; Latimer, G.W.; AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Strzetelski, J.E.D. National Research Institute of Animal Production INRA Norm of Ruminant Nutrition. In The Nutritional Value of French and National Feed Fur Ruminants; Instytut Zootechniki PIB: Kraków, Poland, 2009. (In Polish) [Google Scholar]
- Wildman, E.E.; Jones, G.M.; Wagner, P.E.; Boman, R.L.; Troutt, H.F., Jr.; Lesch, T.N. A dairy cow body condition scoring system and its relationship to selected production characteristics. J. Dairy Sci. 1982, 65, 495–501. [Google Scholar] [CrossRef]
- Nielsen, S.S. Food Analysis, Milk Fat Method (AOAC Method 989.05), 4th ed.; Purdue University: West Lafayette, IN, USA, 2010. [Google Scholar] [CrossRef]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef] [Green Version]
Parameter | Holstein-Friesian (25) | Simmental (15) | SEM | Correlation (p ≤ 0.05) x | |||||
---|---|---|---|---|---|---|---|---|---|
Stage of Early Lactation (SL) | DMP | LBCS | |||||||
I | II | III | I | II | III | ||||
DL (day) | 14 c | 43 b | 68 a | 17 c | 45 b | 71 a | 6.45 | 0.464 | −0.795 |
DMP (kg/day) | 23.5 c | 32.4 b | 36.9 a | 19.8 c | 28.8 b | 34.1 a | 3.24 | 0.772 | - |
LBCS (points) | −0.21 b | −0.29 a | −0.31 a | −0.22 b | −0.23 b | −0.26 a | 0.08 | - | 0.772 |
C16:0 (%) | 23.08 c | 26.18 b | 28.27 a | 21.58 c | 24.69 b | 26.63 a | 0.15 | 0.676 | 0.663 |
C18:0 (%) | 11.98 | 12.02 | 11.94 | 11.43 c | 11.72 b | 12.04 a | 0.04 | 0.345 | 0.324 |
C18:1 (%) | 1.81 b | 3.12 a | 3.58 a | 1.93 b | 2.83 a | 3.25 a | 0.03 | 0.431 | 0.552 |
C18:2 (%) | 1.67 | 1.73 | 1.65 | 1.52 b | 1.85 a | 1.91 a | 0.02 | 0.354 | 0.338 |
NEFA (mmol L−1) | 210.5 c | 262.7 b | 298.6 a | 176.4 c | 234.4 b | 272.8 a | 2.88 | 0.805 | 0.634 |
BHBA (mmol L−1) | 0.638 c | 0.998 b | 1.424 a | 0.639 c | 0.918 b | 1.307 a | 0.02 | 0.810 | 0.789 |
Glucose (mmol L) | 2.84 a | 2.33 b | 2.21 b | 2.92 a | 2.47 b | 2.38 b | 0.01 | −0.415 | −0.368 |
Leptin (ng ml−1) | 2.92 a | 2.68 b | 2.59 b | 2.76 a | 2.83 a | 2.51 b | 0.02 | −0.530 | −0.507 |
Test Day | Holstein-Friesian (25) | Simmental (15) | SEM | ||||
---|---|---|---|---|---|---|---|
Mean | Min | Max | Mean | Min | Max | ||
P424 | 4.71 c | 4.04 | 5.33 | 4.86 d | 4.07 | 5.42 | 1.15 |
P427 | 6.61 b | 3.78 | 8.89 | 6.98 c | 4.73 | 8.45 | 1.19 |
P429 | 14.44 a | 10.79 | 19.61 | 15.11 b | 10.61 | 20.47 | 0.89 |
P431 | 15.34 a | 9.89 | 21.54 | 16.31 a | 9.48 | 22.70 | 1.29 |
Parameter | Breed Groups | |||||
---|---|---|---|---|---|---|
Holstein-Friesian | Simmental | SEM | Correlation (p ≤ 0.05) P4 x | |||
P429-31 Classification | ||||||
A | B | A | B | |||
Percentage of Cows (%) | 56 (14/25) | 44 (11/25) | 68 (10/15) | 32 (5/15) | ||
P429 (ng/mL) | 15.32 | 13.22 | 15.46 | 14.44 | 2.05 | - |
Change P429-31 (ng/mL) | 1.37 a | −0.53 b | 2.32 a | −0.69 b | 0.22 | - |
Change P429-31 (%) | 8.94 a | −3.98 b | 15.01 a | −4.85 b | 1.62 | - |
DPM (kg/day) | 21.9 b | 25.6 a | 18.6 b | 22.2 a | 0.54 | −0.658 |
C16:0 (%) | 22.61 b | 23.63 a | 21.08 b | 22.66 a | 0.21 | −0.712 |
C18:0 (%) | 11.97 | 12.09 | 11.33 b | 11.67 a | 0.08 | −0.405 |
C18:1 (%) | 1.57 b | 2.09 a | 1.82 b | 2.17 a | 0.07 | −0.451 |
C18:2 (%) | 1.62 b | 1.74 a | 1.53 | 1.49 | 0.33 | −0.326 |
NEFA (mmol L−1) | 199.9 b | 223.9 a | 175.3 b | 186.9 a | 3.9 | −0.540 |
BHBA (mmol L−1) | 0.569 b | 0.727 a | 0.619 | 0.689 | 0.01 | −0.430 |
Glucose (mmol L−1) | 2.76 | 2.63 | 2.98 a | 2.77 b | 0.03 | 0.661 |
Leptin (ng ml−1) | 0.328 a | 0.217 b | 0.307 | 0.279 | 0.04 | −0.300 |
CFSI (days) | 43.8 b | 62.4 a | 42.9 b | 59.6 a | 1.3 | −0.491 |
CCI (days) | 66.6 b | 90.8 a | 65.7 b | 87.8 a | 2.1 | −0.536 |
Parameter | HF (25) | SIM (15) |
---|---|---|
Number of cows | (25) | (15) |
Dry matter (%) | 42.4 | 41.5 |
Protein (%) | 16.4 | 15.4 |
Fibre (%) | 19.2 | 19.1 |
Fat (%) | 2.5 | 2.2 |
Ash (%) | 8.0 | 7.7 |
Starch (%) | 22.7 | 22.8 |
ADF (%) | 22.8 | 22.4 |
NDF (%) | 39.5 | 38.7 |
peNDF (%) | 30.6 | 30.9 |
UFL | 21.5 | 20.05 |
PDIN (g) | 2459 | 2318 |
PDIE (g) | 2201 | 2097 |
Energy (MJ NEL *): | ||
Requirement | 151.8 | 128.2 |
Intake | 153.3 | 130.1 |
Balance | +1.5 | +1.9 |
DMI (kg/day) | 23.1 | 24.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Młynek, K.; Strączek, I.; Głowińska, B. The Occurrence of a Negative Energy Balance in Holstein-Friesian and Simmental Cows and Its Association with the Time of Resumption of Reproductive Activity. Metabolites 2022, 12, 448. https://doi.org/10.3390/metabo12050448
Młynek K, Strączek I, Głowińska B. The Occurrence of a Negative Energy Balance in Holstein-Friesian and Simmental Cows and Its Association with the Time of Resumption of Reproductive Activity. Metabolites. 2022; 12(5):448. https://doi.org/10.3390/metabo12050448
Chicago/Turabian StyleMłynek, Krzysztof, Ilona Strączek, and Beata Głowińska. 2022. "The Occurrence of a Negative Energy Balance in Holstein-Friesian and Simmental Cows and Its Association with the Time of Resumption of Reproductive Activity" Metabolites 12, no. 5: 448. https://doi.org/10.3390/metabo12050448
APA StyleMłynek, K., Strączek, I., & Głowińska, B. (2022). The Occurrence of a Negative Energy Balance in Holstein-Friesian and Simmental Cows and Its Association with the Time of Resumption of Reproductive Activity. Metabolites, 12(5), 448. https://doi.org/10.3390/metabo12050448