Impact of Cattle Feeding Strategy on the Beef Metabolome
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. Animals and Treatments
4.2. Harvest and Sample Collection
4.3. Extraction of Polar Metabolites from Meat
4.4. Extraction of Polar Metabolites from Meat
4.5. Spectral Processing and Metabolite Quantitation
4.6. Statistical Data Analysis and Bioinformatics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wicks, J.; Beline, M.; Gomez, J.F.M.; Luzardo, S.; Silva, S.L.; Gerrard, D. Muscle Energy Metabolism, Growth, and Meat Quality in Beef Cattle. Agriculture 2019, 9, 195. [Google Scholar] [CrossRef] [Green Version]
- Apaoblaza, A.; Gerrard, S.D.; Matarneh, S.K.; Wicks, J.C.; Kirkpatrick, L.; England, E.M.; Scheffler, T.L.; Duckett, S.K.; Shi, H.; Silva, S.L.; et al. Muscle from Grass- and Grain-Fed Cattle Differs Energetically. Meat Sci. 2020, 161, 107996. [Google Scholar] [CrossRef]
- Dunne, P.G.; Monahan, F.J.; Moloney, A.P. Current Perspectives on the Darker Beef Often Reported from Extensively-Managed Cattle: Does Physical Activity Play a Significant Role? Livest. Sci. 2011, 142, 1–22. [Google Scholar] [CrossRef]
- Gagaoua, M.; Monteils, V.; Couvreur, S.; Picard, B. Identification of Biomarkers Associated with the Rearing Practices, Carcass Characteristics, and Beef Quality: An Integrative Approach. J. Agric. Food Chem. 2017, 65, 8264–8278. [Google Scholar] [CrossRef] [PubMed]
- Koch, B.M.; Pavan, E.; Long, N.M.; Andrae, J.G.; Duckett, S.K. Postweaning Exposure to High Concentrates versus Forages Alters Marbling Deposition and Lipid Metabolism in Steers. Meat Muscle Biol. 2019, 3, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Koch, B.M.; Pavan, E.; Andrae, J.G.; Duckett, S.K. Timing of Exposure to High-Concentrates versus High-Quality Forages on Growth and Marbling Deposition in Steers. Meat Muscle Biol. 2018, 2, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Gómez, J.F.M.; Antonelo, D.S.; Beline, M.; Pavan, B.; Bambil, D.B.; Fantinato-Neto, P.; Saran-Netto, A.; Leme, P.R.; Goulart, R.S.; Gerrard, D.E.; et al. Feeding Strategies Impact Animal Growth and Beef Color and Tenderness. Meat Sci. 2022, 183, 108599. [Google Scholar] [CrossRef]
- Antonelo, D.S.; Gómez, J.F.M.; Silva, S.L.; Beline, M.; Zhang, X.; Wang, Y.; Pavan, B.; Koulicoff, L.A.; Rosa, A.F.; Goulart, R.S.; et al. Proteome Basis for the Biological Variations in Color and Tenderness of Longissimus Thoracis Muscle from Beef Cattle Differing in Growth Rate and Feeding Regime. Food Res. Int. 2022, 153, 110947. [Google Scholar] [CrossRef]
- Buchanan, J.W.; Garmyn, A.J.; Hilton, G.G.; Van Overbeke, D.L.; Duan, Q.; Beitz, D.C.; Mateescu, R.G. Comparison of Gene Expression and Fatty Acid Profiles in Concentrate and Forage Finished Beef. J. Anim. Sci. 2013, 91, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Carrillo, J.A.; Ding, Y.; He, Y.H.; Zhao, C.; Zan, L.; Song, J. Ruminal Transcriptomic Analysis of Grass-Fed and Grain-Fed Angus Beef Cattle. PLoS ONE 2015, 10, e0116437. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Carrillo, J.A.; Ding, Y.; He, Y.; Zhao, C.; Liu, J.; Liu, G.E.; Zan, L.; Song, J. Transcriptomic Profiling of Spleen in Grass-Fed and Grain-Fed Angus Cattle. PLoS ONE 2015, 10, e0135670. [Google Scholar] [CrossRef]
- Carrillo, J.A.; He, Y.; Li, Y.; Liu, J.; Erdman, R.A.; Sonstegard, T.S.; Song, J. Integrated Metabolomic and Transcriptome Analyses Reveal Finishing Forage Affects Metabolic Pathways Related to Beef Quality and Animal Welfare. Sci. Rep. 2016, 6, 25948. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Bai, Y.; Liu, J.; Cai, W.; Liu, L.; He, Y.; Song, J. Metabolic Regulations by LncRNA, MiRNA, and CeRNA Under Grass-Fed and Grain-Fed Regimens in Angus Beef Cattle. Front. Genet. 2021, 12, 579393. [Google Scholar] [CrossRef]
- Cônsolo, N.R.B.; Silva, J.; Buarque, V.L.M.; Higuera-Adilla, A.; Barbosa, L.C.G.S.; Zawadzki, A.; Colnago, L.A.; Saran Netto, A.; Gerrard, D.E.; Silva, S.L. Selection for Growth and Precocity Alters Muscle Metabolism in Nellore Cattle. Metabolites 2020, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Antonelo, D.S.; Cônsolo, N.R.B.; Gómez, J.F.M.; Beline, M.; Goulart, R.S.; Corte, R.R.P.S.; Colnago, L.A.; Schilling, M.W.; Gerrard, D.E.; Silva, S.L. Metabolite Profile and Consumer Sensory Acceptability of Meat from Lean Nellore and Angus × Nellore Crossbreed Cattle Fed Soybean Oil. Food Res. Int. 2020, 132, 109056. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.; Pateiro, M.; López-Pedrouso, M.; Gagaoua, M.; Lorenzo, J.M. Foodomics in Meat Quality. Curr. Opin. Food Sci. 2021, 38, 79–85. [Google Scholar] [CrossRef]
- Widmann, P.; Reverter, A.; Fortes, M.R.S.; Weikard, R.; Suhre, K.; Hammon, H.; Albrecht, E.; Kuehn, C. A Systems Biology Approach Using Metabolomic Data Reveals Genes and Pathways Interacting to Modulate Divergent Growth in Cattle. BMC Genom. 2013, 14, 798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahelic, S.; Puac, S. Fiber Types in Longissimus Dorsi from Wild and Highly Selected Pig Breeds. Meat Sci. 1980, 50, 431–436. [Google Scholar]
- Daughtry, M.R.; Berio, E.; Shen, Z.; Suess, E.J.R.; Shah, N.; Geiger, A.E.; Berguson, E.R.; Dalloul, R.A.; Persia, M.E.; Shi, H.; et al. Satellite Cell-Mediated Breast Muscle Regeneration Decreases with Broiler Size. Poult. Sci. 2017, 96, 3457–3464. [Google Scholar] [CrossRef]
- Karlsson, A.; Enfält, A.C.; Essén-Gustavsson, B.; Lundström, K.; Rydhmer, L.; Stern, S. Muscle Histochemical and Biochemical Properties in Relation to Meat Quality during Selection for Increased Lean Tissue Growth Rate in Pigs. J. Anim. Sci. 1993, 71, 930–938. [Google Scholar] [CrossRef] [Green Version]
- Gunawan, A.M.; Richert, B.T.; Schinckel, A.P.; Grant, A.L.; Gerrard, D.E. Ractopamine Induces Differential Gene Expression in Porcine Skeletal Muscles. J. Anim. Sci. 2007, 85, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zeng, C.; Ricome, A.; Hannon, K.M.; Grant, A.L.; Gerrard, D.E. Extracellular Signal-Regulated Kinase Pathway Is Differentially Involved in β-Agonist-Induced Hypertrophy in Slow and Fast Muscles. Am. J. Physiol.-Cell Physiol. 2007, 292, 1681–1689. [Google Scholar] [CrossRef] [PubMed]
- Moloney, A.; Allen, P.; Joseph, R.; Tarrant, V. Influence of Beta-Adrenergic Agonists and Similar Compounds on Growth. In Advances in Meat Research; Elsevier Science Publishing: New York, NY, USA, 1991; pp. 455–513. [Google Scholar]
- Zeng, C.; Shi, H.; Kirkpatrick, L.T.; Ricome, A.; Park, S.; Scheffler, J.M.; Hannon, K.M.; Grant, A.L.; Gerrard, D.E. Driving an Oxidative Phenotype Protects Myh4 Null Mice From Myofiber Loss During Postnatal Growth. Front. Physiol. 2022, 12, 785151. [Google Scholar] [CrossRef] [PubMed]
- Garlick, P.J.; Millward, D.J.; James, W.P.T. The Diurnal Response of Muscle and Liver Protein Synthesis in Vivo in Meal Fed Rats. Biochem. J. 1973, 136, 935–945. [Google Scholar] [CrossRef] [Green Version]
- Shorthouse, W.R.; Harris, P.V. Effects of Growth and Composition on Meat Quality. In Growth Regulation in Farm Animals; Pearson, A.M., Dutson, T.R., Eds.; Elsevier Applied Science: New York, NY, USA, 1991; p. 629. [Google Scholar]
- Imaz, J.A.; García, S.; González, L.A. The Metabolomics Profile of Growth Rate in Grazing Beef Cattle. Sci. Rep. 2022, 12, 2554. [Google Scholar] [CrossRef]
- Moretti, A.; Paoletta, M.; Liguori, S.; Bertone, M.; Toro, G.; Iolascon, G. Choline: An Essential Nutrient for Skeletal Muscle. Nutrients 2020, 12, 2144. [Google Scholar] [CrossRef]
- Picard, B.; Gagaoua, M. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. J. Agric. Food Chem. 2020, 68, 6021–6039. [Google Scholar] [CrossRef]
- da Costa, M.B.; Cônsolo, N.R.B.; Silva, J.; Buarque, V.L.M.; Padilla, A.R.H.; Coutinho, I.D.; Barbosa, L.C.G.S.; Colnago, L.A.; Silva, S.L.; Saran Netto, A. Performance, Carcass Traits and Serum Metabolomic Profile of Nellore Males with Different Genetic Potential for Post-Weaning Growth. Animal 2019, 14, 873–880. [Google Scholar] [CrossRef]
- Marsh, B.B. Rigor mortis in beef. J. Sci. Food Agric. 1954, 5, 70–75. [Google Scholar] [CrossRef]
- Coffee, C.J.; Solano, C. Rat Muscle 5′ Adenylic Acid Aminohydrolase. Role of K+ Adenylate Energy Charge in Expression of Kinetic and Regulatory Properties. J. Biol. Chem. 1977, 252, 1606–1612. [Google Scholar] [CrossRef]
- Dudley, G.A.; Terjung, R.L. Influence of Acidosis on AMP Deaminase Activity in Contracting Fast-Twitch Muscle. Am. J. Physiol. 1985, 248, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Gagaoua, M.; Warner, R.D.; Purslow, P.; Ramanathan, R.; Mullen, A.M.; López-Pedrouso, M.; Franco, D.; Lorenzo, J.M.; Tomasevic, I.; Picard, B.; et al. Dark-Cutting Beef: A Brief Review and an Integromics Meta-Analysis at the Proteome Level to Decipher the Underlying Pathways. Meat Sci. 2021, 181, 108611. [Google Scholar] [CrossRef] [PubMed]
- Sierra, V.; González-Blanco, L.; Diñeiro, Y.; Díaz, F.; García-Espina, M.J.; Coto-montes, A.; Gagaoua, M.; Oliv, M. New Insights on the Impact of Cattle Handling on Post-Mortem Myofibrillar Muscle Proteome and Meat Tenderization. Foods 2021, 10, 3115. [Google Scholar] [CrossRef] [PubMed]
- Peiretti, P.G.; Medana, C.; Visentin, S.; Giancotti, V.; Zunino, V.; Meineri, G. Determination of Carnosine, Anserine, Homocarnosine, Pentosidine and Thiobarbituric Acid Reactive Substances Contents in Meat from Different Animal Species. Food Chem. 2011, 126, 1939–1947. [Google Scholar] [CrossRef]
- Bouter, A.; Gounou, C.; Bérat, R.; Tan, S.; Gallois, B.; Granier, T.; D’Estaintot, B.L.; Pöschl, E.; Brachvogel, B.; Brisson, A.R. Annexin-A5 Assembled into Two-Dimensional Arrays Promotes Cell Membrane Repair. Nat. Commun. 2011, 2, 270. [Google Scholar] [CrossRef] [Green Version]
- Gagaoua, M.; Terlouw, E.M.C.; Mullen, A.M.; Franco, D.; Warner, R.D.; Lorenzo, J.M.; Purslow, P.P.; Gerrard, D.; Hopkins, D.L.; Troy, D.; et al. Molecular Signatures of Beef Tenderness: Underlying Mechanisms Based on Integromics of Protein Biomarkers from Multi-Platform Proteomics Studies. Meat Sci. 2021, 172, 108311. [Google Scholar] [CrossRef]
- Bowman, C.E.; Rodriguez, S.; Selen Alpergin, E.S.; Acoba, M.G.; Zhao, L.; Hartung, T.; Claypool, S.M.; Watkins, P.A.; Wolfgang, M.J. The Mammalian Malonyl-CoA Synthetase ACSF3 Is Required for Mitochondrial Protein Malonylation and Metabolic Efficiency. Cell Chem. Biol. 2017, 24, 673–684.e4. [Google Scholar] [CrossRef] [Green Version]
- Key, C.N.; Perkins, S.D.; Bratcher, C.L.; Kriese-Anderson, L.A.; Bran-debourg, T.D. Grain Feeding Coordinately Alters Expression Patterns of Transcription Factor and Metabolic Genes in Subcutaneous Adipose Tissue of Crossbred Heifers. J. Anim. Sci. 2013, 91, 2616–2627. [Google Scholar] [CrossRef]
- Cônsolo, N.R.B.; Rosa, A.F.; Barbosa, L.C.G.S.; Maclean, P.; Higuera-Padilla, A.; Colnago, L.A.; Titto, E.A.L. Preliminary Study on the Characterisation of Longissimus Lumborum Dark Cutting Meat in Nellore Cattle Using NMR-Based Metabolomics. Meat Sci. 2020, 172, 108350. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. MSEA: A Web-Based Tool to Identify Biologically Meaningful Patterns in Quantitative Metabolomic Data. Nucleic Acids Res. 2010, 38, 71–77. [Google Scholar] [CrossRef] [Green Version]
Metabolites | Minimum | Maximum | Mean | Std Error |
---|---|---|---|---|
AMP | 0.01 | 0.05 | 0.03 | 0.002 |
ATP | 0.00 | 0.01 | 0.00 | <0.001 |
Acetate | 0.01 | 0.03 | 0.01 | <0.001 |
Adenine | 0.02 | 0.05 | 0.04 | 0.001 |
Alanine | 0.17 | 0.42 | 0.31 | 0.011 |
Betaine | 0.06 | 0.20 | 0.11 | 0.004 |
Carnitine | 0.27 | 0.67 | 0.45 | 0.016 |
Carnosine | 0.36 | 2.73 | 1.88 | 0.085 |
Choline | 0.02 | 0.05 | 0.031 | 0.001 |
Creatine | 2.57 | 5.53 | 4.64 | 0.094 |
Creatine phosphate | 0.02 | 0.20 | 0.05 | 0.005 |
Creatinine | 0.01 | 0.05 | 0.03 | 0.001 |
Fumarate | 0.00 | 0.01 | 0.00 | <0.001 |
Glucose | 0.17 | 0.52 | 0.37 | 0.014 |
Glucose-1-phosphate | 0.05 | 0.11 | 0.07 | 0.003 |
Glucose-6-phosphate | 0.08 | 0.67 | 0.43 | 0.020 |
Glutamate | 0.02 | 0.05 | 0.03 | 0.001 |
Glutamine | 0.12 | 0.48 | 0.26 | 0.014 |
Glycerol | 0.16 | 0.49 | 0.27 | 0.017 |
Glycine | 0.05 | 0.15 | 0.09 | 0.003 |
IMP | 0.06 | 0.44 | 0.31 | 0.012 |
Inosine | 0.01 | 0.05 | 0.02 | 0.001 |
Isoleucine | 0.01 | 0.03 | 0.02 | <0.001 |
Lactate | 38.01 | 97.09 | 7.66 | 0.295 |
Leucine | 0.01 | 0.04 | 0.03 | 0.001 |
Malonate | 0.10 | 0.21 | 0.14 | 0.005 |
Methionine | 0.01 | 0.04 | 0.02 | 0.001 |
Myo-Inositol | 0.03 | 0.09 | 0.05 | <0.001 |
NAD+ | 0.01 | 0.04 | 0.02 | 0.001 |
Niacinamide | 0.01 | 0.03 | 0.02 | 0.007 |
O-Acetylcarnitine | 0.15 | 0.32 | 0.23 | <0.001 |
Pyruvate | 0.00 | 0.02 | 0.01 | 0.002 |
Sarcosine | 0.01 | 0.03 | 0.02 | 0.005 |
Succinate | 0.04 | 0.17 | 0.11 | 0.008 |
Threonine | 0.08 | 0.23 | 0.16 | 0.095 |
Urea | 0.24 | 52.64 | 10.56 | 0.001 |
Valine | 0.02 | 0.05 | 0.03 | 0.003 |
Metabolites | D.Value | Stdev | Raw p | Q.Value |
---|---|---|---|---|
FH versus PL | ||||
Leucine | −1.64 | 0.13 | <0.01 | 0.08 |
Fumarate | 1.40 | 0.38 | 0.01 | 0.11 |
ATP | 1.38 | 0.54 | 0.01 | 0.11 |
Succinate | −1.28 | 0.36 | 0.02 | 0.13 |
FL versus PH | ||||
Glutamine | 3.40 | 0.41 | <0.01 | 0.04 |
Carnosine | 3.43 | 0.41 | <0.01 | 0.04 |
Urea | 2.92 | 0.44 | 0.01 | 0.10 |
NAD+ | 2.84 | 0.45 | 0.01 | 0.10 |
Malonate | 2.65 | 0.46 | 0.02 | 0.12 |
Lactate | 2.22 | 0.49 | 0.04 | 0.19 |
Isoleucine | 2.18 | 0.50 | 0.04 | 0.19 |
Pathway Name | TC | Hits | Raw p | -log10 (p) | Holm p | FDR | Impact |
---|---|---|---|---|---|---|---|
FH versus PL | |||||||
Alanine, aspartate and glutamate metabolism | 28 | 3 | <0.001 | 3070 | 0.071 | 0.071 | 0.199 |
Aminoacyl-tRNA biosynthesis | 48 | 3 | 0.004 | 2382 | 0.344 | 0.091 | 0 |
Arginine biosynthesis | 14 | 2 | 0.004 | 2379 | 0.344 | 0.091 | 0.116 |
Butanoate metabolism | 15 | 2 | 0.004 | 2318 | 0.388 | 0.091 | 0 |
Histidine metabolism | 16 | 2 | 0.005 | 2262 | 0.437 | 0.091 | 0.090 |
Citrate cycle (TCA cycle) | 20 | 2 | 0.008 | 2069 | 0.672 | 0.119 | 0.062 |
Galactose metabolism | 27 | 2 | 0.015 | 1815 | 1 | 0.183 | 0.009 |
D-Glutamine and D-glutamate metabolism | 5 | 1 | 0.035 | 1444 | 1 | 0.376 | 1 |
Nitrogen metabolism | 6 | 1 | 0.042 | 1367 | 1 | 0.400 | 0 |
FL versus PH | |||||||
Aminoacyl-tRNA biosynthesis | 48 | 3 | 0.002 | 2656 | 0.185 | 0.116 | 0 |
Arginine biosynthesis | 14 | 2 | 0.002 | 2558 | 0.229 | 0.116 | 0 |
Alanine, aspartate and glutamate metabolism | 28 | 2 | 0.010 | 1959 | 0.901 | 0.249 | 0.113 |
Neomycin, kanamycin and gentamicin biosynthesis | 2 | 1 | 0.011 | 1925 | 0.962 | 0.249 | 0 |
D-Glutamine and D-glutamate metabolism | 5 | 1 | 0.029 | 1530 | 1 | 0.493 | 0 |
Nitrogen metabolism | 6 | 1 | 0.035 | 1452 | 1 | 0.493 | 0 |
Valine, leucine and isoleucine biosynthesis | 8 | 1 | 0.046 | 1330 | 1 | 0.560 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, J.F.M.; Cônsolo, N.R.B.; Antonelo, D.S.; Beline, M.; Gagaoua, M.; Higuera-Padilla, A.; Colnago, L.A.; Gerrard, D.E.; Silva, S.L. Impact of Cattle Feeding Strategy on the Beef Metabolome. Metabolites 2022, 12, 640. https://doi.org/10.3390/metabo12070640
Gómez JFM, Cônsolo NRB, Antonelo DS, Beline M, Gagaoua M, Higuera-Padilla A, Colnago LA, Gerrard DE, Silva SL. Impact of Cattle Feeding Strategy on the Beef Metabolome. Metabolites. 2022; 12(7):640. https://doi.org/10.3390/metabo12070640
Chicago/Turabian StyleGómez, Juan Fernando Morales, Nara Regina Brandão Cônsolo, Daniel Silva Antonelo, Mariane Beline, Mohammed Gagaoua, Angel Higuera-Padilla, Luiz Alberto Colnago, David Edwin Gerrard, and Saulo Luz Silva. 2022. "Impact of Cattle Feeding Strategy on the Beef Metabolome" Metabolites 12, no. 7: 640. https://doi.org/10.3390/metabo12070640
APA StyleGómez, J. F. M., Cônsolo, N. R. B., Antonelo, D. S., Beline, M., Gagaoua, M., Higuera-Padilla, A., Colnago, L. A., Gerrard, D. E., & Silva, S. L. (2022). Impact of Cattle Feeding Strategy on the Beef Metabolome. Metabolites, 12(7), 640. https://doi.org/10.3390/metabo12070640