Evaluation of Normalization Approaches for Quantitative Analysis of Bile Acids in Human Feces
Abstract
:1. Introduction
2. Results
2.1. Differences in Wet Weight, Dry Weight and Protein Content of Faeces Samples
2.2. Differences in Bile Acid Concentrations Based on Normalization Method
Group | N | Mean | STDEV | CV [%] | Robust CV [%] | SEM | SEM [%] | Minimum | Median | Maximum | Range (Max–Min) | Range/% of mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wet weight | all | 70 | 211.5 | 45.1 | 21.3% | 21.1% | 5.4 | 2.5% | 134.6 | 209.6 | 340.9 | 206.3 | 97.6% |
F | 36 | 211.0 | 38.1 | 18.0% | 18.0% | 6.3 | 3.0% | 134.6 | 209.6 | 328.2 | 193.6 | 91.7% | |
M | 34 | 212.0 | 52.1 | 24.6% | 27.6% | 8.9 | 4.2% | 141.4 | 210.8 | 340.9 | 199.6 | 94.1% | |
dry weight | all | 70 | 60.6 | 19.4 | 32.1% | 33.6% | 2.3 | 3.8% | 30.5 | 58.5 | 126.5 | 96.0 | 158.4% |
F | 36 | 62.3 | 19.6 | 31.5% | 31.0% | 3.3 | 5.3% | 32.0 | 59.8 | 126.5 | 94.5 | 151.7% | |
M | 34 | 58.8 | 19.4 | 33.0% | 33.8% | 3.3 | 5.7% | 30.5 | 57.0 | 106.0 | 75.5 | 128.3% | |
protein content | all | 70 | 1.5 | 0.5 | 31.7% | 25.1% | 0.1 | 3.8% | 0.4 | 1.5 | 3.4 | 3.0 | 198.5% |
F | 36 | 1.5 | 0.5 | 32.5% | 29.8% | 0.1 | 5.4% | 0.7 | 1.4 | 3.4 | 2.7 | 179.7% | |
M | 34 | 1.5 | 0.5 | 31.3% | 21.4% | 0.1 | 5.4% | 0.4 | 1.5 | 2.7 | 2.3 | 149.9% | |
TCA-WET | all | 70 | 90.5 | 98.9 | 109.2% | 81.4% | 11.8 | 13.1% | 8.9 | 52.8 | 471.5 | 462.7 | 511.0% |
F | 36 | 92.0 | 100.7 | 109.5% | 89.5% | 16.8 | 18.3% | 11.8 | 49.1 | 422.2 | 410.4 | 446.3% | |
M | 34 | 89.0 | 98.4 | 110.5% | 90.7% | 16.9 | 19.0% | 8.9 | 52.8 | 471.5 | 462.7 | 519.6% | |
TCA-DRY | all | 70 | 375.7 | 496.8 | 132.2% | 95.8% | 59.4 | 15.8% | 29.6 | 176.1 | 2500.2 | 2470.6 | 657.5% |
F | 36 | 396.4 | 553.0 | 139.5% | 84.9% | 92.2 | 23.3% | 29.6 | 193.6 | 2500.2 | 2470.6 | 623.3% | |
M | 34 | 353.9 | 436.8 | 123.4% | 98.0% | 74.9 | 21.2% | 31.3 | 169.4 | 1888.0 | 1856.6 | 524.6% | |
TCA-PROT | all | 70 | 14,170.7 | 19,447.4 | 137.2% | 84.6% | 2324.4 | 16.4% | 1164.9 | 6937.3 | 95,429.7 | 94,264.7 | 665.2% |
F | 36 | 15,188.0 | 21,919.7 | 144.3% | 81.6% | 3653.3 | 24.1% | 1212.7 | 6834.7 | 95,429.7 | 94,217.0 | 620.3% | |
M | 34 | 13,093.7 | 16,699.3 | 127.5% | 84.4% | 2863.9 | 21.9% | 1164.9 | 8380.5 | 86,886.6 | 85,721.7 | 654.7% | |
GCA-WET | all | 70 | 338.6 | 381.6 | 112.7% | 90.1% | 45.6 | 13.5% | 39.8 | 187.2 | 2042.1 | 2002.3 | 591.3% |
F | 36 | 340.1 | 418.5 | 123.1% | 90.8% | 69.8 | 20.5% | 47.8 | 134.9 | 2042.1 | 1994.3 | 586.4% | |
M | 34 | 337.0 | 344.4 | 102.2% | 80.6% | 59.1 | 17.5% | 39.8 | 226.3 | 1625.7 | 1585.9 | 470.6% | |
GCA-DRY | all | 70 | 1398.7 | 1717.9 | 122.8% | 106.3% | 205.3 | 14.7% | 124.1 | 743.2 | 7294.8 | 7170.7 | 512.7% |
F | 36 | 1426.9 | 1933.7 | 135.5% | 107.1% | 322.3 | 22.6% | 124.1 | 476.2 | 6939.9 | 6815.8 | 477.7% | |
M | 34 | 1368.8 | 1484.3 | 108.4% | 102.2% | 254.6 | 18.6% | 151.8 | 907.0 | 7294.8 | 7143.0 | 521.8% | |
GCA-PROT | all | 70 | 49,872.4 | 55,690.5 | 111.7% | 100.9% | 6656.3 | 13.3% | 5509.7 | 25,135.0 | 307,868.4 | 302,358.7 | 606.3% |
F | 36 | 52,192.1 | 67,642.6 | 129.6% | 88.7% | 11,273.8 | 21.6% | 5509.7 | 21,550.9 | 307,868.4 | 302,358.7 | 579.3% | |
M | 34 | 47,416.3 | 40,248.0 | 84.9% | 104.9% | 6902.5 | 14.6% | 5642.8 | 30,267.6 | 143,108.8 | 137,466.0 | 289.9% | |
CDCA-WET | all | 70 | 183.0 | 138.0 | 75.4% | 67.3% | 16.5 | 9.0% | 40.9 | 128.8 | 695.4 | 654.5 | 357.6% |
F | 36 | 186.9 | 140.5 | 75.2% | 59.9% | 23.4 | 12.5% | 49.1 | 133.4 | 695.4 | 646.4 | 345.8% | |
M | 34 | 178.9 | 137.4 | 76.8% | 63.6% | 23.6 | 13.2% | 40.9 | 124.9 | 600.6 | 559.6 | 312.8% | |
CDCA-DRY | all | 70 | 730.3 | 841.9 | 115.3% | 66.6% | 100.6 | 13.8% | 126.7 | 441.1 | 5742.9 | 5616.2 | 769.0% |
F | 36 | 704.3 | 695.1 | 98.7% | 60.0% | 115.8 | 16.4% | 141.7 | 443.5 | 3953.4 | 3811.7 | 541.2% | |
M | 34 | 757.9 | 983.9 | 129.8% | 71.4% | 168.7 | 22.3% | 126.7 | 436.5 | 5742.9 | 5616.2 | 741.0% | |
CDCA-PROT | all | 70 | 30,616.0 | 40,125.2 | 131.1% | 57.7% | 4795.9 | 15.7% | 3658.5 | 18,491.4 | 286,597.9 | 282,939.4 | 924.2% |
F | 36 | 28,527.9 | 26,027.4 | 91.2% | 53.6% | 4337.9 | 15.2% | 6363.4 | 18,086.4 | 106,653.1 | 100,289.7 | 351.5% | |
M | 34 | 32,827.0 | 51,363.1 | 156.5% | 62.0% | 8808.7 | 26.8% | 3658.5 | 19,085.9 | 286,597.9 | 282,939.4 | 861.9% | |
GCDCA-WET | all | 70 | 232.0 | 227.0 | 97.9% | 85.2% | 27.1 | 11.7% | 27.0 | 143.0 | 1004.7 | 977.8 | 421.5% |
F | 36 | 252.5 | 279.2 | 110.6% | 91.5% | 46.5 | 18.4% | 27.0 | 119.2 | 1004.7 | 977.8 | 387.2% | |
M | 34 | 210.2 | 155.3 | 73.9% | 80.0% | 26.6 | 12.7% | 33.9 | 157.5 | 560.3 | 526.4 | 250.4% | |
GCDCA-DRY | all | 70 | 984.5 | 1153.4 | 117.2% | 97.3% | 137.9 | 14.0% | 69.9 | 496.4 | 4992.6 | 4922.6 | 500.0% |
F | 36 | 1015.5 | 1221.7 | 120.3% | 94.6% | 203.6 | 20.0% | 69.9 | 379.6 | 4350.5 | 4280.5 | 421.5% | |
M | 34 | 951.6 | 1093.8 | 114.9% | 91.5% | 187.6 | 19.7% | 119.8 | 543.2 | 4992.6 | 4872.8 | 512.1% | |
GCDCA-PROT | all | 70 | 36,865.1 | 46,339.9 | 125.7% | 93.0% | 5538.7 | 15.0% | 3425.2 | 18,433.4 | 241,160.4 | 237,735.1 | 644.9% |
F | 36 | 41,618.9 | 59,103.5 | 142.0% | 97.0% | 9850.6 | 23.7% | 3425.2 | 16,806.0 | 241,160.4 | 237,735.1 | 571.2% | |
M | 34 | 31,831.6 | 27,097.8 | 85.1% | 84.4% | 4647.2 | 14.6% | 4451.4 | 22,461.0 | 119,572.2 | 115,120.7 | 361.7% | |
TCDCA-WET | all | 70 | 111.4 | 119.4 | 107.2% | 98.5% | 14.3 | 12.8% | 12.7 | 60.3 | 602.0 | 589.3 | 528.9% |
F | 36 | 126.5 | 148.6 | 117.5% | 105.4% | 24.8 | 19.6% | 12.8 | 56.5 | 602.0 | 589.2 | 465.6% | |
M | 34 | 95.4 | 76.6 | 80.3% | 70.4% | 13.1 | 13.8% | 12.7 | 63.5 | 312.3 | 299.5 | 314.1% | |
TCDCA-DRY | all | 70 | 479.4 | 638.0 | 133.1% | 93.0% | 76.3 | 15.9% | 36.0 | 223.6 | 3564.8 | 3528.7 | 736.1% |
F | 36 | 542.6 | 778.5 | 143.5% | 117.5% | 129.8 | 23.9% | 36.0 | 198.4 | 3564.8 | 3528.7 | 650.3% | |
M | 34 | 412.5 | 446.5 | 108.3% | 85.4% | 76.6 | 18.6% | 45.1 | 237.1 | 1720.4 | 1675.3 | 406.2% | |
TCDCA-PROT | all | 70 | 18,045.2 | 26,240.0 | 145.4% | 97.3% | 3136.3 | 17.4% | 1675.2 | 8971.4 | 155,139.8 | 153,464.6 | 850.4% |
F | 36 | 21,670.6 | 34,166.8 | 157.7% | 99.6% | 5694.5 | 26.3% | 1717.5 | 8573.3 | 155,139.8 | 153,422.3 | 708.0% | |
M | 34 | 14,206.7 | 13,116.0 | 92.3% | 89.8% | 2249.4 | 15.8% | 1675.2 | 9322.3 | 57,540.5 | 55,865.4 | 393.2% |
2.3. Total Bile Acid Concentration and Ratios of Individual Bile Acids
Dry Weight | Protein Content | ||
---|---|---|---|
wet weight | Pearson Corr. | 0.282 | −0.061 |
p-value | 0.018 | 0.617 | |
dry weight | Pearson Corr. | −0.080 | |
p-value | 0.511 | ||
TCA-PROT | GCA-WET | ||
TCA-WET | Pearson Corr. | 0.934 | 0.888 |
p-value | 4.9 × 10−32 | 1.4 × 10−24 | |
TCA-DRY | Pearson Corr. | 0.871 | |
p-value | 1.1 × 10−22 | ||
GCA-DRY | GCA-PROT | ||
GCA-WET | Pearson Corr. | 0.889 | 0.844 |
p-value | 4.3 × 10−25 | 4.7 × 10−20 | |
GCA-DRY | Pearson Corr. | 0.881 | |
p-value | 7.9 × 10−24 | ||
CDCA-DRY | CDCA-PROT | ||
CDCA-WET | Pearson Corr. | 0.779 | 0.772 |
p-value | 2.0 × 10−15 | 5.1 × 10−15 | |
CDCA-DRY | Pearson Corr. | 0.574 | |
p-value | 2.0 × 10−7 | ||
GCDCA-DRY | GCDCA-PROT | ||
GCDCA-WET | Pearson Corr. | 0.888 | 0.864 |
p-value | 1.2 × 10−24 | 6.1 × 10−22 | |
GCDCA-DRY | Pearson Corr. | 0.855 | |
p-value | 4.3 × 10−21 | ||
TCDCA-DRY | TCDCA-PROT | ||
TCDCA-WET | Pearson Corr. | 0.931 | 0.885 |
p-value | 1.4 × 10−31 | 3.3 × 10−24 | |
TCDCA-DRY | Pearson Corr. | 0.846 | |
p-value | 3.1 × 10−20 |
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Equipment
4.3. Procedure
4.4. Faeces Preparation for Bile Acid Analysis
4.5. Determination of Dry Weight, Wet Weight, and Protein Concentration
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desroches, S.; Lamarche, B. The evolving definitions and increasing prevalence of the metabolic syndrome. Appl. Physiol. Nutr. Metab. 2007, 32, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Hills, R.D.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, A.S.; Koller, K.R.; Ramaboli, M.C.; Nesengani, L.T.; Ocvirk, S.; Chen, C.; Flanagan, C.A.; Sapp, F.R.; Merritt, Z.T.; Bhatti, F.; et al. Diet and the Human Gut Microbiome: An International Review. Dig. Dis. Sci. 2020, 65, 723–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabke, K.; Hendrick, G.; Devkota, S. The gut microbiome and metabolic syndrome. J. Clin. Investig. 2019, 129, 4050–4057. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-W.; Qu, J.; Black, D.D.; Tso, P. Regulation of intestinal lipid metabolism: Current concepts and relevance to disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Schuhmacher, J.; Zimmer, D.; Tesche, F.; Pickard, V. Matrix effects during analysis of plasma samples by electrospray and atmospheric pressure chemical ionization mass spectrometry: Practical approaches to their elimination. Rapid Commun. Mass Spectrom. 2003, 17, 1950–1957. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, N.; Liu, S.; Wang, J.; Zhang, N.; Zheng, X.; Leung, K.-S.; Cheng, L. Normalization Methods for the Analysis of Unbalanced Transcriptome Data: A Review. Front. Bioeng. Biotechnol. 2019, 7, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degasperi, A.; Birtwistle, M.R.; Volinsky, N.; Rauch, J.; Kolch, W.; Kholodenko, B.N. Evaluating strategies to normalise biological replicates of Western blot data. PLoS ONE 2014, 9, e87293. [Google Scholar] [CrossRef] [Green Version]
- Kultima, K.; Nilsson, A.; Scholz, B.; Rossbach, U.L.; Fälth, M.; Andrén, P.E. Development and evaluation of normalization methods for label-free relative quantification of endogenous peptides. Mol. Cell. Proteom. 2009, 8, 2285–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosen Vollmar, A.K.; Rattray, N.J.W.; Cai, Y.; Santos-Neto, Á.J.; Deziel, N.C.; Jukic, A.M.Z.; Johnson, C.H. Normalizing Untargeted Periconceptional Urinary Metabolomics Data: A Comparison of Approaches. Metabolites 2019, 9, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco-Morales, V.; Garcia Llatas, G.; Yebra, M.; Sentandreu, V.; Lagarda, M.J.; Alegria, A. Impact of a plant sterol- and galactooligosaccharide-enriched beverage on colonic metabolism and gut microbiota composition using an in vitro dynamic model. J. Agric. Food Chem. 2019, 68, 1884–1895. [Google Scholar] [CrossRef] [PubMed]
- Panek, M.; Čipčić Paljetak, H.; Barešić, A.; Perić, M.; Matijašić, M.; Lojkić, I.; Vranešić Bender, D.; Krznarić, Ž.; Verbanac, D. Methodology challenges in studying human gut microbiota—Effects of collection, storage, DNA extraction and next generation sequencing technologies. Sci. Rep. 2018, 8, 5143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linnet, K. Postprandial plasma concentrations of glycine and taurine conjugated bile acids in healthy subjects. Gut 1983, 24, 249–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fini, A.; Roda, A. Chemical properties of bile acids. IV. Acidity constants of glycine-conjugated bile acids. J. Lipid Res. 1987, 28, 755–759. [Google Scholar] [CrossRef]
- Schött, H.-F.; Krautbauer, S.; Höring, M.; Liebisch, G.; Matysik, S. A Validated, Fast Method for Quantification of Sterols and Gut Microbiome Derived 5α/β-Stanols in Human Feces by Isotope Dilution LC-High-Resolution MS. Anal. Chem. 2018, 90, 8487–8494. [Google Scholar] [CrossRef] [PubMed]
- Krautbauer, S.; Liebisch, G. LC-MS/MS Analysis of Bile Acids. Methods Mol. Biol. 2018, 1730, 103–110. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schött, H.-F.; Chua, E.W.L.; Mir, S.A.; Burla, B.; Bendt, A.K.; Wenk, M.R. Evaluation of Normalization Approaches for Quantitative Analysis of Bile Acids in Human Feces. Metabolites 2022, 12, 723. https://doi.org/10.3390/metabo12080723
Schött H-F, Chua EWL, Mir SA, Burla B, Bendt AK, Wenk MR. Evaluation of Normalization Approaches for Quantitative Analysis of Bile Acids in Human Feces. Metabolites. 2022; 12(8):723. https://doi.org/10.3390/metabo12080723
Chicago/Turabian StyleSchött, Hans-Frieder, Esther W. L. Chua, Sartaj Ahmad Mir, Bo Burla, Anne K. Bendt, and Markus R. Wenk. 2022. "Evaluation of Normalization Approaches for Quantitative Analysis of Bile Acids in Human Feces" Metabolites 12, no. 8: 723. https://doi.org/10.3390/metabo12080723
APA StyleSchött, H. -F., Chua, E. W. L., Mir, S. A., Burla, B., Bendt, A. K., & Wenk, M. R. (2022). Evaluation of Normalization Approaches for Quantitative Analysis of Bile Acids in Human Feces. Metabolites, 12(8), 723. https://doi.org/10.3390/metabo12080723