The Human Skin Volatolome: A Systematic Review of Untargeted Mass Spectrometry Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Methods
2.2. Quality Assessment
2.3. Outcome Measures
3. Results
3.1. Quality Assessment Outcomes
3.2. Method of Skin VOC Capture
3.3. VOC Analysis
3.4. The Human Skin Volatolome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Drabińska, N.; Flynn, C.; Ratcliffe, N.; Belluomo, I.; Myridakis, A.; Gould, O.; Fois, M.; Smart, A.; Devine, T.; Costello, B.P.J.D.L. A literature survey of all volatiles from healthy human breath and bodily fluids: The human volatilome. J. Breath Res. 2021, 15, 034001. [Google Scholar] [CrossRef]
- Shirasu, M.; Touhara, K. The scent of disease: Volatile organic compounds of the human body related to disease and disorder. J. Biochem. 2011, 150, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.E.; Fehervari, M.; Boshier, P.R.; Chin, S.-T.; Lin, G.-P.; Romano, A.; Kumar, S.; Hanna, G.B. Mass-Spectrometry Analysis of Mixed-Breath, Isolated-Bronchial-Breath, and Gastric-Endoluminal-Air Volatile Fatty Acids in Esophagogastric Cancer. Anal. Chem. 2019, 91, 3740–3746. [Google Scholar] [CrossRef]
- De Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A review of the volatiles from the healthy human body. J. Breath Res. 2014, 8, 14001. [Google Scholar] [CrossRef] [PubMed]
- Amann, A.; Costello, B.D.L.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 2014, 8, 034001. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, M.; Wysocki, C.; Leyden, J.; Spielman, A.; Sun, X.; Preti, G. Analyses of volatile organic compounds from human skin. Br. J. Dermatol. 2008, 159, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Duffy, E.; Morrin, A. Endogenous and microbial volatile organic compounds in cutaneous health and disease. TrAC Trends Anal. Chem. 2018, 111, 163–172. [Google Scholar] [CrossRef]
- Curran, A.M.; Rabin, S.I.; Prada, P.A.; Furton, K.G. Comparison of the Volatile Organic Compounds Present in Human Odor Using Spme-GC/MS. J. Chem. Ecol. 2005, 31, 1607–1619. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, M.; Novak-Frazer, L.; Bates, M.; Baguneid, M.; Alonso-Rasgado, T.; Xia, G.; Rautemaa-Richardson, R.; Bayat, A. Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures. Sci. Rep. 2018, 8, 9431. [Google Scholar] [CrossRef]
- Ruzsanyi, V.; Wiesenhofer, H.; Ager, C.; Herbig, J.; Aumayr, G.; Fischer, M.; Renzler, M.; Ussmueller, T.; Lindner, K.; Mayhew, C. A portable sensor system for the detection of human volatile compounds against transnational crime. Sens. Actuators B Chem. 2020, 328, 129036. [Google Scholar] [CrossRef]
- Wooding, M.; Rohwer, E.R.; Naude, Y. Chemical profiling of the human skin surface for malaria vector control via a non-invasive sorptive sampler with GCxGC-TOFMS. Anal. Bioanal. Chem. 2020, 412, 5759–5777. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emexa&NEWS=N&AN=632384165 (accessed on 5 February 2022). [CrossRef]
- Steinemann, A. The fragranced products phenomenon: Air quality and health, science and policy. Air Qual. Atmos. Health 2020, 14, 235–243. [Google Scholar] [CrossRef]
- Morimoto, J.; Rosso, M.C.; Kfoury, N.; Bicchi, C.; Cordero, C.; Robbat, J.A. Untargeted/Targeted 2D Gas Chromatography/Mass Spectrometry Detection of the Total Volatile Tea Metabolome. Molecules 2019, 24, 3757. [Google Scholar] [CrossRef]
- Kimura, K.; Sekine, Y.; Furukawa, S.; Takahashi, M.; Oikawa, D. Measurement of 2-nonenal and diacetyl emanating from human skin surface employing passive flux sampler—GCMS system. J. Chromatogr. B 2016, 1028, 181–185. [Google Scholar] [CrossRef]
- Martin, H.J.; Reynolds, J.C.; Riazanskaia, S.; Thomas, C.L.P. High throughput volatile fatty acid skin metabolite profiling by thermal desorption secondary electrospray ionisation mass spectrometry. Analyst 2014, 139, 4279–4286. [Google Scholar] [CrossRef]
- Sinclair, E.; Walton-Doyle, C.; Sarkar, D.; Hollywood, K.A.; Milne, J.; Lim, S.H.; Kunath, T.; Rijs, A.M.; de Bie, R.M.A.; Silverdale, M.; et al. Validating Differential Volatilome Profiles in Parkinson’s Disease. ACS Central Sci. 2021, 7, 300–306. [Google Scholar] [CrossRef]
- Trivedi, D.K.; Sinclair, E.; Xu, Y.; Sarkar, D.; Walton-Doyle, C.; Liscio, C.; Banks, P.; Milne, J.; Silverdale, M.; Kunath, T.; et al. Discovery of Volatile Biomarkers of Parkinson’s Disease from Sebum. ACS Central Sci. 2019, 5, 599–606. [Google Scholar] [CrossRef]
- Monedeiro, F.; dos Reis, R.B.; Peria, F.M.; Sares, C.T.G.; De Martinis, B.S. Investigation of sweat VOC profiles in assessment of cancer biomarkers using HS-GC-MS. J. Breath Res. 2019, 14, 026009. [Google Scholar] [CrossRef]
- Ashrafi, M.; Xu, Y.; Muhamadali, H.; White, I.; Wilkinson, M.; Hollywood, K.; Baguneid, M.; Goodacre, R.; Bayat, A. A microbiome and metabolomic signature of phases of cutaneous healing identified by profiling sequential acute wounds of human skin: An exploratory study. PLoS ONE 2020, 15, e0229545. [Google Scholar] [CrossRef]
- Vishinkin, R.; Busool, R.; Mansour, E.; Fish, F.; Esmail, A.; Kumar, P.; Gharaa, A.; Cancilla, J.C.; Torrecilla, J.S.; Skenders, G.; et al. Profiles of Volatile Biomarkers Detect Tuberculosis from Skin. Adv. Sci. 2021, 8, 2100235. [Google Scholar] [CrossRef]
- Roodt, A.P.; Naude, Y.; Stoltz, A.; Rohwer, E. Human skin volatiles: Passive sampling and GCxGC-ToFMS analysis as a tool to investigate the skin microbiome and interactions with anthropophilic mosquito disease vectors. J. Chromatogr. B Analyt. Technol. Biomed Life Sci. 2018, 1097–1098, 83–93. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med15&NEWS=N&AN=30212730 (accessed on 5 February 2022). [CrossRef]
- Grabowska-Polanowska, B.; Miarka, P.; Skowron, M.; Sułowicz, J.; Wojtyna, K.; Moskal, K.; Śliwka, I. Development of sampling method and chromatographic analysis of volatile organic compounds emitted from human skin. Bioanalysis 2017, 9, 1465–1475. [Google Scholar] [CrossRef]
- Duffy, E.; Jacobs, M.; Kirby, B.; Morrin, A. Probing skin physiology through the volatile footprint: Discriminating volatile emissions before and after acute barrier disruption. Exp. Dermatol. 2017, 26, 919–925. [Google Scholar] [CrossRef]
- Mochalski, P.; Unterkofler, K.; Hinterhuber, H.; Amann, A. Monitoring of Selected Skin-Borne Volatile Markers of Entrapped Humans by Selective Reagent Ionization Time of Flight Mass Spectrometry in NO+ Mode. Anal. Chem. 2014, 86, 3915–3923. [Google Scholar] [CrossRef]
- Prada, P.A.; Curran, A.M.; Furton, K.G. The Evaluation of Human Hand Odor Volatiles on Various Textiles: A Comparison Between Contact and Noncontact Sampling Methods *,†. J. Forensic Sci. 2011, 56, 866–881. [Google Scholar] [CrossRef] [PubMed]
- Doležal, P.; Kyjaková, P.; Valterová, I.; Urban, Š. Qualitative analyses of less-volatile organic molecules from female skin scents by comprehensive two dimensional gas chromatography-time of flight mass spectrometry. J. Chromatogr. A 2017, 1505, 77–86. [Google Scholar] [CrossRef]
- Bernier, U.R.; Kline, D.L.; Barnard, D.R.; Schreck, C.E.; Yost, R.A. Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti). Anal. Chem. 2000, 72, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Kusano, M.; Mendez, E.; Furton, K.G. Comparison of the Volatile Organic Compounds from Different Biological Specimens for Profiling Potential*. J. Forensic Sci. 2012, 58, 29–39. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Zuri, L.; Haick, H. Combined Volatolomics for Monitoring of Human Body Chemistry. Sci. Rep. 2014, 4, 4611. [Google Scholar] [CrossRef]
- Curran, A.M.; Ramirez, C.F.; Schoon, A.A.; Furton, K.G. The frequency of occurrence and discriminatory power of compounds found in human scent across a population determined by SPME-GC/MS. J. Chromatogr. B 2007, 846, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-M.; Cai, J.-J.; Ruan, G.-H.; Li, G.-K. The study of fingerprint characteristics of the emanations from human arm skin using the original sampling system by SPME-GC/MS. J. Chromatogr. B 2005, 822, 244–252. [Google Scholar] [CrossRef]
- Turner, C.; Parekh, B.; Walton, C.; Smith, D.; Evans, M.; Španěl, P. An exploratory comparative study of volatile compounds in exhaled breath and emitted by skin using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Martin, H.J.; Turner, M.A.; Bandelow, S.; Edwards, L.; Riazanskaia, S.; Thomas, C.L.P. Volatile organic compound markers of psychological stress in skin: A pilot study. J. Breath Res. 2016, 10, 046012. [Google Scholar] [CrossRef] [PubMed]
- Verhulst, N.O.; Weldegergis, B.T.; Menger, D.; Takken, W. Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds. Sci. Rep. 2016, 6, 27141. [Google Scholar] [CrossRef] [PubMed]
- Dormont, L.; Bessière, J.-M.; McKey, D.; Cohuet, A. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human/pathogen/vector interactions. J. Exp. Biol. 2013, 216, 2783–2788. [Google Scholar] [CrossRef]
- Ruzsanyi, V.; Mochalski, P.; Schmid, A.; Wiesenhofer, H.; Klieber, M.; Hinterhuber, H.; Amann, A. Ion mobility spectrometry for detection of skin volatiles. J. Chromatogr. B 2012, 911, 84–92. [Google Scholar] [CrossRef]
- Thomas, A.; Riazanskaia, S.; Cheung, W.; Xu, Y.; Goodacre, R.; Thomas, C.L.P.; Baguneid, M.; Bayat, A. Novel noninvasive identification of biomarkers by analytical profiling of chronic wounds using volatile organic compounds. Wound Repair Regen. 2010, 18, 391–400. [Google Scholar] [CrossRef]
- Haze, S.; Gozu, Y.; Nakamura, S.; Kohno, Y.; Sawano, K.; Ohta, H.; Yamazaki, K. 2-Nonenal Newly Found in Human Body Odor Tends to Increase with Aging. J. Investig. Dermatol. 2001, 116, 520–524. [Google Scholar] [CrossRef]
- Meijerink, J.; Braks, M.A.H.; Brack, A.A.; Adam, W.; Dekker, T.; Posthumus, M.A.; Van Beek, T.A.; Van Loon, J.J.A. Identification of Olfactory Stimulants for Anopheles gambiae from Human Sweat Samples. J. Chem. Ecol. 2000, 26, 1367–1382. [Google Scholar] [CrossRef]
- Mochalski, P.; Wiesenhofer, H.; Allers, M.; Zimmermann, S.; Güntner, A.T.; Pineau, N.J.; Lederer, W.; Agapiou, A.; Mayhew, C.A.; Ruzsanyi, V. Monitoring of selected skin- and breath-borne volatile organic compounds emitted from the human body using gas chromatography ion mobility spectrometry (GC-IMS). J. Chromatogr. B 2018, 1076, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Cudjoe, E.; Bojko, B.; Abaffy, T.; Pawliszyn, J. A non-invasive method for in vivo skin volatile compounds sampling. Anal. Chim. Acta 2013, 804, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Abaffy, T.; Duncan, R.; Riemer, D.D.; Tietje, O.; Elgart, G.; Milikowski, C.; DeFazio, R.A. Differential Volatile Signatures from Skin, Naevi and Melanoma: A Novel Approach to Detect a Pathological Process. PLoS ONE 2010, 5, e13813. [Google Scholar] [CrossRef] [PubMed]
- Markar, S.R.; Wiggins, T.; Antonowicz, S.; Chin, S.; Romano, A.; Nikolic, K.; Evans, B.; Cunningham, D.; Mughal, M.; Lagergren, J.; et al. Assessment of a Noninvasive Exhaled Breath Test for the Diagnosis of Oesophagogastric Cancer. JAMA Oncol. 2018, 4, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Boshier, P.; Myridakis, A.; Belluomo, I.; Hanna, G.B. Urinary Volatile Organic Compound Analysis for the Diagnosis of Cancer: A Systematic Literature Review and Quality Assessment. Metabolites 2020, 11, 17. [Google Scholar] [CrossRef]
- Cruz, A.L.S.; Barreto, E.D.A.; Fazolini, N.P.B.; Viola, J.P.B.; Bozza, P.T. Lipid droplets: Platforms with multiple functions in cancer hallmarks. Cell Death Dis. 2020, 11, 105. [Google Scholar] [CrossRef]
- Marchitti, S.A.; Brocker, C.; Stagos, D.; Vasiliou, V. Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily. Expert Opin. Drug Metab. Toxicol. 2008, 4, 697–720. [Google Scholar] [CrossRef]
- Antonowicz, S.; Bodai, Z.; Wiggins, T.; Markar, S.R.; Boshier, P.R.; Goh, Y.M.; Hanna, G.B. Endogenous aldehyde accumulation generates genotoxicity and exhaled biomarkers in esophageal adenocarcinoma. Nat. Commun. 2021, 12, 1454. Available online: http://www.nature.com/articles/s41467-021-21800-5 (accessed on 11 October 2021). [CrossRef]
- Waris, G.; Ahsan, H. Reactive oxygen species: Role in the development of cancer and various chronic conditions. J. Carcinog. 2006, 5, 14. [Google Scholar] [CrossRef]
- Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44, 479–496. Available online: https://pubmed.ncbi.nlm.nih.gov/20370557 (accessed on 20 April 2021). [CrossRef]
- Ratcliffe, N.; Wieczorek, T.; Drabińska, N.; Gould, O.; Osborne, A.; Costello, B.P.J.D.L. A mechanistic study and review of volatile products from peroxidation of unsaturated fatty acids: An aid to understanding the origins of volatile organic compounds from the human body. J. Breath Res. 2020, 14, 034001. [Google Scholar] [CrossRef]
- Butler, L.M.; Perone, Y.; Dehairs, J.; Lupien, L.E.; de Laat, V.; Talebi, A.; Loda, M.; Kinlaw, W.B.; Swinnen, J.V. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv. Drug Deliv. Rev. 2020, 159, 245–293. [Google Scholar] [CrossRef]
- Woodfield, G.; Belluomo, I.; Boshier, P.R.; Waller, A.; Fayyad, M.; von Wagner, C.; Cross, A.J.; Hanna, G.B. Feasibility and acceptability of breath research in primary care: A prospective, cross-sectional, observational study. BMJ Open 2021, 11, e044691. [Google Scholar] [CrossRef]
- Salman, D.; Ibrahim, W.; Kanabar, A.; Joyce, A.; Zhao, B.; Singapuri, A.; Wilde, M.; Cordell, R.L.; McNally, T.; Ruszkiewicz, D.M.; et al. The variability of volatile organic compounds in the indoor air of clinical environments. J. Breath Res. 2022, 16, 016005. [Google Scholar] [CrossRef]
- HMDB. The Human Metabolome Database [Internet]. Available online: https://hmdb.ca/ (accessed on 28 April 2022).
- FooDB. Available online: https://foodb.ca/compounds/FDB002916 (accessed on 28 April 2022).
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. Available online: https://pubmed.ncbi.nlm.nih.gov/9880479 (accessed on 4 May 2022). [CrossRef] [PubMed]
- Lu, C.; Wang, X.; Dong, S.; Zhang, J.; Li, J.; Zhao, Y.; Liang, Y.; Xue, L.; Xie, H.; Zhang, Q.; et al. Emissions of fine particulate nitrated phenols from various on-road vehicles in China. Environ. Res. 2019, 179, 108709. [Google Scholar] [CrossRef]
- Han, J.; Meng, J.; Chen, S.; Li, C. Integrative analysis of the gut microbiota and metabolome in rats treated with rice straw biochar by 16S rRNA gene sequencing and LC/MS-based metabolomics. Sci. Rep. 2019, 9, 17860. [Google Scholar] [CrossRef]
- Gaude, E.; Nakhleh, M.K.; Patassini, S.; Boschmans, J.; Allsworth, M.; Boyle, B.; van der Schee, M.P. Targeted breath analysis: Exogenous volatile organic compounds (EVOC) as metabolic pathway-specific probes. J. Breath Res. 2019, 13, 032001. [Google Scholar] [CrossRef]
- Kuhn, F.; Natsch, A. Body odour of monozygotic human twins: A common pattern of odorant carboxylic acids released by a bacterial aminoacylase from axilla secretions contributing to an inherited body odour type. J. R. Soc. Interface 2008, 6, 377–392. [Google Scholar] [CrossRef] [Green Version]
Sampling Location | Patient Cohort | Number of Participants | Analytical Instrument | Method of Skin VOC Collection | Sorbent Material | Sampling Time (Hours) | Skin Cleaning Prior to Testing | Sample Storage Temperature | Sample Storage Time | Number of Significant Skin Compounds | Reference | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Monedeiro 2020 | Lower back | Visceral adenocarcinoma | 64 | GC–MS | SPME direct contact | Cotton pad | 48 | Sampling location cleaned with isopropanol | −20 | Immediate processing | 72 | [18] | |
Ashrafi 2020 | Upper arm | Healthy | 5 | GG–MS | Direct wound headspace onto TD tubes and PDMS direct contact patches | Custom 3D polylactic funnels to create headspace over the wound for headspace, PDMS patches | 0.5 | No use of exogenous products for 24 h before sampling | n/a | Within 24 h | 10 | [19] | |
Vishinkin 2021 | Inner arm and chest | Active TB infection | 461 | GC–MS | Static headspace no concentration step | PDMS patch, porous polymeric pouches containing poly (2,6-diphenyl phenylene oxide) | 1 | No smoking for 30 min before | 4 | Up to 8 months | 6 | [20] | |
Roodt 2018 | Ankle, wrist | Healthy | 2 | 2D GC ToF MS | PDMS bracelet directly into GC | PDMS bracelets | 4 | No effort to control environmental factors | −80 | Max 72 h | 87 | [21] | |
Wooding 2020 | Ankle, wrist | Healthy | 20 | GCxGC-ToF-MS | PDMS sampler directly analysed in GC | PDMS patch | 1 | Medical-grade alcohol cleansing pads (70% isopropanol) used to clean the skin surface | 4 | Within 48 h | 39 | [11] | |
Grabowska-Polanoska 2017 | Forearm | Healthy | 8 | GC–MS | (a) Forearm headspace using Cellulose bag (60x 30 cm) | (b) Cellulose sachets filled with active carbon (patch) | Carbotrap X | 2 | Y (refrain from perfume, deodorants, fragrance-free soaps) | n/a | Immediate processing | 49 | [22] |
Duffy 2017 | Forearm | Mechanical barrier disruption | 7 | GC–MS | Static headspace SPME | 50/30 ym DVB/Carboxen/PDMS SPME, held in glass vial | 0.25 | Y (no cosmetics on the area on the day, wash with olive-based soap) | n/a | Immediate processing | 37 | [23] | |
Mochalski 2014 | Hand, forearm | Healthy | 31 | GC–MS | SPME static headspace | Nalophan bags, 75 ym Carboxen/PDMS | 0.5 | Wash arm with tap water and dry with a paper towel | immediate processing | Immediate processing | 22 | [24] | |
Prada 2011 | Hand | Healthy | 6 | GC–MS | Headspace SPME (DVB/CARB on PDMS) and direct sampling with contact SPME | Cotton, rayon, polyester, wool | 12 | no | n/a | Immediate processing | 58 (direct sampling) and 20 (headspace) | [25] | |
Dolezal 2017 | Hand | Healthy | 9 | 2D GC ToF MS | Solvent extraction from glass beads | 40 glass beads (4.86 mm), hexane for solvent | 0.2 | Y (wash hands with non-perfume soap) | Below 7 | Unknown | 137 | [26] | |
Bernier 2000 | Hand | Healthy | 4 | GC–MS | TD of glass beads into GC port | 2.9 mm glass beads | 0.25 | No specific instructions prior to collection but hand washing with the same soap on arrival | n/a | Immediate processing | 233 | [27] | |
Kusano 2013 | Hand | Healthy | 31 | GC–MS | Headspace SPME | Gauze pads in a glass vial, 50/30 ym DVB/Carboxen on PDMS | 0.2 | Hand washing pre-collection with olive-based soap | n/a | Immediate processing | 217 | [28] | |
Broza 2014 | Hand | Healthy | 30 | GC–MS | Direct dynamic headspace to TD tube | Direct headspace of VOCs onto to Tenax/Carboxen TD tube using a pump | Immediate | Washed with water for 1 min | Up to 1 week | Up to 1 week | 12 | [29] | |
Curran 2007 | Hand | Healthy | 60 | GC–MS | Headspace SPME | Headspace SPME of pre-treated gauze, SPME (CAR/DVB/PDMS 50/30 ym) | 0.17 | Hand washing 30 s olive-based soap, washing with water, air drying | 21 | Immediate processing | 62 | [30] | |
Zhuo-Min 2005 | Hand/forearm | Healthy | 15 | GC–MS | Static Headspace SPME | Hand-placed in stainless steel jar/glass jar, SPME 65 ym DVB/PDMS | 0.5 | no | n/a | Immediate processing | 34 | [31] | |
Turner 2008 | Hand/forearm | Healthy | 5 | SIFT MS | Dynamic headspace | Nalophan bags | 0.12 | No | n/a | Immediate processing | 6 | [32] | |
Gallagher 2008 | Forearm, back | Healthy | 25 | GC–MS | SPME static headspace using 50/30 ym DVB/Carboxen on PDMS | Direct headspace using a glass funnel | 0.5 | No | −12 (only for solvent) | Immediate processing | 56 | [6] | |
Solvent extraction | Double distilled ethanol | n/a | 49 | ||||||||||
Martin 2016 | Forehead | Healthy | 15 | GC–MS | PDMS patch | PDMS | 0.5 | No | −80 | Stored until processing | 30 | [33] | |
Verhulst 2016 | Axilla, hands, feet | Healthy | 8 | GC–MS | Static headspace of cotton pads onto TD unit | Cotton pads | 0.13 | No | −80 | Max 21 days | 4 | [34] | |
Dormont 2013 | Feet | Healthy | 26 | GC–MS | Solvent extraction | Diethyl ether/dichloromethane | 0.03 | Washed sampling area with water | n/a | Immediate processing | 32 | [35] | |
SPME static headspace | 50/30 ym DVB/Carboxen on PDMS on StableFlex fibres | 0.75 | n/a | 23 | |||||||||
SPME patch (direct contact) | 50/30 ym PDMS-DVB/CAR | 0.05 | n/a | 24 | |||||||||
Dynamic headspace | Nalophan bags, Carbotrap, Tenax | 0.33 | n/a | 38 | |||||||||
Ruzsanyi 2012 | Navel | Healthy | 7 | GC–IMS | Real-time VOC collection by IMS | 102 mm stainless steel pan | 0.08 | Avoid alcohol 12 h, no cosmetics on day | n/a | Immediate processing | 10 | [36] | |
Thomas 2010 | Lower limb | Chronic arterial leg wounds | 5 | GC–MS | PDMS skin patches | Direct patch, inserted into TD tubes | 0.5 | Washed with distilled water 24 H before sampling | n/a | Unknown | 46 | [37] | |
Haze 2001 | Upper back | Healthy | 22 | GC–MS | Dynamic headspace of T shirt | Tedlar bags, Tenax | 72 | Y odourless soaps/cosmetics | n/a | Immediate processing | 22 | [38] | |
Curran 2005 | Axilla | Healthy | 4 | GC–MS | Static Headspace SPME | Sterile gauze, SPME DVB/Carboxen on PDMS | 24 | Olive oil soap for 48 h during shower | 21 | Immediate processing | 46 | [8] | |
Meijerink 2000 | Forehead sweat | Healthy | 14 | GC–MS | Dynamic headspace | Tenax pooled sweat | 3 | Avoid soap/cosmetics for 24 h | n/a | Immediate processing | 76 | [39] | |
Mochalski 2014 | Whole body | Healthy | 10 | SRI-ToF-MS | Body plethysmography chamber | Headspace directly loaded onto MS | 1 | Asked to fast for 12 h prior and refrain from using cosmetics | Immediate processing | Immediate processing | 64 | [24] | |
Mochalski 2018 | Whole body | Healthy | 11 | GC–IMS | Headspace | Whole body plethysmography chamber (bodyscope) | 1 | Y (refrain from cosmetics for 12 h) | n/a | Immediate processing | 17 | [40] | |
Abaffy 2013 | Melanoma biopsy samples | Melanoma | 10 | GC–MS | PDMS/DVB SPME headspace of biopsy | Biopsy put into headspace vials with SPME as a concentration step | 1 | No | n/a | Immediate processing | 6 | [41] | |
Abaffy 2010 | Melanoma biopsy samples in headspace vials | Melanoma vs. benign nevi | 20 | GC–MS | SPME | PDMS-DVB | 1 | No | n/a | Immediate processing | 9 | [42] |
Workflow | Analytical Step | Considerations |
---|---|---|
Experimental design | Define intended population | Patient selection |
Separate into training and independent validation cohorts | ||
Define the anatomical location of skin sampling | ||
Sample preparation | Pre-sampling | Avoid personal care products at the location of sampling for a minimum of 24 h |
Consider patient medication and use of xenobiotics | ||
Skin VOC collection and storage | Direct contact vs. non-contact methods | |
Choice of sampling material (cotton/PDMS/SPME) | ||
Sampling time | ||
Sources of contamination | ||
Sample storage (direct analysis or storage at -80 freezer) | ||
Sampling technique | Consider the use of pre-concentration headspace step or direct injection | |
Use of internal standards in patch | ||
QCs (spiking with internal standards to monitor and correct analytical variability) | ||
MS analysis | Analytical platform | Online or offline platforms |
Optimisation of MS parameters | ||
MS data collection | Run order (randomisation) and batch effects | |
Data Analysis | Data pre-processing | Data deconvolution, scaling, peak alignment |
Removal of irreproducible, contaminant compounds | ||
Statistical analysis | Descriptive statistics | |
Univariate analysis | ||
Multivariate analysis (e.g., PCA, PLS-DA, OPLS-DA) | ||
Prediction model (e.g., ROC analysis) | ||
Biological interpretation | Metabolic pathways (KEGG, HMDB) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitra, A.; Choi, S.; Boshier, P.R.; Razumovskaya-Hough, A.; Belluomo, I.; Spanel, P.; Hanna, G.B. The Human Skin Volatolome: A Systematic Review of Untargeted Mass Spectrometry Analysis. Metabolites 2022, 12, 824. https://doi.org/10.3390/metabo12090824
Mitra A, Choi S, Boshier PR, Razumovskaya-Hough A, Belluomo I, Spanel P, Hanna GB. The Human Skin Volatolome: A Systematic Review of Untargeted Mass Spectrometry Analysis. Metabolites. 2022; 12(9):824. https://doi.org/10.3390/metabo12090824
Chicago/Turabian StyleMitra, Anuja, Sunyoung Choi, Piers R. Boshier, Alexandra Razumovskaya-Hough, Ilaria Belluomo, Patrik Spanel, and George B. Hanna. 2022. "The Human Skin Volatolome: A Systematic Review of Untargeted Mass Spectrometry Analysis" Metabolites 12, no. 9: 824. https://doi.org/10.3390/metabo12090824
APA StyleMitra, A., Choi, S., Boshier, P. R., Razumovskaya-Hough, A., Belluomo, I., Spanel, P., & Hanna, G. B. (2022). The Human Skin Volatolome: A Systematic Review of Untargeted Mass Spectrometry Analysis. Metabolites, 12(9), 824. https://doi.org/10.3390/metabo12090824