Exercise Training Ameliorates Renal Oxidative Stress in Rats with Chronic Renal Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Measurements of Blood Pressure and Plasma and Urine Parameter
2.3. Measurement of Thiobarbituric Acid–Reactive Substances
2.4. Tissue Sample Preparation
2.5. Measurement of NADPH Oxidase and XO Activities
2.6. Immunoblot Analysis
2.7. Statistical Analysis
3. Results
3.1. Body Weight, Systolic Blood Pressure, and Plasma and Urinary Parameters
3.2. Measurement of Thiobarbituric Acid–Reactive Substances in Plasma and Urinary
3.3. NADPH Oxidase and XO Activities
3.4. Protein Expression of NADPH Oxidase Isoforms and XO
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- MacKinnon, H.J.; Wilkinson, T.J.; Clarke, A.L.; Gould, D.W.; O’Sullivan, T.F.; Xenophontos, S.; Watson, E.L.; Singh, S.J.; Smith, A.C. The Association of Physical Function and Physical Activity with All-Cause Mortality and Adverse Clinical Outcomes in Nondialysis Chronic Kidney Disease: A Systematic Review. Ther. Adv. Chronic Dis. 2018, 9, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Baria, F.; Kamimura, M.A.; Aoike, D.T.; Ammirati, A.; Rocha, M.L.; de Mello, M.T.; Cuppari, L. Randomized Controlled Trial to Evaluate the Impact of Aerobic Exercise on Visceral Fat in Overweight Chronic Kidney Disease Patients. Nephrol. Dial. Transplant. 2014, 29, 857–864. [Google Scholar] [CrossRef]
- Chen, I.-R.; Wang, S.-M.; Liang, C.-C.; Kuo, H.-L.; Chang, C.-T.; Liu, J.-H.; Lin, H.-H.; Wang, I.-K.; Yang, Y.-F.; Chou, C.-Y.; et al. Association of Walking with Survival and RRT Among Patients with CKD Stages 3–5. Clin. J. Am. Soc. Nephrol. 2014, 9, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, S.A.; Koufaki, P.; Mercer, T.H.; MacLaughlin, H.; Rush, R.; Lindup, H.; O’Connor, E.; Jones, C.; Hendry, B.M.; Macdougall, I.C.; et al. Effect of Exercise Training on Estimated GFR, Vascular Health, and Cardiorespiratory Fitness in Patients With CKD: A Pilot Randomized Controlled Trial. Am. J. Kidney Dis. 2015, 65, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Kohzuki, M.; Kamimoto, M.; Wu, X.-M.; Xu, H.-L.; Kawamura, T.; Mori, N.; Nagasaka, M.; Kurosawa, H.; Minami, N.; Kanazawa, M.; et al. Renal Protective Effects of Chronic Exercise and Antihypertensive Therapy in Hypertensive Rats with Chronic Renal Failure. J. Hypertens. 2001, 19, 1877–1882. [Google Scholar] [CrossRef]
- Dounousi, E.; Papavasiliou, E.; Makedou, A.; Ioannou, K.; Katopodis, K.P.; Tselepis, A.; Siamopoulos, K.C.; Tsakiris, D. Oxidative Stress Is Progressively Enhanced with Advancing Stages of CKD. Am. J. Kidney Dis. 2006, 48, 752–760. [Google Scholar] [CrossRef]
- Modlinger, P.S.; Wilcox, C.S.; Aslam, S. Nitric Oxide, Oxidative Stress, And Progression of Chronic Renal Failure. Semin. Nephrol. 2004, 24, 354–365. [Google Scholar] [CrossRef]
- Ruiz, S.; Pergola, P.E.; Zager, R.A.; Vaziri, N.D. Targeting the Transcription Factor Nrf2 to Ameliorate Oxidative Stress and Inflammation in Chronic Kidney Disease. Kidney Int. 2013, 83, 1029–1041. [Google Scholar] [CrossRef]
- George, J.; Struthers, A.D. Role of Urate, Xanthine Oxidase and the Effects of Allopurinol in Vascular Oxidative Stress. Vasc. Health Risk Manag. 2009, 5, 265–272. [Google Scholar] [CrossRef]
- Agarwal, R.; Campbell, R.C.; Warnock, D.G. Oxidative Stress in Hypertension and Chronic Kidney Disease: Role of Angiotensin II. Semin. Nephrol. 2004, 24, 101–114. [Google Scholar] [CrossRef]
- Kim, H.J.; Vaziri, N.D. Contribution of impaired Nrf2-Keap1 Pathway to Oxidative Stress and Inflammation in Chronic Renal Failure. Am. J. Physiol. Ren. Physiol. 2010, 298, F662–F671. [Google Scholar] [CrossRef] [PubMed]
- Quiroz, Y.; Ferrebuz, A.; Vaziri, N.D.; Rodriguez-Iturbe, B. Effect of Chronic Antioxidant Therapy with Superoxide Dismutase-Mimetic Drug, Tempol, on Progression of Renal Disease in Rats with Renal Mass Reduction. Nephron Exp. Nephrol. 2009, 112, e31–e42. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.; Liu, X.; Chen, J.; Zhang, K.; Huang, F.; Wang, J.; Tang, W.; Huang, H. Apocynin Attenuates Cardiac Injury in Type 4 Cardiorenal Syndrome via Suppressing Cardiac Fibroblast Growth Factor-2 With Oxidative Stress Inhibition. J. Am. Heart Assoc. 2015, 4, e001598. [Google Scholar] [CrossRef] [PubMed]
- Bose, B.; Badve, S.V.; Hiremath, S.S.; Boudville, N.; Brown, F.G.; Cass, A.; de Zoysa, J.R.; Fassett, R.G.; Faull, R.; Harris, D.C.; et al. Effects of Uric Acid-Lowering Therapy on Renal Outcomes: A Systematic Review and Meta-Analysis. Nephrol. Dial. Transplant. 2013, 29, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Hosoya, T.; Ohno, I.; Nomura, S.; Hisatome, I.; Uchida, S.; Fujimori, S.; Yamamoto, T.; Hara, S. Effects of Topiroxostat on the Serum Urate Levels and Urinary Albumin Excretion in Hyperuricemic Stage 3 Chronic Kidney Disease Patients with or without Gout. Clin. Exp. Nephrol. 2014, 18, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Lozada, L.-G.; Tapia, E.; Soto, V.; Ávila-Casado, C.; Franco, M.; Wessale, J.L.; Zhao, L.; Johnson, R.J. Effect of Febuxostat on the Progression of Renal Disease in 5/6 Nephrectomy Rats with and without Hyperuricemia. Nephron Physiol. 2008, 108, 69–78. [Google Scholar] [CrossRef]
- Miura, T.; Sakuyama, A.; Xu, L.; Qiu, J.; Namai-Takahashi, A.; Ogawa, Y.; Kohzuki, M.; Ito, O. Febuxostat Ameliorates High Salt Intake-Induced Hypertension and Renal Damage in Dahl Salt-Sensitive Rats. J. Hypertens. 2021, 40, 327–337. [Google Scholar] [CrossRef]
- Kojda, G.; Hambrecht, R. Molecular Mechanisms of Vascular Adaptations to Exercise. Physical Activity as an Effective Antioxidant Therapy? Cardiovasc. Res. 2005, 67, 187–197. [Google Scholar] [CrossRef]
- Wilund, K.R.; Tomayko, E.J.; Wu, P.-T.; Ryong Chung, H.; Vallurupalli, S.; Lakshminarayanan, B.; Fernhall, B. Intradialytic Exercise Training Reduces Oxidative Stress and Epicardial Fat: A Pilot Study. Nephrol. Dial. Transplant. 2010, 25, 2695–2701. [Google Scholar] [CrossRef]
- Kanazawa, M.; Kohzuki, M.; Kurosawa, H.; Minami, N.; Ito, O.; Saito, T.; Yasujima, M.; Abe, K. Renoprotective Effect of Angiotensin-Converting Enzyme Inhibitor Combined with α1-Adrenergic Antagonist in Spontaneously Hypertensive Rats with Renal Ablation. Hypertens. Res. 2004, 27, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Kanazawa, M.; Kawamura, T.; Li, L.; Sasaki, Y.; Matsumoto, K.; Kataoka, H.; Ito, O.; Minami, N.; Sato, T.; Ootaka, T. Combination of Exercise and Enalapril Enhances Renoprotective and Peripheral Effects in Rats with Renal Ablation. Am. J. Hypertens. 2006, 19, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Yamakoshi, S.; Nakamura, T.; Mori, N.; Suda, C.; Kohzuki, M.; Ito, O. Effects of Exercise Training on Renal Interstitial Fibrosis and Renin–Angiotensin System in Rats with Chronic Renal Failure. J. Hypertens. 2020, 39, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hasegawa, H.; Inaba, N.; Yoshioka, W.; Chang, D.; Liu, J.; Ichida, K. Diet-Induced Hyperhomocysteinemia Impairs Vasodilation In 5/6-Nephrectomized Rats. Amino Acids 2018, 50, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Ito, D.; Cao, P.; Kakihana, T.; Sato, E.; Suda, C.; Muroya, Y.; Ogawa, Y.; Hu, G.; Ishii, T.; Ito, O.; et al. Chronic Running Exercise Alleviates Early Progression of Nephropathy with Upregulation of Nitric Oxide Synthases and Suppression of Glycation in Zucker Diabetic Rats. PLoS ONE 2015, 10, e0138037. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Ito, O.; Guo, Q.; Ito, D.; Muroya, Y.; Rong, R.; Mori, T.; Ito, S.; Kohzuki, M. Endogenous Hydrogen Peroxide Up-Regulates the Expression of Nitric Oxide Synthase in the Kidney of SHR. J. Hypertens. 2011, 29, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Namai-Takahashi, A.; Sakuyama, A.; Nakamura, T.; Miura, T.; Takahashi, J.; Kurosawa, R.; Kohzuki, M.; Ito, O. Xanthine Oxidase Inhibitor, Febuxostat Ameliorates the High Salt Intake–Induced Cardiac Hypertrophy and Fibrosis in Dahl Salt-Sensitive Rats. Am. J. Hypertens. 2018, 32, 26–33. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and Sensitive Method for The Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Chen, J.-F.; Liu, H.; Ni, H.-F.; Lv, L.-L.; Zhang, M.-H.; Zhang, A.-H.; Tang, R.-N.; Chen, P.-S.; Liu, B.-C. Improved Mitochondrial Function Underlies the Protective Effect of Pirfenidone against Tubulointerstitial Fibrosis in 5/6 Nephrectomized Rats. PLoS ONE 2013, 8, e83593. [Google Scholar] [CrossRef]
- Rajaram, R.D.; Dissard, R.; Jaquet, V.; De Seigneux, S. Potential Benefits and Harms of NADPH Oxidase Type 4 In the Kidneys and Cardiovascular System. Nephrol. Dial. Transplant. 2019, 34, 567–576. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, F.-R.; Wang, J.-N.; Gao, L.; Jiang, L.; Li, H.-D.; Ma, Q.; Liu, X.-Q.; Wei, B.; Zhou, L.; et al. Nox4 in Renal Diseases: An Update. Free Radic. Biol. Med. 2018, 124, 466–472. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, W.; Yu, H.; Zhang, Y.; Dai, Y.; Ning, C.; Tao, L.; Sun, H.; Kellems, R.E.; Blackburn, M.; et al. Interleukin 6 Underlies Angiotensin II–Induced Hypertension and Chronic Renal Damage. Hypertension 2012, 59, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Lodha, S.; Dani, D.; Mehta, R.; Bhaskaran, M.; Reddy, K.; Ding, G.; Singhal, P. Angiotensin II-Induced Mesangial Cell Apoptosis: Role of Oxidative Stress. Mol. Med. 2002, 8, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Omori, H.; Kawada, N.; Inoue, K.; Ueda, Y.; Yamamoto, R.; Matsui, I.; Kaimori, J.; Takabatake, Y.; Moriyama, T.; Isaka, Y.; et al. Use of Xanthine Oxidase Inhibitor Febuxostat Inhibits Renal Interstitial Inflammation and Fibrosis in Unilateral Ureteral Obstructive Nephropathy. Clin. Exp. Nephrol. 2012, 16, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, H.; Kawada, N.; Kaimori, J.-Y.; Kitamura, H.; Moriyama, T.; Rakugi, H.; Takahara, S.; Isaka, Y. Febuxostat Suppressed Renal Ischemia–Reperfusion Injury Via Reduced Oxidative Stress. Biochem. Biophys. Res. Commun. 2012, 427, 266–272. [Google Scholar] [CrossRef]
- Ito, D.; Ito, O.; Cao, P.; Mori, N.; Suda, C.; Muroya, Y.; Takashima, K.; Ito, S.; Kohzuki, M. Effects of Exercise Training on Nitric Oxide Synthase in the Kidney of Spontaneously Hypertensive Rats. Clin. Exp. Pharmacol. Physiol. 2013, 40, 74–82. [Google Scholar] [CrossRef]
- Ogawa, Y.; Takahashi, J.; Sakuyama, A.; Xu, L.; Miura, T.; Muroya, Y.; Ito, D.; Kohzuki, M.; Ito, O. Exercise Training Delays Renal Disorders with Decreasing Oxidative Stress and Increasing Production Of 20-Hydroxyeicosatetraenoic Acid in Dahl Salt-Sensitive Rats. J. Hypertens. 2020, 38, 1336–1346. [Google Scholar] [CrossRef]
- Sovatzidis, A.; Chatzinikolaou, A.; Fatouros, I.; Panagoutsos, S.; Draganidis, D.; Nikolaidou, E.; Avloniti, A.; Michailidis, Y.; Mantzouridis, I.; Batrakoulis, A.; et al. Intradialytic Cardiovascular Exercise Training Alters Redox Status, Reduces Inflammation and Improves Physical Performance in Patients with Chronic Kidney Disease. Antioxidants 2020, 9, 868. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Robinson-Cohen, C.; Ellis, C.; Headley, S.A.; Tuttle, K.; Wood, R.J.; Evans, E.E.; Milch, C.M.; Moody, K.A.; Germain, M.; et al. Metabolic Effects of Diet and Exercise in Patients with Moderate to Severe CKD: A Randomized Clinical Trial. J. Am. Soc. Nephrol. 2017, 29, 250–259. [Google Scholar] [CrossRef]
- Coelho, B.L.; Rocha, L.G.; Scarabelot, K.S.; Scheffer, D.L.; Ronsani, M.M.; Silveira, P.C.; Silva, L.A.; Souza, C.T.; Pinho, R.A. Physical Exercise Prevents the Exacerbation of Oxidative Stress Parameters in Chronic Kidney Disease. J. Ren. Nutr. 2010, 20, 169–175. [Google Scholar] [CrossRef]
- de Souza, P.S.; da Rocha, L.G.C.; Tromm, C.B.; Scheffer, D.L.; Victor, E.G.; da Silveira, P.C.L.; de Souza, C.T.; Silva, L.A.; Pinho, R.A. Therapeutic Action of Physical Exercise on Markers of Oxidative Stress Induced by Chronic Kidney Disease. Life Sci. 2012, 91, 132–136. [Google Scholar] [CrossRef]
Sham | NxS | NxEx | |
---|---|---|---|
Body weight (g) | 508.0 ± 7.6 | 397.8 ± 42.6 * | 444.0 ± 11.7 |
Systolic blood pressure (mmHg) | 123 ± 2 | 203 ± 5 ** | 165 ± 2 **†† |
Plasma creatinine (mg/dL) | 0.2 ± 0.01 | 2.1 ± 0.5 ** | 0.7 ± 0.5 †† |
Plasma urea nitrogen (mg/dL) | 17.0 ± 0.3 | 161.9 ± 39.8 ** | 48.9 ± 3.5 †† |
Urinary protein (mg/day) | 9.3 ± 1.5 | 295.7 ± 33.2 ** | 175.0 ± 10.5 **†† |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamakoshi, S.; Nakamura, T.; Xu, L.; Kohzuki, M.; Ito, O. Exercise Training Ameliorates Renal Oxidative Stress in Rats with Chronic Renal Failure. Metabolites 2022, 12, 836. https://doi.org/10.3390/metabo12090836
Yamakoshi S, Nakamura T, Xu L, Kohzuki M, Ito O. Exercise Training Ameliorates Renal Oxidative Stress in Rats with Chronic Renal Failure. Metabolites. 2022; 12(9):836. https://doi.org/10.3390/metabo12090836
Chicago/Turabian StyleYamakoshi, Seiko, Takahiro Nakamura, Lusi Xu, Masahiro Kohzuki, and Osamu Ito. 2022. "Exercise Training Ameliorates Renal Oxidative Stress in Rats with Chronic Renal Failure" Metabolites 12, no. 9: 836. https://doi.org/10.3390/metabo12090836
APA StyleYamakoshi, S., Nakamura, T., Xu, L., Kohzuki, M., & Ito, O. (2022). Exercise Training Ameliorates Renal Oxidative Stress in Rats with Chronic Renal Failure. Metabolites, 12(9), 836. https://doi.org/10.3390/metabo12090836