Evaluation of Zamia floridana A. DC. Leaves and Its Isolated Secondary Metabolites as Natural Anti-Toxoplasma and Anti-Cancer Agents Using In Vitro and In Silico Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Material
2.3. Extraction and Isolation
2.4. Biological Activity
2.4.1. Toxoplasmocidal Activity
2.4.2. Cytotoxic Activity
2.5. In Silico Molecular Docking Studies
2.6. Statistical Analysis
3. Results
3.1. Biological Activity
3.1.1. Toxoplasmocidal Activity
3.1.2. Cytotoxic Activity
3.2. Phytochemical Investigation
Identification of the Compounds (1–6)
3.3. Investigation of the Toxoplasmocidal Effect of Compounds (1–6) via In Silico Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Priyanka, C.; Kadam, D.A.; Kadam, A.S.; Yuvraj, G.; Aparadh, V.T. Free Radical Scavenging (DPPH) and Ferric Reducing Ability (FRAP) of Some Gymnosperm Species. Int. J. Res. Bot. 2013, 3, 34–36. [Google Scholar]
- El-Seadawy, H.M.; Abo El-Seoud, K.A.; El-Aasr, M.; Tawfik, H.O.; Ragab, A.E. Toxoplasmocidal and Cytotoxic Activities Guided Isolation and Characterization of an Undescribed Bioflavonoid-Di-C-Glucoside from Cycas rumphii Miq. Cultivated in Egypt. Plants 2022, 11, 2867. [Google Scholar] [CrossRef] [PubMed]
- Negm, W.A.; Ibrahim, A.E.R.S.; Abo El-Seoud, K.A.; Attia, G.I.; Ragab, A.E. A New Cytotoxic and Antioxidant Amentoflavone Monoglucoside from Cycas revoluta Thunb Growing in Egypt. J. Pharm. Sci. Res. 2016, 8, 343–350. [Google Scholar]
- Negm, W.A.; Abo El-Seoud, K.A.; Kabbash, A.; Kassab, A.A.; El-Aasr, M. Hepatoprotective, Cytotoxic, Antimicrobial and Antioxidant Activities of Dioon spinulosum Leaves Dyer Ex Eichler and Its Isolated Secondary Metabolites. Nat. Prod. Res. 2021, 35, 5166–5176. [Google Scholar] [CrossRef] [PubMed]
- Rohloff, J.; Hymete, A.; Tariku, Y. Plant-Derived Natural Products for the Treatment of Leishmaniasis. Stud. Nat. Prod. Chem. 2013, 39, 381–429. [Google Scholar] [CrossRef]
- Chao, C.L.; Chien, L.C.; Yun, S.L. Chemical and Bioactive Constituents Isolated from the Formosa Zamia furfureace L. In Proceedings of the 16th International Conference on Pharmacy and Pharmacological Sciences, Osaka, Japan, 12–13 October 2014; Volume 8. [Google Scholar]
- Dossaj, S.F.; Mabry, T.J.; Bell, E.A. Biflavanoids of the Cycadales. Biochem. Syst. Ecol. 1975, 2, 171–175. [Google Scholar] [CrossRef]
- Pellmyr, O.; Tang, W.; Groth, I.; Bergström, G.; Thiens, L.B. Cycad Cone and Angiosperm Floral Volatiles: Inferences for the Evolution of Insect Pollination. Biochem. Syst. Ecol. 1991, 19, 623–627. [Google Scholar] [CrossRef]
- Pan, M.; Mabry, T.J.; Cao, P.; Moini, M. Identification of Nonprotein Amino Acids from Cycad Seeds as N-Ethoxycarbonyl Ethyl Ester Derivatives by Positive Chemical-Ionization Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 1997, 787, 288–294. [Google Scholar] [CrossRef]
- Whitelock, M.L. The Cycads; Timber Press, Inc.: Portland, OR, USA, 2002; ISBN 0881925225. [Google Scholar]
- Allen, G.M.; Bond, M.D.; Main, M.B. 50 Common Native Plants Important. In Florida’s Ethnobotanical History: Circular 1439/UW152, 12/2002; University of Florida: Gainesville, FL, USA, 2003; Volume 13, pp. 1–21. [Google Scholar] [CrossRef]
- Ybañez, R.H.D.; Ybañez, A.P.; Nishikawa, Y. Review on the Current Trends of Toxoplasmosis Serodiagnosis in Humans. Front. Cell. Infect. Microbiol. 2020, 10, 1–18. [Google Scholar] [CrossRef]
- Malek, R.A.; Wassef, R.; Rizk, E.; Sabry, H.; Tadros, N.; Boghdady, A. Toxoplasmosis an Overlooked Disease: Seroprevalence in Cancer Patients. Asian Pac. J. Cancer Prev. 2018, 19, 1987–1991. [Google Scholar] [CrossRef]
- Elazab, S.T.; Soliman, A.F.; Nishikawa, Y. Effect of Some Plant Extracts from Egyptian Herbal Plants against Toxoplasma gondii Tachyzoites in Vitro. J. Vet. Med. Sci. 2021, 83, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.G.; Qazi, G.N.; Ganju, R.K.; El-Tamer, M.; Singh, J.; Saxena, A.K.; Bedi, Y.S.; Taneja, S.C.; Bhat, H.K. Medicinal Plants and Cancer Chemoprevention. Curr. Drug Metab. 2008, 9, 581–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavitha, N.; Noordin, R.; Chan, K.L.; Sasidharan, S. In Vitro Anti-Toxoplasma gondii Activity of Root Extract/Fractions of Eurycoma longifolia Jack. BMC Complement. Altern. Med. 2012, 12, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, C.; Lavorgna, M.; Nugnes, R.; Orlo, E.; Isidori, M. Comparative Assessment of Antimicrobial, Antiradical and Cytotoxic Activities of Cannabidiol and Its Propyl Analogue Cannabidivarin. Sci. Rep. 2021, 11, 22494. [Google Scholar] [CrossRef]
- Alkahtani, S.A.; Alshabi, A.M.; Shaikh, I.A.; Orabi, M.A.A.; Abdel-Wahab, B.A.; Walbi, I.A.; Habeeb, M.S.; Khateeb, M.M.; Shettar, A.K.; Hoskeri, J.H. In Vitro Cytotoxicity and Spectral Analysis-Based Phytochemical Profiling of Methanol Extract of Barleria hochstetteri, and Molecular Mechanisms Underlying Its Apoptosis-Inducing Effect on Breast and Lung Cancer Cell Lines. Separations 2022, 9, 298–314. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Denizot, F.; Lang, R. Rapid Colorimetric Assay for Cell Growth and Survival. Modifications to the Tetrazolium Dye Procedure Giving Improved Sensitivity and Reliability. J. Immunol. Methods 1986, 89, 271–277. [Google Scholar] [CrossRef]
- Hossan, A.; Abu-melha, H. Synthesis, Mass Spectroscopic Studies, Cytotoxicity Evaluation and Quantitative Structure Activity Relationship of Novel Isoindolin-1,03-Dione Derivatives. Chem. Process Eng. Res. 2014, 21, 60–71. [Google Scholar]
- Sharma, H.; Anderson, K.S. Crystal Structure of Non-Classical TS Inhibitor 2 in Complex with Toxoplasma gondii TS-DHFR. Available online: https://www.rcsb.org/structure/4KY4 (accessed on 1 May 2022).
- Mostafa, N.M.; Ashour, M.L.; Eldahshan, O.A.; Singab, A.N.B. Cytotoxic Activity and Molecular Docking of a Novel Biflavonoid Isolated from Jacaranda acutifolia (Bignoniaceae). Nat. Prod. Res. 2016, 30, 2093–2100. [Google Scholar] [CrossRef]
- Markham, K.R.; Sheppard, C.; Geiger, H. 13C NMR Studies of Some Naturally Occurring Amentoflavone and Hinokiflavone Biflavonoids. Phytochemistry 1987, 26, 3335–3337. [Google Scholar] [CrossRef]
- Zhou, Z.; Fu, C. A New Flavanone and Other Constituents from the Rhizomes of Cyperus rotundus and Their Antioxidant Activities. Chem. Nat. Compd. 2013, 48, 963–965. [Google Scholar] [CrossRef]
- Moawad, A.; Amir, D. Ginkgetin or Isoginkgetin: The Dimethylamentoflavone of Dioon edule Lindl. Leaves. Eur. J. Med. Plants 2016, 16, 1–7. [Google Scholar] [CrossRef]
- Wollenweber, E.; Kraut, L.; Mues, R. External Accumulation of Biflavonoids on Gymnosperm Leaves. Zeitschrift Naturforsch. Sect. C J. Biosci. 1998, 53, 946–950. [Google Scholar] [CrossRef]
- Salleh, W.M.N.H.W.; Sazali, N.S.A.N.; Ahmad, F.; Taher, M. Biflavonoids from the Leaves and Stem Bark of Garcinia griffithii and Their Biological Activities. Marmara Pharm. J. 2017, 21, 889–897. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.R.; Kuo, Y.H.; Ho, Y.L.; Wang, C.Y.; Yang, C.S.; Lin, C.W.; Chang, Y.S. Studies on Cytotoxic Constituents from the Leaves of Elaeagnus oldhamii Maxim. In Non-Small Cell Lung Cancer A549 Cells. Molecules 2014, 19, 9515–9534. [Google Scholar] [CrossRef] [Green Version]
- Öksüz, S.; Ulubelen, A.; Barla, A.; Voelter, W. Terpenoids and Aromatic Compounds from Euphorbia heteradena. Turkish J. Chem. 2002, 26, 457–463. [Google Scholar]
- Panyo, J.; Matsunami, K.; Panichayupakaranant, P. Bioassay-Guided Isolation and Evaluation of Antimicrobial Compounds from Ixora megalophylla against Some Oral Pathogens. Pharm. Biol. 2016, 54, 1522–1527. [Google Scholar] [CrossRef]
- Bais, S.; Abrol, N. Review on Chemistry and Pharmacological Potential of Amentoflavone. Curr. Res. Neurosci. 2015, 6, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Park, J.C.; Hwang, Y.H.; Choi, D.R.; Jung, D.Y.; Park, J.G.; Hur, J.M.; Kim, S.J.; Kim, S.N.; Kim, M.S. A Triterpenoid Glucoside and Phenolic Compounds from Rosa davurica. Nat. Prod. Sci. 2003, 9, 31–33. [Google Scholar]
- De Souza, J.E.; Do Nascimento, M.F.A.; Borsodi, M.P.G.; de Almeida, A.P.; Rossi-Bergmann, B.; De Oliveira, A.B.; Costa, S.S. Leaves from the Tree Poincianella pluviosa as a Renewable Source of Antiplasmodial Compounds against Chloroquine-Resistant Plasmodium falciparum. J. Braz. Chem. Soc. 2018, 29, 1318–1327. [Google Scholar] [CrossRef]
- Selvaraj, S.; Vytla, R.M. Solid State Fermentation of Bacillus Gottheilii M2S2 in Laboratory-Scale Packed Bed Reactor for Tannase Production. Prep. Biochem. Biotechnol. 2018, 48, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Andersen, Ø.M.; Markham, K.R. Flavonoids Chemistry, Biochemistry and Applications; Taylor & Francis Group: New York, NY, USA, 2006; ISBN 9780849320217. [Google Scholar]
- Velozo, L.S.; Ferreira, M.J.; Santos, M.I.S.; Moreira, D.L.; Guimarães, E.F.; Emerenciano, V.P.; Kaplan, M.A.C. C-Glycosyl Flavones from Peperomia blanda. Fitoterapia 2009, 80, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.C.; Kamimura, H.; Ohmori, K.; Suzuki, K. Total Synthesis of (+)-Vicenin-2. Org. Lett. 2016, 18, 4488–4490. [Google Scholar] [CrossRef] [PubMed]
- Munera López, J.; Ganuza, A.; Bogado, S.S.; Muñoz, D.; Ruiz, D.M.; Sullivan, W.J.; Vanagas, L.; Angel, S.O. Evaluation of ATM Kinase Inhibitor KU-55933 as Potential Anti-Toxoplasma Gondii Agent. Front. Cell. Infect. Microbiol. 2019, 9, 26. [Google Scholar] [CrossRef]
- Khalifa, M.M.; Martorelli Di Genova, B.; McAlpine, S.G.; Gallego-Lopez, G.M.; Stevenson, D.M.; Rozema, S.D.; Monaghan, N.P.; Morris, J.C.; Knoll, L.J.; Golden, J.E. Dual-Stage Picolinic Acid-Derived Inhibitors of Toxoplasma gondii. ACS Med. Chem. Lett. 2020, 11, 2382–2388. [Google Scholar] [CrossRef]
- Sharma, H.; Landau, M.J.; Vargo, M.A.; Spasov, K.A.; Anderson, K.S. First Three-Dimensional Structure of Toxoplasma gondii Thymidylate Synthase-Dihydrofolate Reductase: Insights for Catalysis, Interdomain Interactions, and Substrate Channeling. Biochemistry 2013, 52, 7305–7317. [Google Scholar] [CrossRef] [Green Version]
- Zaware, N.; Sharma, H.; Yang, J.; Devambatla, R.K.V.; Queener, S.F.; Anderson, K.S.; Gangjee, A. Discovery of Potent and Selective Inhibitors of Toxoplasma gondii Thymidylate Synthase for Opportunistic Infections. ACS Med. Chem. Lett. 2013, 4, 1148–1151. [Google Scholar] [CrossRef]
- de Paula Reis, M.; de Lima, D.A.; Pauli, K.B.; Andreotti, C.E.L.; de Moraes, A.L.S.; Gonçalves, D.D.; Navarro, I.T.; Bueno, P.S.A.; Seixas, F.A.V.; Gasparotto Junior, A.; et al. Molecular Docking to Toxoplasma gondii Thymidylate Synthase-Dihydrofolate Reductase and Efficacy of Raltitrexed in Infected Mice. Parasitol. Res. 2018, 117, 1465–1471. [Google Scholar] [CrossRef]
- Ravishankar, D.; Rajora, A.K.; Greco, F.; Osborn, H.M.I. Flavonoids as Prospective Compounds for Anti-Cancer Therapy. Int. J. Biochem. Cell Biol. 2013, 45, 2821–2831. [Google Scholar] [CrossRef]
- Tuli, H.S.; Garg, V.K.; Bhushan, S.; Uttam, V.; Sharma, U.; Jain, A.; Sak, K.; Yadav, V.; Lorenzo, J.M.; Dhama, K.; et al. Natural Flavonoids Exhibit Potent Anticancer Activity by Targeting MicroRNAs in Cancer: A Signature Step Hinting towards Clinical Perfection. Transl. Oncol. 2023, 27, 101596. [Google Scholar] [CrossRef]
- Abo-Elghiet, F.; Ibrahim, M.H.; El Hassab, M.A.; Bader, A.; Abdallah, Q.M.; Temraz, A. LC/MS Analysis of Viscum cruciatum sieber Ex Boiss. Extract with Anti-Proliferative Activity against MCF-7 Cell Line via G0/G1 Cell Cycle Arrest: An in-Silico and in-Vitro Study. J. Ethnopharmacol. 2022, 295, 115439. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.Y.; Wang, Q.L.; Liang, H.N.; Liu, Q.B.; Yin, D.H.; Lin, L. Flavonoid-Rich Extract of Oldenlandia diffusa (Willd.) Roxb. Inhibits Gastric Cancer by Activation of Caspase-Dependent Mitochondrial Apoptosis. Chin. J. Integr. Med. 2022, 1–11. [Google Scholar] [CrossRef]
- Abaza, M.S.; Al-Attiyah, R.; Bhardwaj, R.; Abbadi, G.; Koyippally, M.; Afzal, M. Syringic Acid from Tamarix Aucheriana Possesses Antimitogenic and Chemo-Sensitizing Activities in Human Colorectal Cancer Cells. Pharm. Biol. 2013, 51, 1110–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Woo, S.H.; Seo, S.K.; Kim, H.; Noh, W.C.; Lee, J.K.; Kwon, B.M.; Min, K.N.; Choe, T.B.; Park, I.C. Ginkgetin Induces Cell Death in Breast Cancer Cells via Downregulation of the Estrogen Receptor. Oncol. Lett. 2017, 14, 5027–5033. [Google Scholar] [CrossRef]
- Khoja, K.K.; Howes, M.J.R.; Hider, R.; Sharp, P.A.; Farrell, I.W.; Latunde-Dada, G.O. Cytotoxicity of Fenugreek Sprout and Seed Extracts and Their Bioactive Constituents on MCF-7 Breast Cancer Cells. Nutrients 2022, 14, 784. [Google Scholar] [CrossRef]
- Li, M.; Li, B.; Xia, Z.M.; Tian, Y.; Zhang, D.; Rui, W.J.; Dong, J.X.; Xiao, F.J. Anticancer Effects of Five Biflavonoids from Ginkgo Biloba L. Male Flowers In Vitro. Molecules 2019, 24, 1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsalikis, J.; Abdel-nour, M.; Farahvash, A.; Sorbara, M.T.; Poon, S.; Philpott, D.J. Isoginkgetin, a Natural Biflavonoid Proteasome Inhibitor, Sensitizes Cancer Cells to Apoptosis via Disruption of Lysosomal Homeostasis and Impaired Protein Clearance. Mol. Cell. Biol. 2019, 39, e00489-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, D.; Zhang, X.; Zhang, W.; Rengarajan, T. Vicenin-2 Inhibits Wnt/β-Catenin Signaling and Induces Apoptosis in HT-29 Human Colon Cancer Cell Line. Drug Des. Dev. Ther. 2018, 12, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Shin, S.; Lee, J.Y.; Lee, S.; Kim, J.K.; Yoon, D.Y.; Woo, E.R.; Kim, Y. Cytotoxic Activities of Amentoflavone against Human Breast and Cervical Cancers Are Mediated by Increasing of Pten Expression Levels Due to Peroxisome Proliferator-Activated Receptor γ Activation. Bull. Korean Chem. Soc. 2012, 33, 2219–2223. [Google Scholar] [CrossRef] [Green Version]
- Rezaei-Seresht, H.; Cheshomi, H.; Falanji, F.; Movahedi-Motlagh, F.; Hashemian, M.; Mireskandari, E. Cytotoxic Activity of Caffeic Acid and Gallic Acid against MCF-7 Human Breast Cancer Cells: An in Silico and in Vitro Study. Avicenna J. Phytomed. 2019, 9, 574–586. [Google Scholar] [CrossRef]
- Zhang, L.; La, X.; Tian, J.; Li, H.; Li, A.; Liu, Y.; Wu, C.; Li, Z. The Phytochemical Vitexin and Syringic Acid Derived from Foxtail fillet Bran Inhibit Breast Cancer Cells Proliferation via GRP78/SREBP-1/SCD1 Signaling Axis. J. Funct. Foods 2021, 85, 104620. [Google Scholar] [CrossRef]
- Abd-Rabou, A.A.; Shalby, A.B.; Ahmed, H.H. Anti-Cancer Activity of Quercetin, Gallic Acid, and Ellagic Acid against HEPG2 and HCT 116 Cell Lines: In Vitro. Int. J. Pharm. Biol. Sci. 2016, 4, B584–B592. [Google Scholar] [CrossRef]
- Garnett, J.A.; Liu, Y.; Leon, E.; Allman, S.A.; Friedrich, N.; Saouros, S.; Curry, S.; Soldati-Favre, D.; Davis, B.G.; Feizi, T.; et al. Detailed Insights from Microarray and Crystallographic Studies into Carbohydrate Recognition by Microneme Protein 1 (MIC1) of Toxoplasma gondii. Protein Sci. 2009, 18, 1935–1947. [Google Scholar] [CrossRef] [PubMed]
Compound | Docking Score (kcal/mol) | H-bond Interaction | Hydrophobic Interaction | ||
---|---|---|---|---|---|
Amino Acid | Fragment | Amino Acid | Fragment | ||
1UE | −6.51 | Asn406 | Indole ring | Ile402 | Indole ring Thiophenol ring |
Asp513 | Pyrimidine ring NH2 | Trp403 | Indole ring | ||
Ala609 | NH2 | Leu516 | Thiophenol ring | ||
Phe520 | Thiophenol ring | ||||
Met608 | Indole ring Pyrimidine ring | ||||
Compound (1) | −8.54 | Lys371 | Flavone ring | Val373 | Flavone ring |
Gln509 | Flavone ring | Ile402 | Phenoxy ring | ||
Asp513 | Flavone ring | Leu486 | Methoxy group | ||
Cys489 | Flavone ring | ||||
Leu516 | Flavone ring Phenoxy ring | ||||
Met608 | Phenoxy ring Methoxy group | ||||
Compound (2) | −8.95 | Lys371 | Flavone ring | Ile402 | Phenoxy ring |
Asn406 | Phenolic ring | Trp403 | Phenoxy ring | ||
Gln509 | Flavone ring | Cys489 | Flavone ring | ||
Asp513 | Flavone ring | Leu516 | Flavone ring Phenoxy ring | ||
Ala609 | Phenolic ring | Met608 | Phenolic ring Phenoxy ring | ||
Val610 | Phenolic ring | ||||
Compound (3) | −5.15 | Gln509 | Carboxylic group | Cys489 | Methoxy group Phenyl ring |
Asp513 | Carboxylic group | Met608 | Methoxy group | ||
Asn521 | Carboxylic group | ||||
His551 | Methoxy group | ||||
Tyr553 | Hydroxyl group | ||||
Compound (4) | −7.63 | Arg372 | Phenolic ring (cent.) | Glu381 | Flavone ring (π) |
Ile604 | Phenolic ring (cent.) | Ile402 | Phenolic ring (term.) | ||
Met608 | Flavone ring | Lys405 | Flavone ring (π) | ||
Leu516 | Flavone ring Phenolic ring (term.) | ||||
Phe520 | Flavone ring (π) | ||||
Met608 | Flavone rings (π) | ||||
Compound (5) | −4.41 | Gln509 | Carboxylic group | Cys489 | Phenyl ring |
Asp513 | Carboxylic group | ||||
Asn521 | Carboxylic group | ||||
Ser511 | Hydroxyl group | ||||
Tyr553 | Hydroxyl group | ||||
Compound (6) | −8.74 | Phe374 | Flavone ring | Lys371 | Flavone ring (π) |
Arg603 | Sugar moiety | Phe374 | Flavone ring | ||
Met606 | Sugar moiety | Ile402 | Phenolic ring | ||
Leu516 | Flavone ring | ||||
Phe520 | Flavone ring (π) | ||||
Arg603 | Flavone ring (π) | ||||
Met608 | Phenolic ring (π) |
Compound | Docking Score (kcal/mol) | H-bond Interaction | Hydrophobic Interaction | ||
---|---|---|---|---|---|
Amino Acid | Fragment | Amino Acid | Fragment | ||
106 | −6.31 | His84 | SO2NH2 | Ile10 | Phenyl ring |
Asp86 | SO2NH2 | Val18 | Indole ring | ||
Asp145 | NH (Indole ring) | Ala31 | Br group | ||
Val64 | Br group | ||||
Leu134 | Br group | ||||
Ala144 | Indole ring | ||||
Compound (1) | −7.62 | Asp92 | Flavone ring | Val18 | Phenolic ring Methoxy group |
Lys129 | Flavone ring | Phe80 | Methoxy group | ||
Lys88 | Flavone ring | ||||
Lys89 | Flavone ring | ||||
Ala144 | Phenyl ring Methoxy group | ||||
Compound (2) | −7.58 | Lys88 | Flavone ring | Val18 | Phenolic ring Methoxy group |
Lys89 | Flavone ring | Lys88 | Flavone ring | ||
Asp92 | Flavone ring | Lys89 | Flavone ring | ||
Lys129 | Flavone ring | Ala144 | Phenolic ring | ||
Compound (3) | −5.01 | Leu83 | Hydroxyl group | Ile10 | Phenyl ring Methoxy group |
Val18 | Phenyl ring | ||||
Ala31 | Phenyl ring Methoxy group | ||||
Val64 | Methoxy group | ||||
Leu134 | Phenyl ring Methoxy group | ||||
Compound (4) | −7.60 | His84 | Hydroxyl group | Ile10 | Phenolic ring Flavone ring |
Lys129 | Flavone ring | Val18 | Phenolic rings | ||
Asp86 | Flavone ring | ||||
Lys89 | Flavone ring | ||||
Ala144 | Phenolic ring | ||||
Compound (5) | −4.50 | Glu81 | Hydroxyl group | Ala31 | Phenyl ring |
Leu83 | Hydroxyl group | Val18 | Phenyl ring | ||
Leu134 | Phenyl ring | ||||
Compound (6) | −8.38 | His84 | Sugar moiety | Ile10 | Flavone ring |
Asp86 | Sugar moiety | Val18 | Phenolic ring Flavone ring | ||
Lys89 | Sugar moiety | Ala31 | Phenolic ring | ||
Asp145 | Phenolic ring | Phe80 | Phenolic ring | ||
Leu134 | Flavone ring | ||||
Ala144 | Phenolic ring |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Seadawy, H.M.; Abo El-Seoud, K.A.; El-Aasr, M.; Tawfik, H.O.; Eldehna, W.M.; Ragab, A.E. Evaluation of Zamia floridana A. DC. Leaves and Its Isolated Secondary Metabolites as Natural Anti-Toxoplasma and Anti-Cancer Agents Using In Vitro and In Silico Studies. Metabolites 2023, 13, 10. https://doi.org/10.3390/metabo13010010
El-Seadawy HM, Abo El-Seoud KA, El-Aasr M, Tawfik HO, Eldehna WM, Ragab AE. Evaluation of Zamia floridana A. DC. Leaves and Its Isolated Secondary Metabolites as Natural Anti-Toxoplasma and Anti-Cancer Agents Using In Vitro and In Silico Studies. Metabolites. 2023; 13(1):10. https://doi.org/10.3390/metabo13010010
Chicago/Turabian StyleEl-Seadawy, Hosam M., Kamilia A. Abo El-Seoud, Mona El-Aasr, Haytham O. Tawfik, Wagdy M. Eldehna, and Amany E. Ragab. 2023. "Evaluation of Zamia floridana A. DC. Leaves and Its Isolated Secondary Metabolites as Natural Anti-Toxoplasma and Anti-Cancer Agents Using In Vitro and In Silico Studies" Metabolites 13, no. 1: 10. https://doi.org/10.3390/metabo13010010
APA StyleEl-Seadawy, H. M., Abo El-Seoud, K. A., El-Aasr, M., Tawfik, H. O., Eldehna, W. M., & Ragab, A. E. (2023). Evaluation of Zamia floridana A. DC. Leaves and Its Isolated Secondary Metabolites as Natural Anti-Toxoplasma and Anti-Cancer Agents Using In Vitro and In Silico Studies. Metabolites, 13(1), 10. https://doi.org/10.3390/metabo13010010