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Abstract: The single point insulin sensitivity estimator (SPISE) is a recently developed fasting index
for insulin sensitivity based on triglycerides, high density lipoprotein cholesterol, and body mass
index. SPISE has been validated in juveniles and adults; still, its role during childhood remains
unclear. To evaluate the age- and sex-specific distribution of SPISE, its correlation with established
fasting indexes and its application as a prognostic marker for future dysglycemia during childhood
and adolescence were assessed. We performed linear modeling and correlation analyses on a
cross-sectional cohort of 2107 children and adolescents (age 5 to 18.4 years) with overweight or
obesity. Furthermore, survival analyses were conducted upon a longitudinal cohort of 591 children
with overweight/obesity (1712 observations) with a maximum follow-up time of nearly 20 years,
targeting prediabetes/dysglycemia as the end point. The SPISE index decreased significantly with
age (−0.34 units per year, p < 0.001) among children and adolescents with overweight and obesity. Sex
did not have an influence on SPISE. There was a modest correlation between SPISE and established
fasting markers of insulin resistance (R = −0.49 for HOMA-IR, R = −0.55 for QUICKI-IR). SPISE is a
better prognostic marker for future dysglycemia (hazard ratio (HR) 3.47, 95% confidence interval
(CI) 1.60–7.51, p < 0.01) than HOMA-IR and QUICKI-IR (HR 2.44, 95% CI 1.24–4.81, p < 0.05). The
SPISE index is a surrogate marker for insulin resistance predicting emerging dysglycemia in children
with overweight or obesity, and could, therefore, be applied to pediatric cohorts that lack direct
insulin assessment.

Keywords: SPISE; childhood obesity; dysglycemia; early-onset diabetes; prediabetes; type 2 diabetes;
insulin resistance

1. Introduction

Overweight and obesity, accompanied by metabolic syndrome and related comor-
bidities such as insulin resistance (IR), are a worldwide health burden adults as well as
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in children and adolescents [1]. Epidemiological studies have shown that up to 17.9% of
children and adolescents in Europe have overweight or obesity [1]. Childhood obesity
does not only lead to a high economic burden, but also to increased future morbidity and
mortality [2,3].

There is ample evidence that children with obesity have a higher risk of developing
insulin resistance and metabolic syndrome [4,5]. The pathogenesis of type 2 diabetes
(T2D) is multifactorial; however, obesity is considered the most significant risk factor for
developing IR [6]. Nevertheless, large epidemiological studies have shown that not all
children with obesity have IR, and that T2D can also occur in children without obesity [7].

Therefore, the identification and screening of those at risk for future T2D is a crucial
step to guide early prevention and treatment modification. Various indexes to screen for
early IR and T2D have been evaluated in the pediatric population [8–11]. The gold standard
for measurement of IR and insulin sensitivity (IS) is the euglycemic hyperinsulinemic clamp
test [12]. However, this test is very time-consuming, expensive, and uncomfortable for the
patient [13].

Thus, less time-consuming and simpler approaches, such as the quantitative insulin
sensitivity check index (QUICKI), or its reciprocal, the QUICKI-IR [14], as well as the
homeostatic model assessment of insulin resistance (HOMA-IR) [15], have been devel-
oped. However, these indexes require insulin measurements, which are expensive and not
universally available [16].

Standards for assessing IR and IS in children and adolescents are still lacking. Thus,
there is a need to evaluate new, less expensive indices with a high specificity for IR and
IS in the pediatric population. Furthermore, new scores are needed for epidemiological
studies in cohorts lacking insulin measurements to calculate the prevalence and incidence
of T2D in the pediatric population worldwide.

A new approach to estimate IR is the triglycerides/high-density lipoproteins choles-
terol ratio (TG/HDL-C) [16]. However, studies have shown that this score has lower
specificity and higher variability compared to standard methods [13,17]. Recently, Paul-
michl et al. have developed a new index called the single point insulin sensitivity estimator
(SPISE), redefining the TG/HDL-C ratio [18]. This index estimates IR based on single
fasting samples of triglycerides (TG), high density lipoprotein cholesterol (HDL-C), and
body mass index (BMI) [18]. The score was validated with the euglycemic clamp method on
adults and post-pubertal adolescents [18]. SPISE showed better results than the TG/HDL-C
ratio and similar results to HOMA-IR and QUICKI in this analysis among juveniles and
adults [18]. However, its validity in children of younger ages has not been systematically
studied yet.

Herein, we evaluated the SPISE index in a cohort of children and adolescents with
overweight or obesity and, therefore, a high likelihood of insulin resistance. We addressed
the question of whether SPISE is influenced by age and sex, and whether it is an appropriate
surrogate marker for IR during childhood, by correlating it to established fasting IR indexes
and testing its utility as a prognostic marker for emerging dysglycemia.

2. Material and Methods
2.1. Study Desing and Study Population

Data were obtained between April 1999 and September 2022 from the Leipzig Child-
hood Obesity Cohort (recruited from the local obesity outpatient clinic) and the LIFE
Child Cohort (recruited from the urban population around the city of Leipzig, which have
been described elsewhere [19]). The studies were approved by the local ethics committee
number, Leipzig Childhood Obesity Cohort: institutional review board (IRB-Nr): 007/04,
NCT04491344), and the LIFE Child Cohort, IRB-Nr: 265-10-19042010; NCT02550236).

Doublets in between cohorts were excluded. Written informed consent was provided
by the legal guardians as well as the subjects themselves from the age of 12 years. All
studies met the ethical standards of the Declaration of Helsinki, as revised in 2008, and have
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been approved by the institutional review board of the Medical Faculty of the University
Leipzig, Germany.

We included 2203 children and adolescents between 5 and 18.9 years of age with
overweight or obesity (defined as a body mass index SD score (BMI–SDS) ≥ 1.28 or BMI
> 25, if 18 years old), a valid assessment of fasting insulin, fasting glucose, TG, HDL-
C, and BMI, as well as at least 8 h of starvation prior to study participation (Figure 1).
Among these, 2107 participants were free of syndromes, medications, or diseases with
a potential impact on glucose metabolism, and were selected for further cross-sectional
analyses (baseline cohort).
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Figure 1. Selection of study population. 1 antidiabetics, growth hormone, systemic glucocorticoids;
2 panhypopituitarism, malignant diseases, bariatric surgery, spinal muscular atrophy, phenylke-
tonuria, pancreatitis, strong developmental delay, cerebral paresis, acute infection, tuberoid sclerosis,
pancreatitis, Crohn’s disease, Celiac disease, syndromes (Trisomy 21, Prader Willi syndrome, Bardet
Biedl syndrome, Monogenic obesity, 15q13.3 microdeletion syndrome, monogenic diabetes, Beckwith
Wiedemann syndrome, Kabuki syndrome, Trichorhinophalangeal syndrome, Klinefelter syndrome,
Cowden syndrome, Poland syndrome, Hypochondroplasia); 3 growth hormone, high density lipopro-
tein cholesterol; 90th percentile; triglycerides.

For longitudinal survival analyses, we considered 681 subjects out of the baseline
cohort who had at least one follow-up visit after more than 3 months of assessing glucose
metabolism (measurement of fasting glucose, HbA1c, and/or 2 h glucose). After exclusion
of syndromes and/or medications and diseases with an impact on glucose metabolism,
591 subjects with 1712 observations remained for further analyses (follow-up cohort).
Notably, antidiabetic medications were not excluded for follow-up visits, as they defined
the end-point dysglycemia in the survival analysis.
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2.2. Anthropometric and Laboratory Assessment

Height and weight were assessed by trained staff members using three repeated measure-
ments to the nearest of 0.1 decimal units. BMI was calculated as weight [kg]/(height [m])2 and
transformed into BMI-standard deviation scores (SDS)/percentiles using age- and sex-specific
references values of the German population [20]. Pubertal status was determined according
to Tanner [21] by trained staff members and then categorized into five pubertal stages, rang-
ing from 1 (prepubertal) to 5 (complete maturity). For oral glucose tolerance testing, subjects
ingested 1.75 g/kg body weight dextrose (maximum 75 g) after a 10 h overnight fast.

All laboratory assessments were performed immediately after study participation by
the certified local laboratory of the university hospital Leipzig. Insulin serum concentra-
tions were determined by the Cobas 8000 (Roche Diagnostics, Mannheim, Germany) and
LIAISON (DiaSorin, Saluggia, Italy) analyzers. Glucose was either measured in serum by
a Cobas 8000 analyzer (Roche Diagnostics, Mannheim, Germany) or in hemolysates by
the automated laboratory analyzer Super GL speedy using an enzymatic-amperometric
method. We confirmed comparability of respective methods by Bland–Altman plots and
Passing–Bablok regression (data not shown). TG and HDL-C were assessed by enzymatic
color assay in a Cobas analyzer (Roche Diagnostics, Mannheim Germany). The SPISE score
was calculated as follows:

SPISE = 600 × HDL-C [mg/dL]0.185/TG [mg/dL]0.2/BMI [kg/m2]1.338 (1)

HOMA-IR and QUICKI-IR served as established fasting surrogates for insulin resistance.

HOMA-IR = fasting glucose [mmol/L] × fasting insulin [mU/L]/22.5 (2)

QUICKI-IR = log (fasting glucose [mmol/L]) × log (fasting insulin [mU/L]) (3)

where log is the natural logarithm.

2.3. Statistical Analysis

All analyses were performed with the R statistical package, version 3.5.0. Graphical
evaluation of SPISE scores over age was facilitated by local polynomial regression fitting,
using two degrees of polynomials and including 60% of the neighbouring data points,
weighted according to their distance in a tricubic manner.

For cohort characteristics, continuous parameters were described by mean and stan-
dard deviation (SD). The association of age and sex with SPISE was tested by linear
regression analysis, whereas SPISE was considered as the dependent variable and age and
sex as the independent variables. For correlation analysis between SPISE and other markers
of insulin resistance, Pearson product–moment correlation was used. A p-value of <0.05
was considered statistically significant.

Survival analyses were conducted with the R package. The risk for emerging dysg-
lycemia was assessed by Kaplan–Meier analyses and cox proportional hazard regression.
The stratification of SPISE score into the lowest and the highest quartile had to take the
age-dependency of the SPISE score into account. Therefore, we divided the cohort into
three age groups (5–8.9 years, 9–13.9 years, 14–18.9 years) and quartiles were calculated for
each age group separately for SPISE as well as for HOMA-IR and QUICKI-IR. The endpoint
dysglycemia was defined as intake of antidiabetics or meeting at least two out of three
prediabetes criteria according to current guidelines from the American Diabetes Associa-
tion [22]: fasting glucose ≥ 5.6 mmol/L, 2 h glucose ≥ 7.8 mmol/L, or HbA1c ≥ 5.7%. We
considered prediabetes criteria rather than diabetes criteria as the end point for two reasons:
(i) overt diabetes is still uncommon during childhood (only 2.5% of cases, Table A1), (ii) an-
tidiabetic medications such as Metformin had often already been prescribed for prediabetic
conditions in clinical practice; thus, it was difficult to distinguish whether the intake of
antidiabetic medications was due to prediabetes or diabetes.
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3. Results
3.1. Baseline Characteristics

We aimed to evaluate the SPISE index in children and adolescents at risk for insulin
resistance and (pre)diabetes. Therefore, we selected 2107 patients with overweight or
obesity from the Leipzig Childhood Obesity and LIFE Child cohort who were free of medi-
cations or underlying diseases with an impact on glucose metabolism (other than obesity).
Characteristics of those subjects at baseline are summarized in Table 1. Ages ranged from 5
to 18.44 years, and sex was equally spread among the cohort (49.5% male subjects).

Table 1. Clinical characteristics of cross-sectional baseline cohort and longitudinal follow-up cohort
at baseline.

Clinical Characteristics
Baseline Cohort Follow-Up Cohort at Baseline

N Value N Value

N male (%) 2107 1043 (49.5) 591 274 (46.36)
Age range, years 2107 5.01–18.44 591 5.01–17.56

Mean age (SD), years 2107 11.91 (±3.05) 591 11.47 (±2.83)
Mean BMI (SD), kg/m2 2107 29.41 (±5.84) 591 28.6 (±5.38)

Mean BMI SDS (SD) 2107 2.48 (±0.57) 591 2.43 (±0.56)

Pubertal stage,% 2107 100 591 100
1 603 28.62 191 32.32
2 416 19.72 130 22.0
3 238 11.30 65 11.0
4 213 10.10 58 9.81
5 514 24.39 124 20.98

N/A 123 5.84 23 3.89

Mean fasting glucose
(SD), mmol/L 2107 5.21 (±0.58) 591 5.16 (±0.44)

Mean 2 h glucose (SD),
mmol/L 1896 6.64 (±1.27) 515 6.6 (±1.14)

Mean HbA1c (SD),% 1868 5.31 (±1.22) 515 5.23 (±0.33)
Mean TG (SD), mmol/L 2107 1.21 (±0.67) 591 1.18 (±0.64)

Mean HDL-C (SD),
mmol/L 2107 1.22 (±0.28) 591 1.25 (±0.29)

Mean fasting insulin
(SD), pmol/L 2107 121.6 (±81.94) 591 110.95 (±68.77)

Mean SPISE (SD) 2107 5.71 (±1.73) 591 5.94 (±1.71)
Mean HOMA-IR (SD) 2107 4.13 (±3.02) 591 3.69 (±2.36)
Mean QUICKI-IR (SD) 2107 4.3 (±0.68) 591 4.22 (±0.63)

High density lipoprotein cholesterol; homeostasis model assessment of insulin resistance; quantitative insulin sensitivity
check index—insulin resistance; standard deviation; single point insulin sensitivity estimator; triglycerides.

3.2. SPISE Index Is Dependent of Age, but Not of Sex during Childhood

SPISE decreased continuously with age (−0.34 units per year) among children and
adolescents with overweight or obesity (Figure 2, Table 2). When comparing age-dependent
dynamics between SPISE and its components (BMI, HDL-C, TG) separately, this age
dependency mainly mirrors the increase in absolute BMI and, to a smaller extend, the
increase in TG during childhood and adolescence (data not shown). In contrast, no sex
differences were observed (Figure 2, Table 2). Furthermore, and in contrast with established
fasting indexes such as HOMA-IR and QUICKI-IR, there was no peak in SPISE during
puberty (Figure 2, data for each pubertal stage are not shown).
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Table 2. Linear regression analysis with SPISE as dependent variable and sex and age as independent
variables at baseline.

Univariate Regression Multiple Regression *

Age β-slope (per year) −0.34 −0.34
95% CI −0.36–(−0.32) −0.36–(−0.32)
p value <0.001 <0.001

Sex ∆ β-slope (for male) 0.07 0.04

95% CI −0.07–0.22 −0.08–0.16
p value 0.33 0.48

* For multiple linear regression, sex and age were both included as independent variables in one model.

3.3. Cross-Sectional Association of SPISE Score with Established Markers of Insulin Resistance

We compared SPISE with established fasting markers of insulin resistance by Pearson
product–moment correlation (Table 3). There was a moderate and significant negative
association between the insulin sensitivity marker SPISE and the insulin resistance markers
HOMA-IR (R = −0.49) and QUICKI-IR (R = −0.55). In comparison, HOMA-IR and QUICKI-
IR correlated more strongly with each other (R = 0.88), which is not surprising, as they used
the same variables (fasting glucose and fasting insulin).

Table 3. Pearson product–moment correlation of SPISE and established insulin indexes at baseline.

Insulin Index SPISE HOMA-IR

HOMA-IR −0.49 *** 1 ***
QUICKI-IR −0.55 *** 0.88 ***

*** p < 0.001.

3.4. Longitudinal Prediction of Dysglycemia

As insulin resistance is a crucial step preceding the development of T2D, we tested the
utility of SPISE as a prognostic marker for future dysglycemia. Therefore, we selected 591
subjects derived from the baseline cohort who underwent assessment of glucose metabolism
during at least one follow-up visit. The maximum follow-up time was 19.55 years, ranging
up to age of 35 years (mean follow-up time 3.68 years, median 2.18 years). The characteris-
tics of this longitudinal follow-up cohort are summarized in Table 1. During follow-up, 79
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out of 591 subjects (13.37%) had an event of glycemic failure (Table A1). Participants with a
low SPISE at baseline (lowest quartile) were three times as likely to develop dysglycemia
during follow-up as participants with the highest quartile of SPISE, even after adjustment
for age and sex (HR 3.47 (95% CI 1.60–7.51), p < 0.01, Figure 3, Table 4). This relationship
also remained when using SPISE as a continuous variable rather than a categorial variable
(HR 0.77 (95% CI 0.66–0.9), p < 0.01, Table 4). Furthermore, SPISE was a stronger predictor
for future dysglycemia than established markers of insulin resistance, such as HOMA-IR
and QUICKI-IR (HR 2.44 (95% CI 1.24–4.81), p < 0.05). Notably, HRs when comparing the
highest vs. the lowest quartile of HOMA-IR and QUICKI-IR were the same as the values of
both indexes ranked in the same order, despite having different absolute values.

Metabolites 2023, 13, x FOR PEER REVIEW 7 of 12 
 

 

years, ranging up to age of 35 years (mean follow-up time 3.68 years, median 2.18 years). 
The characteristics of this longitudinal follow-up cohort are summarized in Table 1. Dur-
ing follow-up, 79 out of 591 subjects (13.37%) had an event of glycemic failure (Table A1). 
Participants with a low SPISE at baseline (lowest quartile) were three times as likely to 
develop dysglycemia during follow-up as participants with the highest quartile of SPISE, 
even after adjustment for age and sex (HR 3.47 (95% CI 1.60–7.51), p < 0.01, Figure 3, Table 
4). This relationship also remained when using SPISE as a continuous variable rather than 
a categorial variable (HR 0.77 (95% CI 0.66–0.9), p < 0.01, Table 4). Furthermore, SPISE was 
a stronger predictor for future dysglycemia than established markers of insulin resistance, 
such as HOMA-IR and QUICKI-IR (HR 2.44 (95% CI 1.24–4.81), p < 0.05). Notably, HRs 
when comparing the highest vs. the lowest quartile of HOMA-IR and QUICKI-IR were 
the same as the values of both indexes ranked in the same order, despite having different 
absolute values. 

 
Figure 3. Longitudinal prediction of dysglycemia by SPISE. Ribbons around the survival curves 
represent the 95% confidence interval, and ticks represent right-censored data. 

Table 4. Longitudinal prediction of dysglycemia by SPISE score and established indexes of insulin 
resistance (Cox proportional hazard regression and log-rank test). 

Insulin Index SPISE HOMA-IR QUICKI-IR 
p-value, Log-rank lowest vs. highest 
quartile A, N = 296 B 

0.0015 0.01 0.01 

HR lowest vs. highest quartile A 
(95% CI), N = 296 B 
Univariate 
 
Adjusted for age and sex 
  

    
 
 

3.19  
(1.5–6.81) ** 

2.35  
(1.2–4.59) * 

2.35  
(1.2–4.59) * 

3.47 
(1.60–7.51) ** 

2.44 
(1.24–4.81) * 

2.44 
(1.24–4.81) * 

HR continuous (95% CI), N = 591 C 
Univariate 
 
Adjusted for age and sex 
 

 
 

0.84 
(0.73 −0.96) ** 

0.77 
(0.66–0.9) ** 

 
 

1.13 
(1.04–1.24) ** 

1.16 
(1.05–1.27) ** 

 
 

1.66 
(1.14–2.41) ** 

1.85 
(1.23–2.77) ** 

A For HOMA-IR and QUICKI-IR, the highest quartile was compared to the lowest quartile for better 
direct comparison with the HR of SPISE; B For Matsuda index N = 232 and for reduced Matsuda 

Figure 3. Longitudinal prediction of dysglycemia by SPISE. Ribbons around the survival curves
represent the 95% confidence interval, and ticks represent right-censored data.

Table 4. Longitudinal prediction of dysglycemia by SPISE score and established indexes of insulin
resistance (Cox proportional hazard regression and log-rank test).

Insulin Index SPISE HOMA-IR QUICKI-IR

p-value, Log-rank lowest vs. highest
quartile A, N = 296 B 0.0015 0.01 0.01

HR lowest vs. highest quartile A

(95% CI), N = 296 B

Univariate

Adjusted for age and sex

3.19
(1.5–6.81) **

2.35
(1.2–4.59) *

2.35
(1.2–4.59) *

3.47
(1.60–7.51) **

2.44
(1.24–4.81) *

2.44
(1.24–4.81) *

HR continuous (95% CI), N = 591 C

Univariate

Adjusted for age and sex

0.84
(0.73–0.96) **

0.77
(0.66–0.9) **

1.13
(1.04–1.24) **

1.16
(1.05–1.27) **

1.66
(1.14–2.41) **

1.85
(1.23–2.77) **

A For HOMA-IR and QUICKI-IR, the highest quartile was compared to the lowest quartile for better direct
comparison with the HR of SPISE; B For Matsuda index N = 232 and for reduced Matsuda index N = 250; C For
Matsuda index N = 463 and for reduced Matsuda index N = 499; confidence interval; hazard ratio; * p < 0.05,
** p < 0.01.
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4. Discussion

We were able to show that SPISE is dependent on age, but not on sex, and correlates
moderately with established fasting markers of insulin resistance HOMA-IR and QUICKI-
IR among children and adolescents with overweight and obesity. Importantly, we find that
SPISE is a better predictor for emerging dysglycemia than established markers of insulin
resistance among children and adolescents with overweight or obesity.

The SPISE index has been evaluated by previous studies [23,24]. A recent study
by Cederholm et al. demonstrated a significant correlation with the clamp method in
a cohort of Swedish adults (n = 1049, age at baseline 71 years) [24]. SPISE has been
shown to significantly predict future coronary heart disease, similarly to HOMA-IR and
QUICKI-IR [24]. Furthermore, a lower SPISE index was significantly associated with T2D,
abdominal obesity, and higher levels of adiponectin and C-reactive protein in adults and
adolescents [24,25]. Furthner et al. have shown that SPISE is a surrogate marker for non-
alcoholic fatty liver disease in pubertal adolescents aged 10 to 18 years with a Tanner stage
of 2 to 4 [26]. SPISE performed better than HOMA-IR when compared to liver MRI as a
gold standard [26]. Barchetta recently examined the relationship between the SPISE index
and various insulin sensitivity indicators in children with overweight/obesity [23]. The
current study, with more than twice as many participants in the cross-sectional analysis and
three times as many subjects in the follow-up analysis, was able to confirm the previously
presented results of the study mentioned above [23]. The results of both studies show that
a low SPISE index reliably predicts the development of impaired glucose regulation in
children with obesity [23]. In the present study, the endpoint “impaired glucose tolerance”
was defined even more precisely, with 2 out of 3 prediabetes criteria (fasting glucose, 2 h
glucose, HbA1c) at follow up at least 3 months later. Barchetta et al. defined only an
isolated disturbed fasting glucose, insulin value, or 2 h glucose value as impaired glucose
regulation, and the intake of metformin was not taken into account [23].

Despite the validation described above, data from larger epidemiological studies in the
pediatric population were still lacking. Therefore, the current study, with 2107 participants,
can make a significant contribution to the evaluation of the SPISE index in the pediatric
population. The range of SPISE for late adolescents 16 to 18 years old was comparable to
results reported by Paulmichl et al. [18]. Nevertheless, results of this study have shown
that the SPISE index has a strong age dependency during childhood. Data are in line with
the results reported by Barchetta et al. evaluating the performance of SPISE in a population
of children from Italy with and without obesity [23]. The SPISE index was significantly
correlated to age with a correlation coefficient of –0.57 (p < 0.001) in this cohort [23]. Based
on the results of the current study, the age dependency of SPISE mainly mirrors the age-
dependent increase in absolute BMI during childhood. Therefore, future studies should
evaluate age-adjusted reference ranges for the SPISE index. Besides age-adjusted references,
the evaluation of a new score using BMI-SDS instead of BMI in the pediatric population
could also be addressed in future studies in order to repeal a certain insecurity in the
performance of the SPISE Index in different age groups as a score. Using an age- and
gender-specific BMI median (BMI-SDS) allows for even more precise evaluation in the
reference group.

There is ample evidence that insulin resistance peaks during puberty [27]. However,
the data of the current study showed no correlation of SPISE with different Tanner stages.
Still, all three parameters contained within the SPISE index (BMI, TG, HDL-C) have previ-
ously been identified to predict insulin resistance [28–30]. Studies have shown that BMI,
along with adipose tissue mass and whole-body insulin sensitivity, further enhances the
sensitivity of the SPISE index [30]. Furthermore, it has been shown that increased visceral
fat accumulation and adipose tissue dysfunction are associated with IR [30]. Therefore, the
addition of BMI further enhances the sensitivity of the SPISE index, as studies have shown
that the lipid and lipoprotein profiles changed in patients with insulin resistance measured
by euglycemic clamps [29]. Recently, Ma et al. showed that TG levels are correlated with
both insulin resistance and beta cell function in individuals with dyslipidemia alone [29].
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Another study identified a TG:HDL-C ratio greater than or equal to 1.36 as an early and
sensitive predictor of insulin resistance in children [28]. Therefore, integrating TG and
HDL-C into the SPISE index appears attractive.

Most importantly, SPISE index was a significant predictor of future dysglycemia in
children and adolescents during 20 years of follow up. This result is consistent with the
findings of Sagesaka et al. based on over 27,000 adults, showing that a low SPISE index
at baseline significantly predicts the incidence of dysglycemia in adults for up to 10 years
prospectively [31]. Barchetta et al. also performed longitudinal analyses, showing similar
results for a 6.5-year follow-up period [23]. The study reported an independent prediction
of the development of impaired glucose metabolism in the future, regardless of confounders
such as sex and age, in a pediatric population [23]. Furthermore, they showed that all other
insulin-derived indices of IR and IS failed to predict future incidences of dysglycemia in
children and adolescents [23]. The current study has shown that the SPISE index performed
equally to or even better than established markers of insulin resistance such as the QUICKI-
IR and HOMA-IR. This result is consistent with previous studies in adults showing that
the accuracy of the SPISE index is comparable to QUICKI-IR and HOMA-IR [18].

The results of the current study support the clinical significance of the SPISE index, as
it reliably predicts metabolic abnormalities and emerging dysglycemia in children and ado-
lescents. Furthermore, as mentioned above, the SPISE index performed equally to or even
better than established markers such as QUICKI-IR (SPISE: HR 3.47, p < 0.01; QUICKI-IR:
HR 2.44, p < 0.05). It is cost-effective and easy to collect with widely available anthropo-
metric and laboratory values [18]. The euglycemic hyperinsulinemic clamp, representing
the gold standard for measuring insulin sensitivity, is more invasive, expensive, and too
difficult to perform in clinical practice [32]. Other methods to measure insulin resistance,
such as the Matsuda index or the oral glucose tolerance test, are more time-consuming [33].
On the one hand, this makes the SPISE index particularly attractive for countries with
limited healthcare options and, on the other hand, this Index is of great importance in the
evaluation of large epidemiological cohorts with missing data on glucose metabolism.

There were certain limitations to our study which need to be acknowledged. Given the
strong age dependency of both the SPISE index and established fasting markers of insulin
resistance, the most accurate approach for stratification into “high” and “low” would
require the application of age-adjusted percentiles. To address this limitation, we stratified
baseline indexes within three different age intervals separately. Furthermore, the perfor-
mance of the SPISE index was not directly compared to the euglycemic hyperinsulinemic
clamp test, which is the gold standard test for insulin resistance.

On the other hand, a strength of this study was its large number of participants.
Furthermore, to our knowledge, it is the largest study in the pediatric population presenting
longitudinal follow-up data on this matter.

5. Conclusions

SPISE is a potential surrogate marker for insulin resistance predicting emerging dysg-
lycemia in children with overweight or obesity, and could, therefore, be applied in pediatric
cohorts that lack direct insulin assessment. Given the strong age dependency of SPISE dur-
ing childhood, further research is required to establish age-adjusted reference values and/or
to establish an adapted score that uses BMI-SDS rather than absolute BMI in children.
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Appendix A

Table A1. Subgroups of dysglycemia.

Outcome N (%)

Dysglycemia (total)
Intake of antidiabetics

≥2/3 Prediabetes criteria positive *
≥2/3 Diabetes criteria positive **

79 (100%)
50 (63.29%)
29 (36.71%)
2 (2.53%)

* Fasting glucose ≥ 5.6 mmol/L, 2 h glucose ≥ 7.8 mmol/L, HbA1c ≥ 5.7%; ** fasting glucose ≥ 7.0 mmol/L,
2 h glucose ≥ 11.1 mmol/L, HbA1c ≥ 6.5%.
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10. Kurtoğlu, S.; Hatipoğlu, N.; Mazıcıoğlu, M.; Kendirici, M.; Keskin, M.; Kondolot, M. Insulin resistance in obese children and
adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods. J. Clin. Res. Pediatr. Endocrinol. 2010, 2, 100–106.
[CrossRef]

11. Conwell, L.S.; Batch, J.A. Oral glucose tolerance test in children and adolescents: Positives and pitfalls. J. Paediatr. Child Health
2004, 40, 620–626. [CrossRef]

12. Tam, C.S.; Xie, W.; Johnson, W.D.; Cefalu, W.T.; Redman, L.M.; Ravussin, E. Defining insulin resistance from hyperinsulinemic-
euglycemic clamps. Diabetes Care 2012, 35, 1605–1610. [CrossRef]

13. Mostafa, S.A.; Davies, M.J.; Morris, D.H.; Yates, T.; Srinivasan, B.T.; Webb, D.; Brady, E.; Khunti, K. The association of the
triglyceride-to-HDL cholesterol ratio with insulin resistance in White European and South Asian men and women. PLoS ONE
2012, 7, e50931. [CrossRef]

14. Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check
index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410.
[CrossRef]

15. Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin
resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419.
[CrossRef]

16. McLaughlin, T.; Abbasi, F.; Cheal, K.; Chu, J.; Lamendola, C.; Reaven, G. Use of metabolic markers to identify overweight
individuals who are insulin resistant. Ann. Intern. Med. 2003, 139, 802–809. [CrossRef]

17. Bridges, K.G.; Jarrett, T.; Thorpe, A.; Baus, A.; Cochran, J. Use of the triglyceride to HDL cholesterol ratio for assessing insulin
sensitivity in overweight and obese children in rural Appalachia. J. Pediatr. Endocrinol. Metab. 2016, 29, 153–156. [CrossRef]

18. Paulmichl, K.; Hatunic, M.; Højlund, K.; Jotic, A.; Krebs, M.; Mitrakou, A.; Porcellati, F.; Tura, A.; Bergsten, P.; Forslund, A.; et al.
Modification and Validation of the Triglyceride-to-HDL Cholesterol Ratio as a Surrogate of Insulin Sensitivity in White Juveniles
and Adults without Diabetes Mellitus: The Single Point Insulin Sensitivity Estimator (SPISE). Clin. Chem. 2016, 62, 1211–1219.
[CrossRef]

19. Koutny, F.; Stein, R.; Kiess, W.; Weghuber, D.; Körner, A. Elevated transaminases potentiate the risk for emerging dysglycemia in
children with overweight and obesity. Pediatr. Obes. 2021, 16, e12822. [CrossRef]

20. Kromeyer-Hauschild, K.; Wabitsch, M.; Kunze, D.; Geller, F.; Geiß, H.C.; Hesse, V.; von Hippel, A.; Jaeger, U.; Johnsen, D.;
Korte, W.; et al. Perzentilen für den Body Mass Index für das Kindes- und Jugendalter unter Heranziehung verschiedener
deutscher Stichproben (Centiles for body mass index for children and adolescents derived from distinct independent German
cohorts). Monatsschr. Kinderheilkd. 2001, 149, 807–818. [CrossRef]

21. Coleman, L.; Coleman, J. The measurement of puberty: A review. J. Adolesc. 2002, 25, 535–550. [CrossRef] [PubMed]
22. American Diabetes Association. 2. Classification and Diagnosis of Diabetes. Diabetes Care 2020, 43, S14–S31. [CrossRef] [PubMed]
23. Barchetta, I.; Dule, S.; Bertoccini, L.; Cimini, F.A.; Sentinelli, F.; Bailetti, D.; Marini, G.; Barbonetti, A.; Loche, S.; Cossu, E.; et al. The

single-point insulin sensitivity estimator (SPISE) index is a strong predictor of abnormal glucose metabolism in overweight/obese
children: A long-term follow-up study. J. Endocrinol. Investig. 2022, 45, 43–51. [CrossRef]

24. Cederholm, J.; Zethelius, B. SPISE and other fasting indexes of insulin resistance: Risks of coronary heart disease or type 2
diabetes. Comparative cross-sectional and longitudinal aspects. Upsala J. Med. Sci. 2019, 124, 265–272. [CrossRef]

25. Correa-Burrows, P.; Blanco, E.; Gahagan, S.; Burrows, R. Validity assessment of the single-point insulin sensitivity estimator
(spise) for diagnosis of cardiometabolic risk in post-pubertal hispanic adolescents. Sci. Rep. 2020, 10, 14399. [CrossRef] [PubMed]

26. Furthner, D.; Anderwald, C.H.; Bergsten, P.; Forslund, A.; Kullberg, J.; Ahlström, H.; Manell, H.; Ciba, I.; Mangge, H.;
Maruszczak, K.; et al. Single Point Insulin Sensitivity Estimator in Pediatric Non-Alcoholic Fatty Liver Disease. Front. En-
docrinol. 2022, 13, 830012. [CrossRef] [PubMed]

27. Kelsey, M.M.; Zeitler, P.S. Insulin Resistance of Puberty. Curr. Diabetes Rep. 2016, 16, 64. [CrossRef]
28. Behiry, E.G.; El Nady, N.M.; AbdEl Haie, O.M.; Mattar, M.K.; Magdy, A. Evaluation of TG-HDL Ratio Instead of HOMA Ratio

as Insulin Resistance Marker in Overweight and Children with Obesity. Endocr. Metab. Immune Disord. Drug Targets 2019, 19,
676–682. [CrossRef]

29. Ma, M.; Liu, H.; Yu, J.; He, S.; Li, P.; Ma, C.; Zhang, H.; Xu, L.; Ping, F.; Li, W.; et al. Triglyceride is independently correlated with
insulin resistance and islet beta cell function: A study in population with different glucose and lipid metabolism states. Lipids
Health Dis. 2020, 19, 121. [CrossRef]

http://doi.org/10.2174/1573399814666180608074510
http://doi.org/10.1210/jc.2010-1047
http://doi.org/10.1111/pedi.12146
http://doi.org/10.1034/j.1399-5448.2003.t01-1-00022.x
http://doi.org/10.4274/jcrpe.v2i3.100
http://doi.org/10.1111/j.1440-1754.2004.00487.x
http://doi.org/10.2337/dc11-2339
http://doi.org/10.1371/journal.pone.0050931
http://doi.org/10.1210/jcem.85.7.6661
http://doi.org/10.1007/BF00280883
http://doi.org/10.7326/0003-4819-139-10-200311180-00007
http://doi.org/10.1515/jpem-2015-0158
http://doi.org/10.1373/clinchem.2016.257436
http://doi.org/10.1111/ijpo.12822
http://doi.org/10.1007/s001120170107
http://doi.org/10.1006/jado.2002.0494
http://www.ncbi.nlm.nih.gov/pubmed/12234559
http://doi.org/10.2337/dc20-S002
http://www.ncbi.nlm.nih.gov/pubmed/31862745
http://doi.org/10.1007/s40618-021-01612-6
http://doi.org/10.1080/03009734.2019.1680583
http://doi.org/10.1038/s41598-020-71074-y
http://www.ncbi.nlm.nih.gov/pubmed/32873820
http://doi.org/10.3389/fendo.2022.830012
http://www.ncbi.nlm.nih.gov/pubmed/35185803
http://doi.org/10.1007/s11892-016-0751-5
http://doi.org/10.2174/1871530319666190121123535
http://doi.org/10.1186/s12944-020-01303-w


Metabolites 2023, 13, 100 12 of 12

30. Klöting, N.; Fasshauer, M.; Dietrich, A.; Kovacs, P.; Schön, M.R.; Kern, M.; Stumvoll, M.; Blüher, M. Insulin-sensitive obesity. Am.
J. Physiol. Endocrinol. Metab. 2010, 299, E506–E515. [CrossRef] [PubMed]

31. Sagesaka, H.; Sato, Y.; Someya, Y.; Tamura, Y.; Shimodaira, M.; Miyakoshi, T.; Hirabayashi, K.; Koike, H.; Yamashita, K.;
Watada, H.; et al. Type 2 Diabetes: When Does It Start? J. Endocr. Soc. 2018, 2, 476–484. [CrossRef] [PubMed]

32. DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am.
J. Physiol. 1979, 237, E214–E223. [CrossRef] [PubMed]

33. Tagi, V.M.; Giannini, C.; Chiarelli, F. Insulin Resistance in Children. Front. Endocrinol. 2019, 10, 342. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1152/ajpendo.00586.2009
http://www.ncbi.nlm.nih.gov/pubmed/20570822
http://doi.org/10.1210/js.2018-00071
http://www.ncbi.nlm.nih.gov/pubmed/29732459
http://doi.org/10.1152/ajpendo.1979.237.3.E214
http://www.ncbi.nlm.nih.gov/pubmed/382871
http://doi.org/10.3389/fendo.2019.00342
http://www.ncbi.nlm.nih.gov/pubmed/31214120

	Introduction 
	Material and Methods 
	Study Desing and Study Population 
	Anthropometric and Laboratory Assessment 
	Statistical Analysis 

	Results 
	Baseline Characteristics 
	SPISE Index Is Dependent of Age, but Not of Sex during Childhood 
	Cross-Sectional Association of SPISE Score with Established Markers of Insulin Resistance 
	Longitudinal Prediction of Dysglycemia 

	Discussion 
	Conclusions 
	Appendix A
	References

