Physical Inactivity, Metabolic Syndrome and Prostate Cancer Diagnosis: Development of a Predicting Nomogram
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Assessments of Metabolic Status and Physical Activity
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Model Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Omura, J.D.; Whitfield, G.P.; Chen, T.J.; Hyde, E.T.; Ussery, E.N.; Watson, K.B.; Carlson, S.A. Surveillance of Physical Activity and Sedentary Behavior Among Youth and Adults in the United States: History and Opportunities. J. Phys. Act. Health 2021, 18, S6–S24. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Cicione, A.; Brassetti, A.; Lombardo, R.; Franco, A.; Turchi, B.; D’Annunzio, S.; Nacchia, A.; Tubaro, A.; Simone, G.; De Nunzio, C. Metabolic Syndrome and Physical Inactivity May Be Shared Etiological Agents of Prostate Cancer and Coronary Heart Diseases. Cancers 2022, 14, 936. [Google Scholar] [CrossRef]
- Thraen-Borowski, K.M.; Gennuso, K.P.; Cadmus-Bertram, L. Accelerometer-Derived Physical Activity and Sedentary Time by Cancer Type in the United States. PLoS ONE 2017, 12, e0182554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Lund Nilsen, T.I.; Johnsen, R.; Vatten, L.J. Socio-Economic and Lifestyle Factors Associated with the Risk of Prostate Cancer. Br. J. Cancer 2000, 82, 1358–1363. [Google Scholar] [CrossRef] [Green Version]
- Friedenreich, C.M.; Ryder-Burbidge, C.; McNeil, J. Physical Activity, Obesity and Sedentary Behavior in Cancer Etiology: Epidemiologic Evidence and Biologic Mechanisms. Mol. Oncol. 2021, 15, 790–800. [Google Scholar] [CrossRef]
- Brassetti, A.; Ferriero, M.; Napodano, G.; Sanseverino, R.; Badenchini, F.; Tuderti, G.; Anceschi, U.; Bove, A.; Misuraca, L.; Mastroianni, R.; et al. Physical Activity Decreases the Risk of Cancer Reclassification in Patients on Active Surveillance: A Multicenter Retrospective Study. Prostate Cancer Prostatic Dis. 2021, 24, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, C.; Brassetti, A.; Simone, G.; Lombardo, R.; Mastroianni, R.; Collura, D.; Muto, G.; Gallucci, M.; Tubaro, A. Metabolic Syndrome Increases the Risk of Upgrading and Upstaging in Patients with Prostate Cancer on Biopsy: A Radical Prostatectomy Multicenter Cohort Study. Prostate Cancer Prostatic Dis. 2018, 21, 438–445. [Google Scholar] [CrossRef]
- De Nunzio, C.; Simone, G.; Brassetti, A.; Mastroianni, R.; Collura, D.; Muto, G.; Gallucci, M.; Tubaro, A. Metabolic Syndrome Is Associated with Advanced Prostate Cancer in Patients Treated with Radical Retropubic Prostatectomy: Results from a Multicentre Prospective Study. BMC Cancer 2016, 16, 407. [Google Scholar] [CrossRef]
- De Nunzio, C.; Presicce, F.; Lombardo, R.; Cancrini, F.; Petta, S.; Trucchi, A.; Gacci, M.; Cindolo, L.; Tubaro, A. Physical Activity as a Risk Factor for Prostate Cancer Diagnosis: A Prospective Biopsy Cohort Analysis. BJU Int. 2016, 117, E29–E35. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, C.; Trucchi, A.; Miano, R.; Stoppacciaro, A.; Fattahi, H.; Cicione, A.; Tubaro, A. The Number of Cores Positive for High Grade Prostatic Intraepithelial Neoplasia on Initial Biopsy Is Associated with Prostate Cancer on Second Biopsy. J. Urol. 2009, 181, 1069–1074; discussion 1074–1075. [Google Scholar] [CrossRef]
- Brassetti, A.; D’Elia, G. Reply by the Authors. Urology 2018, 115, 189. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, C.; Pastore, A.L.; Lombardo, R.; Simone, G.; Leonardo, C.; Mastroianni, R.; Collura, D.; Muto, G.; Gallucci, M.; Carbone, A.; et al. The New Epstein Gleason Score Classification Significantly Reduces Upgrading in Prostate Cancer Patients. Eur. J. Surg. Oncol. 2018, 44, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Frese, E.M.; Fick, A.; Sadowsky, H.S. Blood Pressure Measurement Guidelines for Physical Therapists. Cardiopulm. Phys. Ther. J. 2011, 22, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Garrido, M.M.; Marta, J.C.; Ribeiro, R.M.; Pinheiro, L.C.; Holdenrieder, S.; Guimarães, J.T. Comparison of Three Assays for Total and Free PSA Using Hybritech and WHO Calibrations. Vivo 2021, 35, 3431–3439. [Google Scholar] [CrossRef]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [CrossRef]
- Washburn, R.A.; Smith, K.W.; Jette, A.M.; Janney, C.A. The Physical Activity Scale for the Elderly (PASE): Development and Evaluation. J. Clin. Epidemiol. 1993, 46, 153–162. [Google Scholar] [CrossRef]
- Maserejian, N.N.; Kupelian, V.; Miyasato, G.; McVary, K.T.; McKinlay, J.B. Are Physical Activity, Smoking and Alcohol Consumption Associated with Lower Urinary Tract Symptoms in Men or Women? Results from a Population Based Observational Study. J. Urol. 2012, 188, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Parsons, J.K.; Messer, K.; White, M.; Barrett-Connor, E.; Bauer, D.C.; Marshall, L.M. Osteoporotic Fractures in Men (MrOS) Research Group and the Urologic Diseases in America Project Obesity Increases and Physical Activity Decreases Lower Urinary Tract Symptom Risk in Older Men: The Osteoporotic Fractures in Men Study. Eur. Urol. 2011, 60, 1173–1180. [Google Scholar] [CrossRef]
- Myers, J.; Kokkinos, P.; Nyelin, E. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients 2019, 11, 1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The Metabolic Syndrome and Cardiovascular Risk a Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gacci, M.; Russo, G.I.; De Nunzio, C.; Sebastianelli, A.; Salvi, M.; Vignozzi, L.; Tubaro, A.; Morgia, G.; Serni, S. Meta-Analysis of Metabolic Syndrome and Prostate Cancer. Prostate Cancer Prostatic Dis. 2017, 20, 146–155. [Google Scholar] [CrossRef]
- Aoun, F.; Albisinni, S.; Chemaly, A.K.; Zanaty, M.; Roumeguère, T. In Search for a Common Pathway for Health Issues in Men--the Sign of a Holmesian Deduction. Asian Pac. J. Cancer Prev. 2016, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Michels, N.; van Aart, C.; Morisse, J.; Mullee, A.; Huybrechts, I. Chronic Inflammation towards Cancer Incidence: A Systematic Review and Meta-Analysis of Epidemiological Studies. Crit. Rev. Oncol. Hematol. 2021, 157, 103177. [Google Scholar] [CrossRef] [PubMed]
- Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic Syndrome and Cardiovascular Diseases: Going beyond Traditional Risk Factors. Diabetes Metab. Res. Rev. 2022, 38, e3502. [Google Scholar] [CrossRef]
- Nelson, W.G.; De Marzo, A.M.; Isaacs, W.B. Prostate Cancer. N. Engl. J. Med. 2003, 349, 366–381. [Google Scholar] [CrossRef]
- de Bono, J.S.; Guo, C.; Gurel, B.; De Marzo, A.M.; Sfanos, K.S.; Mani, R.S.; Gil, J.; Drake, C.G.; Alimonti, A. Prostate Carcinogenesis: Inflammatory Storms. Nat. Rev. Cancer 2020, 20, 455–469. [Google Scholar] [CrossRef]
- Sourbeer, K.N.; Howard, L.E.; Andriole, G.L.; Moreira, D.M.; Castro-Santamaria, R.; Freedland, S.J.; Vidal, A.C. Metabolic Syndrome-like Components and Prostate Cancer Risk: Results from the Reduction by Dutasteride of Prostate Cancer Events (REDUCE) Study. BJU Int. 2015, 115, 736–743. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Xie, B.; Li, J.; Wang, X.; Wang, S.; Meng, S.; Ji, A.; Zhu, Y.; Xu, X.; Zheng, X.; et al. Hypertension and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2016, 6, 31358. [Google Scholar] [CrossRef]
- Yang, H.; Yu, Y.; Hu, X.; Wang, W.; Yang, X.; Liu, H.; Ren, L.; Zhang, X.; Feng, X.; Liu, L. Association Between the Overall Risk of Prostate Cancer and Use of Calcium Channel Blockers: A Systematic Review and Meta-Analysis. Clin. Ther. 2020, 42, 1715–1727.e2. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.; Brown, K.; Miksza, J.K.; Howells, L.; Morrison, A.; Issa, E.; Yates, T.; Khunti, K.; Davies, M.J.; Zaccardi, F. Association of Type 2 Diabetes with Cancer: A Meta-Analysis with Bias Analysis for Unmeasured Confounding in 151 Cohorts Comprising 32 Million People. Diabetes Care 2020, 43, 2313–2322. [Google Scholar] [CrossRef] [PubMed]
- Fukui, M.; Tanaka, M.; Kadono, M.; Imai, S.; Hasegawa, G.; Yoshikawa, T.; Nakamura, N. Serum Prostate-Specific Antigen Levels in Men with Type 2 Diabetes. Diabetes Care 2008, 31, 930–931. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Moreira, D.M.; Gerber, L.; Rittmaster, R.S.; Andriole, G.L.; Freedland, S.J. Diabetes and Prostate Cancer Risk in the REDUCE Trial. Prostate Cancer Prostatic Dis. 2011, 14, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Giovannucci, E.; Liu, Y.; Platz, E.A.; Stampfer, M.J.; Willett, W.C. Risk Factors for Prostate Cancer Incidence and Progression in the Health Professionals Follow-up Study. Int. J. Cancer 2007, 121, 1571–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silveira, E.A.; Kliemann, N.; Noll, M.; Sarrafzadegan, N.; de Oliveira, C. Visceral Obesity and Incident Cancer and Cardiovascular Disease: An Integrative Review of the Epidemiological Evidence. Obes. Rev. 2021, 22, e13088. [Google Scholar] [CrossRef]
- Harrison, S.; Tilling, K.; Turner, E.L.; Martin, R.M.; Lennon, R.; Lane, J.A.; Donovan, J.L.; Hamdy, F.C.; Neal, D.E.; Bosch, J.L.H.R.; et al. Systematic Review and Meta-Analysis of the Associations between Body Mass Index, Prostate Cancer, Advanced Prostate Cancer, and Prostate-Specific Antigen. Cancer Causes Control 2020, 31, 431–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morlacco, A.; Dal Moro, F.; Rangel, L.J.; Carlson, R.E.; Schulte, P.J.; Jeffrey, K.R. Impact of Metabolic Syndrome on Oncologic Outcomes at Radical Prostatectomy. Urol. Oncol. 2018, 36, 528.e1–528.e6. [Google Scholar] [CrossRef]
- De Nunzio, C.; Freedland, S.J.; Miano, R.; Trucchi, A.; Cantiani, A.; Carluccini, A.; Tubaro, A. Metabolic Syndrome Is Associated with High Grade Gleason Score When Prostate Cancer Is Diagnosed on Biopsy. Prostate 2011, 71, 1492–1498. [Google Scholar] [CrossRef]
- Krstev, S.; Knutsson, A. Occupational Risk Factors for Prostate Cancer: A Meta-Analysis. J. Cancer Prev. 2019, 24, 91–111. [Google Scholar] [CrossRef]
- Benke, I.N.; Leitzmann, M.F.; Behrens, G.; Schmid, D. Physical Activity in Relation to Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Ann. Oncol. 2018, 29, 1154–1179. [Google Scholar] [CrossRef] [PubMed]
- Ornish, D.; Magbanua, M.J.M.; Weidner, G.; Weinberg, V.; Kemp, C.; Green, C.; Mattie, M.D.; Marlin, R.; Simko, J.; Shinohara, K.; et al. Changes in Prostate Gene Expression in Men Undergoing an Intensive Nutrition and Lifestyle Intervention. Proc. Natl. Acad. Sci. USA 2008, 105, 8369–8374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ornish, D.; Weidner, G.; Fair, W.R.; Marlin, R.; Pettengill, E.B.; Raisin, C.J.; Dunn-Emke, S.; Crutchfield, L.; Jacobs, F.N.; Barnard, R.J.; et al. Intensive Lifestyle Changes May Affect the Progression of Prostate Cancer. J. Urol. 2005, 174, 1065–1069; discussion 1069–1070. [Google Scholar] [CrossRef]
- Schenk, J.M.; Neuhouser, M.L.; Beatty, S.J.; VanDoren, M.; Lin, D.W.; Porter, M.; Gore, J.L.; Gulati, R.; Plymate, S.R.; Wright, J.L. Randomized Trial Evaluating the Role of Weight Loss in Overweight and Obese Men with Early Stage Prostate Cancer on Active Surveillance: Rationale and Design of the Prostate Cancer Active Lifestyle Study (PALS). Contemp. Clin. Trials 2019, 81, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Wekesa, A.; Harrison, M.; Watson, R.W. Physical Activity and Its Mechanistic Effects on Prostate Cancer. Prostate Cancer Prostatic Dis. 2015, 18, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Brookman-May, S.D.; Campi, R.; Henríquez, J.D.S.; Klatte, T.; Langenhuijsen, J.F.; Brausi, M.; Linares-Espinós, E.; Volpe, A.; Marszalek, M.; Akdogan, B.; et al. Latest Evidence on the Impact of Smoking, Sports, and Sexual Activity as Modifiable Lifestyle Risk Factors for Prostate Cancer Incidence, Recurrence, and Progression: A Systematic Review of the Literature by the European Association of Urology Section of Oncological Urology (ESOU). Eur. Urol. Focus 2019, 5, 756–787. [Google Scholar] [CrossRef] [Green Version]
- Ligibel, J.A.; Bohlke, K.; May, A.M.; Clinton, S.K.; Demark-Wahnefried, W.; Gilchrist, S.C.; Irwin, M.L.; Late, M.; Mansfield, S.; Marshall, T.F.; et al. Exercise, Diet, and Weight Management During Cancer Treatment: ASCO Guideline. J. Clin. Oncol. 2022, 40, 2491–2507. [Google Scholar] [CrossRef]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef]
- Remmers, S.; Roobol, M.J. Personalized Strategies in Population Screening for Prostate Cancer. Int. J. Cancer 2020, 147, 2977–2987. [Google Scholar] [CrossRef]
- Chun, F.K.-H.; Karakiewicz, P.I.; Briganti, A.; Gallina, A.; Kattan, M.W.; Montorsi, F.; Huland, H.; Graefen, M.; Fröhner, M. Prostate Cancer Nomograms: An Update. Eur. Urol. 2006, 50, 914–926. [Google Scholar] [CrossRef]
- Brassetti, A.; Lombardo, R.; Emiliozzi, P.; Cardi, A.; Antonio, D.V.; Antonio, I.; Aldo, S.; Tommaso, R.; Alberto, P.; Gianluca, D. Prostate-Specific Antigen Density Is a Good Predictor of Upstaging and Upgrading, According to the New Grading System: The Keys We Are Seeking May Be Already in Our Pocket. Urology 2018, 111, 129–135. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, C.; Nacchia, A.; Cicione, A.; Cindolo, L.; Gacci, M.; Cancrini, F.; Castellan, P.; Lombardo, R.; D’Annunzio, S.; Sarchi, L.; et al. Physical Activity as a Protective Factor for Lower Urinary Tract Symptoms in Male Patients: A Prospective Cohort Analysis. Urology 2019, 125, 163–168. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, C.; Presicce, F.; Tubaro, A. Inflammatory Mediators in the Development and Progression of Benign Prostatic Hyperplasia. Nat. Rev. Urol. 2016, 13, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Logan, S.L.; Gottlieb, B.H.; Maitland, S.B.; Meegan, D.; Spriet, L.L. The Physical Activity Scale for the Elderly (PASE) Questionnaire; Does It Predict Physical Health? Int. J. Environ. Res. Public Health 2013, 10, 3967–3986. [Google Scholar] [CrossRef] [Green Version]
- Lindahl, M.; Hansen, L.; Pedersen, A.; Truelsen, T.; Boysen, G. Self-Reported Physical Activity after Ischemic Stroke Correlates with Physical Capacity. Adv. Physiother. 2008, 10, 188–194. [Google Scholar] [CrossRef]
- Guay, A.T. The Emerging Link Between Hypogonadism and Metabolic Syndrome. J. Androl. 2009, 30, 370–376. [Google Scholar] [CrossRef]
- Morgentaler, A. Testosterone Replacement Therapy and Prostate Cancer. Urol. Clin. N. Am. 2007, 34, 555–563. [Google Scholar] [CrossRef]
- Parsons, J.K.; Carter, H.B.; Platz, E.A.; Wright, E.J.; Landis, P.; Metter, E.J. Serum Testosterone and the Risk of Prostate Cancer: Potential Implications for Testosterone Therapy. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2257–2260. [Google Scholar] [CrossRef] [Green Version]
- Santella, C.; Renoux, C.; Yin, H.; Yu, O.H.Y.; Azoulay, L. Testosterone Replacement Therapy and the Risk of Prostate Cancer in Men with Late-Onset Hypogonadism. Am. J. Epidemiol. 2019, 188, 1666–1673. [Google Scholar] [CrossRef]
- Michaud, J.E.; Billups, K.L.; Partin, A.W. Testosterone and Prostate Cancer: An Evidence-Based Review of Pathogenesis and Oncologic Risk. Ther. Adv. Urol. 2015, 7, 378–387. [Google Scholar] [CrossRef]
Overall (n = 291) | No PCa (n = 181) | PCa (n = 110) | p | LG-PCa (n = 59) | HG-PCa (n = 51) | p | |
---|---|---|---|---|---|---|---|
Age, years | 65 (60/71) | 65 (60/71) | 70 (63/75) | <0.001 | 70 (62/65) | 71 (65/76) | 0.36 |
BMI | 26.9 (24/29.2) | 26.5 (24.5/29) | 26.9 (25/29.2) | 0.64 | 26 (25/29) | 28 (25/29) | 0.34 |
MetS, n (%) | 51 (17%) | 30 (16%) | 21 (19%) | 0.35 | 12 (20%) | 9 (18%) | 0.72 |
PSA, ng/mL | 6.7 (4.7/9) | 6.71 (4.8/8.7) | 8 (5.7/13.6) | <0.001 | 7 (5/10) | 9 (6/15) | 0.02 |
PV, mL | 48 (35/68) | 50 (39/68) | 43 (28/55) | <0.001 | 42 (28/53) | 43 (27/57) | 0.73 |
PASE score | 100 (93/109) | 128 (86/194) | 95 (58.7/152) | <0.001 | 104 (68/170) | 93 (35/127) | 0.01 |
PCa Diagnosis | HG-PCa | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Univariable Analysis | Multivariable Analysis | Univariable Analysis | Multivariable Analysis | |||||||||||||
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |||||
Age | 1.07 | 1.03 | 1.10 | <0.001 | 1.04 | 1.00 | 1.08 | 0.048 | 1.02 | 0.97 | 1.07 | 0.33 | - | - | - | - |
BMI | 1.02 | 0.96 | 1.09 | 0.51 | - | - | - | - | 1.05 | 0.96 | 1.15 | 0.32 | - | - | - | - |
MetS | 1.19 | 0.64 | 2.20 | 0.58 | - | - | - | - | 0.84 | 0.32 | 2.20 | 0.72 | - | - | - | - |
PSA | 1.12 | 1.06 | 1.17 | <0.001 | 1.12 | 1.05 | 1.2 | <0.001 | 1.05 | 1.01 | 1.11 | 0.04 | 1.05 | 1.00 | 1.10 | 0.047 |
Prostate Volume | 0.98 | 0.97 | 0.99 | 0.01 | 0.98 | 0.79 | 0.99 | 0.004 | 1.01 | 0.98 | 1.02 | 0.60 | - | - | - | - |
Suspicious DRE | 3.07 | 1.69 | 5.57 | <0.001 | 2.35 | 1.11 | 4.98 | 0.02 | 1.74 | 0.77 | 3.93 | 0.18 | - | - | - | - |
PASE score | 0.99 | 0.98 | 0.99 | <0.001 | 0.99 | 0.98 | 0.99 | 0.01 | 0.99 | 0.98 | 0.99 | 0.01 | 0.99 | 0.98 | 0.99 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Nunzio, C.; Brassetti, A.; Cancrini, F.; Prata, F.; Cindolo, L.; Sountoulides, P.; Toutziaris, C.; Gacci, M.; Lombardo, R.; Cicione, A.; et al. Physical Inactivity, Metabolic Syndrome and Prostate Cancer Diagnosis: Development of a Predicting Nomogram. Metabolites 2023, 13, 111. https://doi.org/10.3390/metabo13010111
De Nunzio C, Brassetti A, Cancrini F, Prata F, Cindolo L, Sountoulides P, Toutziaris C, Gacci M, Lombardo R, Cicione A, et al. Physical Inactivity, Metabolic Syndrome and Prostate Cancer Diagnosis: Development of a Predicting Nomogram. Metabolites. 2023; 13(1):111. https://doi.org/10.3390/metabo13010111
Chicago/Turabian StyleDe Nunzio, Cosimo, Aldo Brassetti, Fabiana Cancrini, Francesco Prata, Luca Cindolo, Petros Sountoulides, Chrysovalantis Toutziaris, Mauro Gacci, Riccardo Lombardo, Antonio Cicione, and et al. 2023. "Physical Inactivity, Metabolic Syndrome and Prostate Cancer Diagnosis: Development of a Predicting Nomogram" Metabolites 13, no. 1: 111. https://doi.org/10.3390/metabo13010111
APA StyleDe Nunzio, C., Brassetti, A., Cancrini, F., Prata, F., Cindolo, L., Sountoulides, P., Toutziaris, C., Gacci, M., Lombardo, R., Cicione, A., Tema, G., Schips, L., Simone, G., Serni, S., & Tubaro, A. (2023). Physical Inactivity, Metabolic Syndrome and Prostate Cancer Diagnosis: Development of a Predicting Nomogram. Metabolites, 13(1), 111. https://doi.org/10.3390/metabo13010111