Elevation of Lipid Metabolites in Deceased Liver Donors Reflects Graft Suffering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Patients
2.2. Extraction of Metabolites from Liver Tissues Using Methanol/Water
2.3. Metabolomic Analysis by Liquid Chromatography Coupled with Mass Spectrometry (LC-MS)
2.4. Data Processing
2.5. Metabolite Identification
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Deceased and Living Liver Donors
3.2. Lipid Difference between Deceased and Living Donor Liver Grafts
3.3. Lipid Difference between Deceased Livers with or without Cardiac Arrest and Resuscitation
3.4. Lipid Difference between Male and Female Living Liver Donor Livers
3.5. Amino Acid Difference between Deceased and Living Donor Livers
3.6. Amino Acid Difference between Deceased Livers with or without Cardiac Arrest and Resuscitation
3.7. Post-Transplant Liver Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Burra, P.; Freeman, R. Trends in liver transplantation 2011. J. Hepatol. 2012, 56, S101–S111. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-C.; Lee, C.-S.; Wang, Y.-C.; Cheng, C.-H.; Wu, T.-H.; Lee, C.-F.; Soong, R.-S.; Chang, M.-L.; Wu, T.-J.; Chou, H.-S.; et al. Validation of the Model for End-Stage Liver Disease Score Criteria in Urgent Liver Transplantation for Acute Flare Up of Hepatitis B. Medicine 2016, 95, e3609. [Google Scholar] [CrossRef]
- Seto, W.-K.; Lai, C.-L.; Yuen, M.-F. Acute-on-chronic liver failure in chronic hepatitis B. J. Gastroenterol. Hepatol. 2012, 27, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferro, V.M.; Regalia, E.; Doci, R.; Andreola, S.; Pulvirenti, A.; Bozzetti, F.; Montalto, F.; Ammatuna, M.; Morabito, A.; Gennari, L. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N. Engl. J. Med. 1996, 334, 693–700. [Google Scholar] [CrossRef]
- Yao, F.Y. Liver transplantation for hepatocellular carcinoma: Beyond the Milan criteria. Am. J. Transplant. 2008, 8, 1982–1989. [Google Scholar] [CrossRef]
- Mazzaferro, V.M.; Llovet, J.M.; Miceli, R.; Bhoori, S.; Schiavo, M.; Mariani, L.; Camerini, T.; Roayaie, S.; Schwartz, M.E.; Grazi, G.L.; et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: A retrospective, exploratory analysis. Lancet Oncol. 2009, 10, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.Y.; Ferrell, L.; Bass, N.M.; Watson, J.J.; Bacchetti, P.; Venook, A.; Ascher, N.L.; Roberts, J.P. Liver transplantation for hepatocellular carcinoma: Expansion of the tumor size limits does not adversely impact survival. Hepatology 2001, 33, 1394–1403. [Google Scholar] [CrossRef]
- Petrowsky, H.; Busuttil, R.W. Evolving surgical approaches in liver transplantation. Semin. Liver Dis. 2009, 29, 121–133. [Google Scholar] [CrossRef]
- Wind, R.A.; Hu, J.Z.; Majors, P.D. Slow-MAS NMR: A new technology for in vivo metabolomic studies. Drug Discov. Today: Technol. 2005, 2, 291–294. [Google Scholar] [CrossRef]
- Beyoğlu, D.; Idle, J.R. The metabolomic window into hepatobiliary disease. J. Hepatol. 2013, 59, 842–858. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, Y.; Lin, Y.; Liang, L.; Wu, Y.; Qu, H.; Liang, T.; Cheng, Y. Integrated analysis of serum and liver metabonome in liver transplanted rats by gas chromatography coupled with mass spectrometry. Anal. Chim. Acta 2009, 633, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.-I.; Lo, C.-J.; Zheng, C.-W.; Lee, C.-W.; Lee, W.-C.; Lin, J.-R.; Shiao, M.-S.; Cheng, M.-L.; Yu, H.-P. A Lipidomics Study Reveals Lipid Signatures Associated with Early Allograft Dysfunction in Living Donor Liver Transplantation. J. Clin. Med. 2018, 8, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortes, M.; Pareja, E.; García-Cañaveras, J.C.; Donato, M.T.; Montero, S.; Mir, J.; Castell, J.V.; Lahoz, A. Metabolomics discloses donor liver biomarkers associated with early allograft dysfunction. J. Hepatol. 2014, 61, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Faitot, F.; Besch, C.; Battini, S.; Ruhland, E.; Onea, M.; Addeo, P.; Woehl-Jaeglé, M.-L.; Ellero, B.; Bachellier, P.; Namer, I.-J. Impact of real-time metabolomics in liver transplantation: Graft evaluation and donor-recipient matching. J. Hepatol. 2018, 68, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Fontes, P.; Lopez, R.; van der Plaats, A.; Vodovotz, Y.; Minervini, M.; Scott, V.; Soltys, K.; Shiva, S.; Paranjpe, S.; Sadowsky, D.; et al. Liver preservation with machine perfusion and a newly developed cell-free oxygen carrier solution under subnormothermic conditions. Am. J. Transplant. 2015, 15, 381–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Rijn, R.; Schurink, I.J.; de Vries, Y.; van den Berg, A.P.; Cortes Cerisuelo, M.; Darwish Murad, S.; Erdmann, J.I.; Gilbo, N.; de Haas, R.J.; Heaton, N.; et al. Hypothermic Machine Perfusion in Liver Transplantation—A Randomized Trial. N. Engl. J. Med. 2021, 384, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Liao, Y.; Yin, P.; Zeng, Z.; Li, J.; Lu, X.; Zheng, L.; Xu, G. Metabolic profiling study of early and late recurrence of hepatocellular carcinoma based on liquid chromatography-mass spectrometry. J. Chromatogr. B 2014, 966, 163–170. [Google Scholar] [CrossRef]
- Barr, J.; Vázquez-Chantada, M.; Alonso, C.; Pérez-Cormenzana, M.; Mayo, R.; Galán, A.; Caballería, J.; Martín-Duce, A.; Tran, A.; Wagner, C.; et al. Liquid chromatography-mass spectrometry-based parallel metabolic profiling of human and mouse model serum reveals putative biomarkers associated with the progression of nonalcoholic fatty liver disease. J. Proteome Res. 2010, 9, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- McPhail, M.J.; Shawcross, D.L.; Lewis, M.R.; Coltart, I.; Want, E.J.; Antoniades, C.G.; Veselkov, K.; Triantafyllou, E.; Patel, V.; Pop, O.; et al. Multivariate metabotyping of plasma predicts survival in patients with decompensated cirrhosis. J. Hepatol. 2016, 64, 1058–1067. [Google Scholar] [CrossRef] [Green Version]
- Serkova, N.J.; Zhang, Y.; Coatney, J.L.; Hunter, L.; Wachs, M.E.; Niemann, C.U.; Mandell, M.S. Early detection of graft failure using the blood metabolic profile of a liver recipient. Transplantation 2007, 83, 517–521. [Google Scholar] [CrossRef]
- Audano, M.; Maldini, M.; De Fabiani, E.; Mitro, N.; Caruso, D. Gender-related metabolomics and lipidomics: From experimental animal models to clinical evidence. J. Proteom. 2018, 178, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Hassan-Ally, M.; Casas-Ferreira, A.M.; Suvitaival, T.; Ma, Y.; Vilca-Melendez, H.; Rela, M.; Heaton, N.; Jassem, W.; Legido-Quigley, C. Deregulation of the Purine Pathway in Pre-Transplant Liver Biopsies Is Associated with Graft Function and Survival after Transplantation. J. Clin. Med. 2020, 9, 711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlegel, A.; Muller, X.; Dutkowski, P. Machine perfusion strategies in liver transplantation. HepatoBiliary Surg. Nutr. 2019, 8, 490–501. [Google Scholar] [CrossRef] [PubMed]
Deceased (n = 23) Median (Interquartile) (Range) | Living (n = 24) Median (Interquartile) (Range) | p | |
---|---|---|---|
Gender (M/F) | 19/4 | 10/14 | 0.006 |
Age (years) Liver function | 52 (45–59) (20–72) | 31 (22.3–40.5) (18–54) | <0.001 |
AST (u/L) | 50 (32–94) (16–654) | 22 (17–24.8) (13–32) | <0.001 |
ALT (u/L) | 39 (20–85) (6–280) | 14 (11–19.8) (8–39) | <0.001 |
T. Bil (mg/dL) Renal function | 0.8 (0.6–1.3) (0.4–2.1) | 0.45 (0.4–0.5) (0.2–1.8) | <0.001 |
BUN (mg/dL) | 21 (12.5–27.5) (7–72) | 13.6 (12.2–17.5) (7.2–24.1) | <0.001 |
Creatinine (mg/dL) | 1.33 (0.79–2.78) (0.38–7.25) | 0.64 (0.53–0.90) (0.46–1.38) | <0.001 |
Metabolite ID | Putative ID | m/z | Retention Time (Min) | Adduct Ion | VIP Score | Fold Change (Deceased/Living) | p Value |
---|---|---|---|---|---|---|---|
Met4565 | TG (56:8) | 925.726 | 8.223567 | M + Na | 6.1092 | 0.59264 | <0.001 |
Met3932 | TG (48:1) | 827.7102 | 8.545533 | M + Na | 5.4201 | 1.292 | 0.021 |
Met2635 | DG (36:2) | 643.5283 | 6.693683 | M + Na | 13.954 | 2.7496 | <0.001 |
Met2447 | DG (34:2) | 615.4963 | 6.322617 | M + Na | 13.679 | 2.0373 | <0.001 |
Met2622 | DG (36:3) | 641.5123 | 6.3531 | M + Na | 13.43 | 2.6862 | <0.001 |
Met2457 | DG (34:1) | 617.5124 | 6.670433 | M + Na | 11.75 | 2.7726 | <0.001 |
Met2610 | DG (38:7) | 639.4973 | 5.98635 | M + H | 6.4279 | 2.4097 | <0.001 |
Met2266 | DG (32:1) | 589.4811 | 6.223217 | M + H | 5.8665 | 3.1871 | <0.001 |
Met2650 | DG (36:1) | 645.5435 | 7.069117 | M + H | 5.6524 | 2.8225 | <0.001 |
Met5322 | CL (78:2) | 1546.088 | 5.346233 | M + H | 8.2377 | 0.37392 | <0.001 |
Met5288 | CL (78:11) | 1528.041 | 5.337417 | M + NH4 | 7.0691 | 0.38442 | <0.001 |
Met5341 | CL (79:2) | 1560.101 | 4.983233 | M + H | 5.3968 | 0.10088 | 0.029 |
Met3117 | PC (32:2) | 730.5389 | 4.848617 | M + H | 7.2412 | 0.59041 | <0.001 |
Met1942 | LysoPC (18:0) | 524.3717 | 2.240733 | M + H | 5.0108 | 2.0887 | <0.001 |
Met1832 | LysoPC (16:0) | 496.3401 | 1.621633 | M + H | 8.0022 | 2.3737 | <0.001 |
Met1778 | LysoPE (18:0) | 482.3247 | 2.336933 | M + H | 6.3474 | 7.0726 | <0.001 |
Met1677 | LysoPE (16:0) | 454.2929 | 1.690217 | M + H | 5.4592 | 7.3048 | <0.001 |
Met1567 | Oleoylcarnitine | 426.3577 | 1.583533 | M + H | 6.1608 | 3.3489 | <0.001 |
Met1555 | Linoleyl carnitine | 424.3424 | 1.246367 | M + H | 5.1404 | 3.4191 | <0.001 |
Metabolite ID | Putative ID | m/z | Retention Time (Min) | Adduct Ion | VIP Score | Fold Change (Deceased/Living) | p Value |
---|---|---|---|---|---|---|---|
Met5575 | CL (18:0/16:1/18:2/18:0) | 1430.0226 | 5.52 | M − H | 5.6907 | 1.6482 | 0.0006 |
Met4042 | PC (38:5) | 852.5745 | 5.50 | M − H | 5.8969 | 0.56657 | <0.001 |
Met3343 | PA (18:1/14:0) | 773.5335 | 5.40 | M + FA − H | 5.439 | 1.5023 | <0.001 |
Met1373 | PA (20:0) | 465.3036 | 2.81 | M − H | 5.9074 | 1.6195 | <0.001 |
Met3796 | PE-NMe (38:5) | 824.5443 | 4.96 | M + FA − H | 6.2031 | 0.64515 | 0.007 |
Met2554 | PE (18:1/14:0) | 688.4920 | 5.41 | M − H | 5.3684 | 1.6523 | <0.001 |
Met1717 | LysoPC (16:0) | 540.3302 | 1.61 | M + FA − H | 5.466 | 2.0806 | <0.001 |
Met1631 | LysoPE (22:6) | 524.2778 | 1.22 | M − H | 5.4961 | 0.40577 | <0.001 |
Met1427 | LysoPE (18:1) | 478.2931 | 1.78 | M − H | 5.9285 | 8.5482 | <0.001 |
Met1448 | LysoPE (18:0) | 480.3089 | 2.32 | M − H | 18.204 | 9.0232 | <0.001 |
Met1299 | LysoPE (16:0) | 452.2774 | 1.68 | M − H | 14.75 | 9.3022 | <0.001 |
Met0805 | Docosahexaenoic acid | 327.2321 | 1.84 | M − H | 16.492 | 7.9923 | <0.001 |
Met0527 | Oleic acid | 281.2480 | 2.65 | M − H | 16.403 | 19.672 | <0.001 |
Metabolite ID | Putative ID | m/z | Retention Time (Min) | Adduct Ion | VIP Score | Fold Change (CPR/No CPR) | p Value |
---|---|---|---|---|---|---|---|
Met4392 | TG (54:6) | 896.7696 | 8.193083 | M + NH4 | 5.9231 | 0.51968 | 0.009 |
Met3410 | TG (44:1) | 771.6465 | 8.078783 | M + Na | 5.0154 | 1.8289 | 0.042 |
Met5332 | CL (80:12) | 1554.047 | 6.04935 | M + H | 6.5833 | 4.1416 | 0.0006 |
Met5433 | CL (80:0) | 1600.126 | 6.04935 | M + Na | 5.7671 | 3.6452 | <0.001 |
Met5318 | CL (76:0) | 1544.066 | 5.55215 | M + Na | 5.3423 | 2.4026 | 0.0005 |
Met3789 | PC (38:3) | 812.6169 | 6.0574 | M + H | 14.103 | 1.432 | 0.011 |
Met3997 | PE-NMe (18:1/18:2) | 834.5989 | 6.0574 | M + Na | 9.7381 | 1.504 | 0.002 |
Met3184 | PE-NMe (33:0) | 742.5395 | 5.5921 | M + H | 8.2295 | 1.6307 | 0.0004 |
Met3460 | PE-NMe (38:6) | 778.537 | 5.1485 | M + H | 5.1207 | 3.226 | <0.001 |
Met2653 | Amiodarone | 646.032 | 1.751167 | M + H | 8.4211 | 2.6749 | 0.012 |
Metabolite ID | Putative ID | m/z | Retention Time (Min) | Adduct Ion | VIP Score | Fold Change (CPR/No CPR) | p Value |
---|---|---|---|---|---|---|---|
Met5566 | CL (72:8) | 1421.9490 | 7.67 | M − H | 7.797 | 1.4559 | 0.014 |
Met5795 | CL (72:0) | 1554.1446 | 6.03 | M + FA − H | 5.0505 | 1.7346 | 0.0008 |
Met3343 | PA (18:1/14:0) | 773.5335 | 5.40 | M + FA − H | 6.1291 | 1.5509 | 0.013 |
Met3589 | PC (34:3) | 800.5441 | 5.11 | M + FA − H | 8.8264 | 1.8179 | 0.0005 |
Metabolite ID | Putative ID | m/z | Retention Time (Min) | Adduct Ion | VIP Score | Fold Change (Female/Male) | p Value |
---|---|---|---|---|---|---|---|
Met3426 | PE (36:4) | 773.553 | 4.011383 | M + NH4 | 5.0629 | 0.14563 | <0.001 |
Met3275 | PC (34:3) | 756.5534 | 3.91995 | M + H | 5.2905 | 0.15055 | 0.0136 |
Met3850 | PC (36:2) | 818.5923 | 3.57515 | M + H | 6.4626 | 0.14828 | <0.001 |
Met3740 | PG (36:1) | 808.571 | 2.233117 | M + NH4 | 8.3152 | 0.009864 | <0.001 |
Metabolite ID | Putative ID | m/z | Retention Time (Min) | Adduct Ion | VIP Score | Fold Change (Female/Male) | p Value |
---|---|---|---|---|---|---|---|
Met5123 | CDP-DG (37:0) | 1068.6853 | 6.37 | M + FA − H | 5.488 | 10.185 | 0.009 |
Met4063 | Inositol nicotinate | 855.1110 | 5.85 | M + FA − H | 5.6054 | 0.53003 | 0.006 |
Met3903 | PS (36:1) | 834.5479 | 3.05 | M + FA − H | 5.0324 | 0.14365 | <0.001 |
Met4041 | PE-NMe (44:10) | 852.5590 | 2.21 | M − H | 5.974 | 0.44512 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-C.; Wu, T.-J.; Cheng, C.-H.; Wang, Y.-C.; Hung, H.-C.; Lee, J.-C.; Wu, T.-H.; Chou, H.-S.; Lee, C.-F.; Chan, K.-M. Elevation of Lipid Metabolites in Deceased Liver Donors Reflects Graft Suffering. Metabolites 2023, 13, 117. https://doi.org/10.3390/metabo13010117
Lee W-C, Wu T-J, Cheng C-H, Wang Y-C, Hung H-C, Lee J-C, Wu T-H, Chou H-S, Lee C-F, Chan K-M. Elevation of Lipid Metabolites in Deceased Liver Donors Reflects Graft Suffering. Metabolites. 2023; 13(1):117. https://doi.org/10.3390/metabo13010117
Chicago/Turabian StyleLee, Wei-Chen, Ting-Jung Wu, Chih-Hsien Cheng, Yu-Chao Wang, Hao-Chien Hung, Jin-Chiao Lee, Tsung-Han Wu, Hong-Shiue Chou, Chen-Fang Lee, and Kun-Ming Chan. 2023. "Elevation of Lipid Metabolites in Deceased Liver Donors Reflects Graft Suffering" Metabolites 13, no. 1: 117. https://doi.org/10.3390/metabo13010117
APA StyleLee, W. -C., Wu, T. -J., Cheng, C. -H., Wang, Y. -C., Hung, H. -C., Lee, J. -C., Wu, T. -H., Chou, H. -S., Lee, C. -F., & Chan, K. -M. (2023). Elevation of Lipid Metabolites in Deceased Liver Donors Reflects Graft Suffering. Metabolites, 13(1), 117. https://doi.org/10.3390/metabo13010117