Cardiopulmonary Fitness of Preschoolers with Congenital Heart Disease: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects’ Characteristics
- Aged 4 to 6 years;
- Understood the CPET steps; and
- No signs of acute infection or fever 3 days prior to the CPET.
- Acquired heart diseases such as Kawasaki disease;
- Failure to complete CPET due to muscle fatigue;
- Known concurrent pulmonary disease; and
- Refusal to participate.
2.2. Anthropometry and Body Composition
2.3. Cardiopulmonary Exercise Testing (CPET)
2.4. Statistical Analysis
3. Results
3.1. Patients’ Demographic Characteristics
3.2. Comparisons of Cardiopulmonary Fitness between CHD and Control Groups
Age (years) | Height (cm) | Weight (kg) | BMI (kg/m2) | Body Fat (%) | U (%) | N (%) | O (%) | F (%) | FM (kg) | FMI (kg/m2) | FFM (kg) | FFMI (kg/m2) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control-total (N = 102) | 5.6 ± 0.6 | 118.5 ± 7.2 | 22.0 ± 5.5 | 15.6 ± 3.1 | 13.6 ± 7.5 | 28.4 | 56.9 | 5.9 | 7.9 | 3.4 ± 2.6 | 2.4 ± 1.8 | 20.0 ± 4.8 | 14.0 ± 2.1 |
CHD-total (N = 80) | 5.8 ± 0.5 | 118.7 ± 9.2 | 21.2 ± 6.0 | 14.8 ± 2.3 | 12.7 ± 5.3 | 31.3 | 61.3 | 5.0 | 1.3 | 3.0 ± 2.3 | 2.0 ± 1.1 | 19.2 ± 5.0 | 13.2 ± 1.9 |
p value a | 0.108 | 0.836 | 0.334 | 0.061 | 0.447 | 0.363 b | 0.454 | 0.155 | 0.417 | 0.041 * | |||
Control-boys (N = 56) | 5.7 ± 0.6 | 119.6 ± 8.9 | 23.1 ± 6.5 | 16.0 ± 3.5 | 11.6 ± 6.8 | 21.4 | 60.7 | 5.4 | 10.7 | 3.1 ± 2.8 | 2.1 ± 2.0 | 21.6 ± 5.9 | 14.7 ± 2.4 |
CHD-boys (N = 48) | 5.9 ± 0.3 | 118.4 ± 6.7 | 21.1 ± 5.4 | 14.9 ± 2.5 | 10.9 ± 5.1 | 35.4 | 58.3 | 4.2 | 2.1 | 2.7 ± 2.1 | 1.8 ± 1.2 | 19.9 ± 4.9 | 13.7 ± 2.1 |
p value a | 0.148 | 0.465 | 0.092 | 0.060 | 0.661 | 0.302 b | 0.540 | 0.382 | 0.238 | 0.079 | |||
Control-girls (N = 46) | 5.6 ± 0.6 | 117.2 ± 4.0 | 20.7 ± 3.7 | 15.0 ± 2.3 | 15.9 ± 7.7 | 37.0 | 52.2 | 6.5 | 4.3 | 3.7 ± 2.4 | 2.7 ± 1.7 | 18.1 ± 1.7 | 13.0 ± 1.1 |
CHD-girls (N = 32) | 5.6 ± 0.6 | 119.2 ± 10.2 | 21.3 ± 7.0 | 14.8 ± 2.1 | 14.5 ± 4.95 | 25.0 | 65.6 | 6.3 | 0 | 3.4 ± 2.5 | 2.2 ± 1.0 | 18.6 ± 5.1 | 12.7 ± 1.5 |
p value a | 0.905 | 0.295 | 0.604 | 0.585 | 0.400 | 0.419 b | 0.612 | 0.226 | 0.646 | 0.317 |
AT MET | ATVO2 | Peak MET | PeakVO2 | Peak PD | Peak RPP | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | CHD | p Value b | Control | CHD | p Value b | Control | CHD | p Value b | Control | CHD | p Value b | Control | CHD | p Value b | Control | CHD | p Value b | |
Boys and Girls | ||||||||||||||||||
Total (N = 102;80) | 8.1 ± 1.5 | 7.5 ± 1.6 | 0.015 * | 616.1 ± 156.4 | 550.3 ± 152.7 | 0.005 * | 10.8 ± 1.9 | 10.4 ± 2.0 | 0.160 | 828.9 ± 224.1 | 763.7 ± 212.5 | 0.048 * | 80.5 ± 17.7 | 76.0 ± 21.3 | 0.124 | 29,568.2 ± 33,388.5 | 25,025.8 ± 5672.6 | 0.231 |
U (N = 29;25) | 7.9 ± 1.4 | 7.6 ± 1.9 | 0.643 | 508.9 ± 106.9 | 488.1 ± 157.6 | 0.569 | 10.6 ± 1.7 | 10.6 ± 2.3 | 0.962 | 686.0 ± 128.7 | 677.4 ± 193.0 | 0.190 | 82.8 ± 17.9 | 77.0 ± 21.6 | 0.282 | 27,350.8 ± 7428.0 | 23,451.0 ± 5790.1 | 0.038 * |
N (N = 57;48) | 8.4 ± 1.5 | 7.5 ± 1.4 | 0.005 * | 631.8 ± 135.6 | 568.5 ± 132.6 | 0.018 * | 11.2 ± 2.0 | 10.5 ± 1.9 | 0.065 | 850.0 ± 225.0 | 790.8 ± 208.6 | 0.164 | 81.4 ± 17.6 | 76.7 ± 21.5 | 0.211 | 31,635.4 ± 44,069.3 | 25,524.8 ± 5551.1 | 0.338 |
O (N = 16;7) | 7.3 ± 1.0 | 6.5 ± 1.8 | 0.436 | 764.0 ± 173.6 | 663.4 ± 202.9 | 0.312 | 9.8 ± 1.2 | 8.9 ± 2.0 | 0.458 | 1023.6 ± 195.7 | 902.0 ± 222.5 | 0.161 | 72.2 ± 16.7 | 66.4 ± 18.2 | 0.815 | 26,000.2 ± 6542.2 | 27,512.5 ± 5422.9 | 0.312 |
p value a | 0.028 *,d | 0.289 | <0.001 *,c,d,e | 0.015 *,c | 0.031 *,d | 0.157 | <0.001 *,c,d,e | 0.022 * | 0.141 | 0.521 | 0.775 | 0.178 | ||||||
Boys | ||||||||||||||||||
Total (N = 56;48) | 8.2 ± 1.6 | 7.3 ± 1.6 | 0.009 * | 651.6 ± 165.2 | 538.6 ± 152.8 | 0.001 * | 10.9 ± 2.2 | 10.3 ± 2.2 | 0.178 | 887.6 ± 253.8 | 757.3 ± 206.2 | 0.010 * | 70.5 ± 13.9 | 65.9 ± 19.0 | 0.154 | 26,262.3 ± 5753.7 | 24,311.7 ± 5905.7 | 0.093 |
U (N = 12;17) | 7.8 ± 2.0 | 7.3 ± 1.6 | 0.807 | 517.2 ± 140.2 | 463.1 ± 126.1 | 0.308 | 10.4 ± 2.2 | 10.5 ± 2.2 | 0.947 | 690.7 ± 165.9 | 663.6 ± 187.0 | 0.658 | 66.7 ± 12.5 | 68.3 ± 15.5 | 0.707 | 27,522.3 ± 7104.7 | 21,944.5 ± 5385.2 | 0.057 |
N (N = 33;27) | 8.6 ± 1.4 | 7.4 ± 1.6 | 0.004 * | 660.7 ± 124.2 | 557.4 ± 131.1 | 0.003 * | 11.5 ± 2.3 | 10.5 ± 2.2 | 0.081 | 892.3 ± 251.7 | 781.6 ± 186.0 | 0.058 | 73.5 ± 14.5 | 65.6 ± 21.1 | 0.086 | 25,627.6 ± 4556.6 | 25,271.4 ± 6042.8 | 0.794 |
O (N = 11;4) | 7.2 ± 1.0 | 6.5 ± 2.2 | 0.866 | 782.9 ± 203.3 | 797.4 ± 180.5 | 0.735 | 9.7 ± 0.9 | 8.6 ± 2.6 | 0.865 | 1051.8 ± 223.1 | 1062.3 ± 172.9 | 0.866 | 64.9 ± 11.7 | 54.9 ± 16.8 | 0.612 | 26,844.7 ± 7690.5 | 28,768.3 ± 2080.7 | 0.612 |
p value a | 0.029 *,d | 0.660 | <0.001 *,c,e | 0.001 *,c,d | 0.044 *,c,e | 0.400 | 0.002 *,c,e | 0.003 *,c,d | 0.129 | 0.534 | 0.592 | 0.072 | ||||||
Girls | ||||||||||||||||||
Total (N = 46;32) | 7.9 ± 1.3 | 7.7 ± 1.6 | 0.576 | 573.7 ± 135.1 | 567.4 ± 153.3 | 0.847 | 10.6 ± 1.5 | 567.4 ± 153.3 | 0.612 | 769.6 ± 163.6 | 773.2 ± 224.5 | 0.935 | 92.6 ± 14.1 | 91.2 ± 14.5 | 0.669 | 33,521.0 ± 49,074.0 | 26,096.9 ± 5210.6 | 0.398 |
U (N = 17;8) | 7.9 ± 1.0 | 8.3 ± 2.3 | 0.448 | 503.0 ± 71.0 | 541.3 ± 209.9 | 0.771 | 10.7 ± 1.2 | 541.3 ± 209.9 | 0.793 | 682.7 ± 100.0 | 706.7 ± 215.2 | 0.683 | 94.2 ± 11.0 | 95.4 ± 22.0 | 0.838 | 27,229.8 ± 7862.3 | 26,652.3 ± 5606.6 | 0.907 |
N (N = 24;21) | 8.0 ± 15.6 | 7.7 ± 1.7 | 0.419 | 592.0 ± 143.0 | 582.7 ± 136.5 | 0.825 | 10.7 ± 1.6 | 529.7 ± 136.5 | 0.545 | 790.0 ± 167.7 | 803.0 ± 239.6 | 0.831 | 92.6 ± 15.7 | 91.5 ± 10.4 | 0.835 | 39,896.0 ± 67,651.5 | 25,862.6 ± 4944.8 | 0.349 |
O (N = 5;3) | 7.5 ± 1.3 | 6.5 ± 1.7 | 0.456 | 726.2 ± 99.2 | 529.4 ± 128.1 | 0.101 | 9.9 ± 1.9 | 529.4 ± 239.1 | 0.653 | 967.2 ± 126.9 | 741.7 ± 129.8 | 0.025 * | 86.8 ± 16.5 | 77.9 ± 12.0 | 0.453 | 24,311.2 ± 3373.1 | 26,256.7 ± 8028.6 | 0.456 |
p value a | 0.671 | 0.254 | 0.002 *,c | 0.744 | 0.544 | 0.283 | 0.001 *,c,d | 0.583 | 0.597 | 0.205 | 0.660 | 0.938 |
3.3. Comparisons of Cardiopulmonary Fitness among Different BMIs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, W.; He, J.; Shao, X. Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990–2017. Medicine 2020, 99, e20593. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Li, J.; Lou, H.; Li, J.; Jin, Y.; Wu, T.; Pan, L.; An, J.; Xu, J.; Cheng, W.; et al. Geographical and Socioeconomic Factors Influence the Birth Prevalence of Congenital Heart Disease: A Population-based Cross-sectional Study in Eastern China. Curr. Probl. Cardiol. 2022, 47, 101341. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.I.; Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puri, K.; Allen, H.D.; Qureshi, A.M. Congenital Heart Disease. Pediatr. Rev. 2017, 38, 471–486. [Google Scholar] [CrossRef] [Green Version]
- Pulcine, E.; Deveber, G. Neurologic complications of pediatric congenital heart disease. Handb. Clin. Neurol. 2021, 177, 1–13. [Google Scholar]
- Marino, B.S.; Lipkin, P.H.; Newburger, J.W.; Peacock, G.; Gerdes, M.; Gaynor, J.W.; Mussatto, K.A.; Uzark, K.; Goldberg, C.S.; Johnson, W.H., Jr.; et al. Neurodevelopmental outcomes in children with congenital heart disease: Evaluation and management: A scientific statement from the American Heart Association. Circulation 2012, 126, 1143–1172. [Google Scholar] [CrossRef] [Green Version]
- Shillingford, A.J.; Glanzman, M.M.; Ittenbach, R.F.; Clancy, R.R.; Gaynor, J.W.; Wernovsky, G. Inattention, hyperactivity, and school performance in a population of school-age children with complex congenital heart disease. Pediatrics 2008, 121, e759–e767. [Google Scholar] [CrossRef]
- Tikkanen, A.U.; Oyaga, A.R.; Riaño, O.A.; Álvaro, E.M.; Rhodes, J. Paediatric cardiac rehabilitation in congenital heart disease: A systematic review. Cardiol. Young 2012, 22, 241–250. [Google Scholar] [CrossRef]
- Stone, N.; Obeid, J.; Dillenburg, R.; Milenkovic, J.; MacDonald, M.J.; Timmons, B.W. Objectively measured physical activity levels of young children with congenital heart disease. Cardiol. Young 2015, 25, 520–525. [Google Scholar] [CrossRef]
- Voss, C.; Duncombe, S.L.; Dean, P.H.; de Souza, A.M.; Harris, K.C. Physical Activity and Sedentary Behavior in Children with Congenital Heart Disease. J. Am. Heart Assoc. 2017, 6, e004665. [Google Scholar] [CrossRef] [Green Version]
- Casey, F.A.; Stewart, M.; McCusker, C.G.; Morrison, M.L.; Molloy, B.; Doherty, N.; Craig, B.G.; Sands, A.J.; Rooney, N.; Mulholland, H.C. Examination of the physical and psychosocial determinants of health behaviour in 4–5-year-old children with congenital cardiac disease. Cardiol. Young 2010, 20, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Liguori, G.; ACOS Medical; Fountaine, C.J. ACSM’s Guidelines for Exercise Testing and Prescription; Wolters Kluwer: Philadelphia, PA, USA, 2021. [Google Scholar]
- Rosa, S.A.; Agapito, A.; Soares, R.M.; Sousa, L.; Oliveira, J.A.; Abreu, A.; Silva, A.S.; Alves, S.; Aidos, H.; Pinto, F.F.; et al. Congenital heart disease in adults: Assessmentof functional capacity using cardiopulmonary exercise testing. Rev. Port. Cardiol. 2018, 37, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Bredy, C.; Ministeri, M.; Kempny, A.; Alonso-Gonzalez, R.; Swan, L.; Uebing, A.; Diller, G.-P.; Gatzoulis, M.A.; Dimopoulos, K. New York Heart Association (NYHA) classification in adults with congenital heart disease: Relation to objective measures of exercise and outcome. Eur. Heart J. Qual. Care Clin. Outcomes 2018, 4, 51–58. [Google Scholar] [CrossRef]
- Mantegazza, V.; Apostolo, A.; Hager, A. Cardiopulmonary Exercise Testing in Adult Congenital Heart Disease. Ann. Am. Thorac. Soc. 2017, 14 (Suppl. 1), S93–S101. [Google Scholar] [CrossRef] [PubMed]
- Tuan, S.-H.; Li, C.-H.; Sun, S.-F.; Li, M.-H.; Liou, I.-H.; Weng, T.-P.; Chen, I.-H.; Lin, K.-L. Comparison of cardiorespiratory fitness between preschool children with normal and excess body adipose—An observational study. PLoS ONE 2019, 14, e0223907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuan, S.H.; Su, H.T.; Chen, Y.J.; Chen, C.H.; Tsai, W.J.; Chen, G.B.; Lin, K.L. Ability of preschoolers to achieve maximal exercise and its correlation with oxygen uptake efficiency slope approximately an observational study by direct cardiopulmonary exercise testing. Medicine 2018, 97, e13296. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-L.; Kuan, T.-H.; Chen, C.-H.; Tsai, Y.-J.; Chen, G.-B.; Lin, K.-L.; Tuan, S.-H. Differences in Cardiopulmonary Fitness between Boy and Girls with Repaired Tetralogy of Fallot. Front. Pediatr. 2022, 10, 911825. [Google Scholar] [CrossRef]
- Health Promotion Administration MoHaW, Taiwan (R.O.C.). Reference for Body Mass Index of Children and Adolescents in Taiwan 2018. Available online: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=542&pid=9547 (accessed on 15 September 2022).
- Takken, T.; Blank, A.C.; Hulzebos, E.H.; van Brussel, M.; Groen, W.G.; Helders, P.J. Cardiopulmonary exercise testing in congenital heart disease: Equipment and test protocols. Neth. Heart J. 2009, 17, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Massin, M.M. The role of exercise testing in pediatric cardiology. Arch. Cardiovasc. Dis. 2014, 107, 319–327. [Google Scholar] [CrossRef]
- Paridon, S.M.; Alpert, B.S.; Boas, S.R.; Cabrera, M.E.; Caldarera, L.L.; Daniels, S.R.; Kimball, T.R.; Knilans, T.K.; Nixon, P.A.; Rhodes, J.; et al. Clinical stress testing in the pediatric age group: A statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation 2006, 113, 1905–1920. [Google Scholar] [CrossRef] [Green Version]
- Jetté, M.; Sidney, K.; Blümchen, G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef]
- Reybrouck, T.; Weymans, M.; Stijns, H.; Knops, J.; van der Hauwaert, L. Ventilatory anaerobic threshold in healthy children. Age and sex differences. Eur. J. Appl. Physiol. Occup. Physiol. 1985, 54, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Villaseca-Rojas, Y.; Varela-Melo, J.; Torres-Castro, R.; Vasconcello-Castillo, L.; Mazzucco, G.; Vilaró, J.; Blanco, I. Exercise Capacity in Children and Adolescents with Congenital Heart Disease: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 874700. [Google Scholar] [CrossRef] [PubMed]
- Miliaresis, C.; Beker, S.; Gewitz, M. Cardiopulmonary stress testing in children and adults with congenital heart disease. Cardiol. Rev. 2014, 22, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Tamayo, C.; Manlhiot, C.; Patterson, K.; Lalani, S.; McCrindle, B.W. Longitudinal evaluation of the prevalence of overweight/obesity in children with congenital heart disease. Can. J. Cardiol. 2015, 31, 117–123. [Google Scholar] [CrossRef]
- Zoller, T.; Prioli, M.A.; Clemente, M.; Pilati, M.; Sandrini, C.; Luciani, G.B.; Saccomani, M.D.; Ficial, B.; Gaffuri, M.; Piacentini, G.; et al. Congenital Heart Disease: Growth Evaluation and Sport Activity in a Paediatric Population. Children 2022, 9, 884. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.; Olsen, M.; Woo, J.G.; Madsen, N. Congenital heart disease and the prevalence of underweight and obesity from age 1 to 15 years: Data on a nationwide sample of children. BMJ Paediatr. Open 2017, 1, e000127. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.A.; Wang, J.K.; Lue, H.C.; Hua, Y.C.; Chang, M.H.; Wu, M.H. A shift from underweight to overweight and obesity in Asian children and adolescents with congenital heart disease. Paediatr. Perinat. Epidemiol. 2012, 26, 336–343. [Google Scholar] [CrossRef]
- Tuan, S.-H.; Chen, G.-B.; Chen, C.-H.; Chen, Y.-J.; Liou, I.-H.; Su, Y.-T.; Lin, K.-L. Comparison of Peak Oxygen Consumption during Exercise Testing between Sexes among Children and Adolescents in Taiwan. Front. Pediatr. 2021, 9, 657551. [Google Scholar] [CrossRef]
- Kuan, T.H.; Chang, Y.L.; Lin, K.L.; Chen, G.B.; Liou, I.H.; Tuan, S.H. Differences between Sexes in Cardiopulmonary Fitness among Children and Adolescents with Kawasaki Disease. Healthcare 2022, 10, 353. [Google Scholar] [CrossRef]
- McKillop, A.; McCrindle, B.W.; Dimitropoulos, G.; Kovacs, A.H. Physical activity perceptions and behaviors among young adults with congenital heart disease: A mixed-methods study. Congenit. Heart Dis. 2018, 13, 232–240. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-Y.; Kao, C.-L.; Tuan, S.-H.; Lin, K.-L. Cardiopulmonary Fitness of Preschoolers with Congenital Heart Disease: An Observational Study. Metabolites 2023, 13, 118. https://doi.org/10.3390/metabo13010118
Chen Y-Y, Kao C-L, Tuan S-H, Lin K-L. Cardiopulmonary Fitness of Preschoolers with Congenital Heart Disease: An Observational Study. Metabolites. 2023; 13(1):118. https://doi.org/10.3390/metabo13010118
Chicago/Turabian StyleChen, Yen-Yu, Chung-Lan Kao, Sheng-Hui Tuan, and Ko-Long Lin. 2023. "Cardiopulmonary Fitness of Preschoolers with Congenital Heart Disease: An Observational Study" Metabolites 13, no. 1: 118. https://doi.org/10.3390/metabo13010118
APA StyleChen, Y. -Y., Kao, C. -L., Tuan, S. -H., & Lin, K. -L. (2023). Cardiopulmonary Fitness of Preschoolers with Congenital Heart Disease: An Observational Study. Metabolites, 13(1), 118. https://doi.org/10.3390/metabo13010118