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Abstract: Lovage (Levisticum officinale W.D.J. Koch) is a known aromatic apiaceous species that is
widely used as a culinary and medicinal plant. Traditionally, more scientific attention has been
paid to lovage volatiles, while other groups of compounds have been underutilized. In this study,
metabolites of fresh lovage roots were investigated by liquid chromatography–mass spectrometry,
and 25 compounds were identified, including coumarins as basic components and minor hydroxycin-
namates; most were detected for the first time in the plant. Four major coumarins (including apterin,
xanthotoxin, isopimpinellin, and pimpinellin) were successfully separated by a validated HPLC–PDA
method, and the fresh roots of seven lovage cultivars as well as the dry roots of commercial lovage
were quantified. The coumarin content deviation was 1.7–2.9 mg/g in the fresh roots and 15–24 mg/g
in the dry roots. A variation in the coumarin level was found during storage of the fresh lovage roots
at chill and room temperatures, while storage of the dried roots at room temperature showed the
lowest loss of target compounds. This new information about the metabolites of lovage indicates the
prospects of the plant roots as a source of dietary coumarins.

Keywords: lovage; Levisticum officinale; coumarins; liquid chromatography–mass spectrometry;
postharvest storage

1. Introduction

Lovage (Levisticum officinale W.D.J. Koch; syn. Angelica levisticum (L.) All., Ligusticum
levisticum L., and Selinum levisticum (L.) E.H.L. Krause)) is a single species of the Levisticum
Hill genus included in the Apiaceae family. Lovage grows natively in Southwest Asia
(Hazaran Mountain, Kerman province, Iran) and southern Europe and has been cultivated
globally for a long time as a food plant and a source of spicy greens [1]. The parts of
the plant that are used include the underground organs, the aboveground part, as well
as seeds, which are typical for some food species of Apiaceae (celery, parsley, parsnip),
in which greens, roots, and fruits have culinary value [2]. Lovage leaves are used as
spicy salad greens because they have a characteristic odor close to the odor of celery
and parsley, and the roots are used as a cooked or fresh vegetable [3]. Despite the lower
popularity of lovage compared to related species, interest in the study of the component
composition arose in the late 19th and early 20th centuries, as evidenced by the data on
the isolation of α-terpineol, cineol, and myristic acid from the roots [4]. Soon after, Naves
(1943) discovered and characterized four phtalides (butyl phtalide, butyl dihydrophtalide,
butyl tetrahydrophtalide, and butylidene phthalide) [4]. Subsequently, approximately
20 representatives of the phtalides group were isolated from the plant [5–16] (Table 1).
Further investigation led to detection of polyynes, mono- and sesquiterpenes, phenolics,
and other groups [17–30].
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Table 1. Synopsis of known lovage (Levisticum officinale) metabolites.

Compounds Source [Ref.]

Phtalides
Butyl phtalide Roots [4,5], fruit, leaves, stems [5,6], flowers [6]

Butyl dihydrophtalide Roots [4]
Butyl tetrahydrophtalide Roots [4]

(Z)- and (E)-Butylidene phthalide Roots [4,7–10], leaves, stems, fruits, flowers [5,6,11,12]
Butylidene 4,5-dihydrophthalide Roots, fruit, leaves, stems [5]

Propylidene phthalide Roots [9]
(Z)- and (E)-Ligustilide Roots [7,9,10,13], leaves, stems, fruits, flowers [6,11,12,14,15]

7-Methoxy-3-propylidenephthalide Roots [16]
5-Hydroxybutylidene phthalide Roots [16]
7-Hydroxybutylidene phthalide Roots [16]

Senkyunolide Roots [9]
Isosenkyunolide Roots [9]

Validene-4,5-dihydrophthalide Roots [9], leaves, stems, fruits, flowers [6]
Sedanolide Leaves, stems [6]

Polyynes
Falcarindiol Roots [10,13,17]
Falcarinol Roots [17,18]

Terpenes

Monoterpenes and sesquiterpenes of essential oils Roots [5,6,8,9,11,18–24], fruits [5,6,11,23,25], leaves
[5,6,11,12,18,21,26], stems [5,6,11,12,18], flowers [23–25,27]

Phenols
Eugenol Roots [4]

Carvacrol Roots [4]
Methyl salycilate Fruits [6]
Cuminaldehyde Fruits [25]

Estragole Roots [11]
Pentyl benzene Leaves, roots [21]

Coumarins
Psoralen Fruits [28]

5-Methoxypsoralen Fruits [28]
Imperatorin Fruits [28]
Bergapten Roots [4]

Apterin Leaves [14,15]
Phenolic acids

Gallic acid Roots [29]
Vanillic acid Roots [30]

Hydroxycinnamates
p-Coumaric acid Roots [29]

Caffeic acid Roots [29], leaves [14,15]
Ferulic acid Roots [29]

3-O-, 4-O-, 5-O-Caffeoylquinic acids Leaves, stems [12,14,15,31]
Caffeoylglucaric acid Roots [30]

Coniferyl ferulate Roots [10]
Flavonoids

Kaempferol Roots [29]
Quercetin Roots [29]
Myricetin Roots [29]

Nicotiflorin Leaves, stems [12]
Isoquercitrin Roots [29]

Rutin Roots [29], leaves, stems [12,14,15]
Maclurin-3-C-glucoside Leaves, stems [12]

Other groups
Catalpol Roots [30]

Sedanonic anhydride, butyric acid, palmitic acid Roots [4]
Angeolide Roots [13]

Nutrients, fatty acids, tocopherols Leaves, stems [12]
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Because all organs of the plant have a pronounced odor, the main studies of L. officinale
have been focused on the study of the spicy-flavored components, which allowed to deter-
mine in detail the composition of the essential oil and volatile fractions from all organs of
the plant, including roots [5,6,8,9,11,18–24], fruits [5,6,11,23,25], leaves [5,6,11,12,18,21,26],
stems [5,6,11,12,18], and flowers [23–25,27]. Very little attention has been paid to the
study of other groups of extractives. In particular, the presence of some simple phenols
(eugenol, carvacrol, methyl salicylate, cuminaldehyde, estragole, and pentyl benzene) is
known in volatile extracts of roots [4,11,21], fruits [6,25], and leaves [21], and the presence
of hydroxycinnamates (derivatives of caffeic acid, ferulic acid, etc.) [10,12,14,15,29–31],
coumarins [4,14,15,28], and flavonoids [12,14,15,29] is known in alcohol-derived extracts of
the roots and leaves. Trustworthy information regarding fresh lovage roots is extremely
scarce, partially owing to the difficulties of practical work with fresh tissue. This detrimen-
tal attitude towards the study of spice plants is unfortunately typical, leading to a profound
lack of knowledge about the metabolome of this food species.

One of the poorly studied groups of phytocomponents characteristic of the food species
of Apiaceae is the coumarin group, a group of phenolic α-pyrone compounds, which are
well-studied for non-food members of the family but are still underutilized in regular
products [32]. Coumarins of Apiaceae include simple coumarins (umbelliferon, scopo-
letin, esculetin) [33]; furanocoumarins (psoralen, bergapten, etc.) have been detected in
celery [34], dill [35], and carrot [32]; pyranocoumarins (visnadin, dihydrosamidin, etc.) are
typical for medical species such as Angelica [36], Peucedanum [37], and Phlojodicarpus [38,39].
Known data on coumarins of L. officinale are limited, and include information about pyra-
nocoumarins psoralen, 5-methoxypsoralen, and imperatorin from fruits [28], apterin from
the leaves [14,15], and bergapten from roots [4]. This information cannot be considered
complete and needs additional study of the componential profile and quantification data
of L. officinale coumarins. Additionally, furanocoumarins are bioactive metabolites with
proven antivirus [40], antiallergic [41], antidiabetic [42], antidepressive [43], anticancer [44],
and anti-inflammatory potential [45]. Thus, furanocoumarin-containing foods may be
promising functional products.

Apiaceous vegetables (e.g., carrot, celery, and parsley) have a culinary application as
fresh roots; therefore, owing to the limited postharvest shelf life, the study of chemical
changes deserves special attention to reduce losses. In particular, it is known that the
process of storing reduces the content of carotenes, phenolics, and ascorbic acid in fresh
carrot roots [46,47], and chill storage allows to slow down destructive processes [48].
Twenty-days of storage of fresh celery roots resulted in the decrease or increase in the
content of chlorogenic acids, depending on the variety [49], while the ascorbic acid content
reduced after six days of postharvest refrigerated storage [50]. There is no information
about postharvest stability of coumarins in lovage and other apiaceous species despite their
obligate presence in root products.

As part of the ongoing study of Apiaceae coumarins [36–39], high-performance liq-
uid chromatography with photodiode array detection with electrospray ionization triple
quadrupole mass spectrometric detection (HPLC–PDA–ESI–TQ–MS) was applied for phe-
nolic metabolite profiling of the fresh roots of lovage (L. officinale), followed by the quantifi-
cation of the principal components by rapid HPLC–PDA of the fresh roots of seven lovage
cultivars and dry commercial products, and the postharvest changes of coumarins in the
lovage roots were studied.

2. Materials and Methods
2.1. Plant Material and Chemicals

Cultivated samples of Levisticum officinale roots were harvested in Buryat Fruit and
Plant Nursery located in the vicinity of Ulan-Ude (Russia) using authenticated seeds of
lovage (cv. Amur, Don Juan, Heracles, Lider, Magnus, Preobrazhenskii, Udalets) purchased
in the National Seed Repository (Moscow, Russia). All plants were authenticated by Prof.
N.I. Kashchenko (IGEB SB RAS, Ulan-Ude, Russia). The fresh roots were conditioned in



Metabolites 2023, 13, 3 4 of 14

plastic boxes and transported to the laboratory at 4 ◦C within 2–3 h. The reference standards
were purchased from Anexib Chemicals (Richmond Hill, Ontario, Canada): peucedanin
(≥95%; No P173001); Biopurity Phytochemicals Ltd. (Chengdu, Sichuan, China): skimmin
(≥98%; No BP1316); ChemFaces (Wuhan, Hubei, China): apterin (≥98%; No CFN95005), 5-
O-caffeoylquinic acid (≥98%; No. 94419), 1,3-di-O-caffeoylquinic acid (≥98%; No. D8196),
3,4-di-O-caffeoylquinic acid (≥90%; No. SMB00224), 3,5-di-O-caffeoylquinic acid, 4,5-di-O-
caffeoylquinic acid (≥85%; No. SMB00221), cichoriin (≥98%; No CFN95196), isobergapten
(≥98%; No CFN90231), 5-O-feruloylquinic acid (≥98%; No CFN92889); MedChemExpress,
Monmouth Junction, NJ, USA: angelicin (≥98%; No HY-N0763), apiosylskimmin (≥98%;
No HY-N2356), isoimperatorin (≥98%; No HY-N0286), pimpinellin (≥98%; No HY-N0438);
Sigma-Aldrich (St. Louis, MO, USA): bergapten (≥99%; No 69664), esculin (≥95%; No
Y0001612), esculetin (≥98%; No 246573), isopimpinellin (≥95%; No 61419), umbelliferone
(≥99%; No H24003), xanthotoxin (≥98%; No 56448); Selleck Chemicals (Houston, TX,
USA): imperatorin (≥98%; No S380901), osthole (≥98%; No S2337), and psoralen (≥98%;
No S4737).

2.2. Plant Extracts Preparation

Fresh roots of 3 y.o. lovage plants (25–30 cm long) were homogenized by X-1740
homogenizer (Goldleaf Scientific, Riverside, CA, USA), and a portion of homogenate (5 g)
was treated by 45 mL of methanol and sonicated twice (ultrasonic bath, 20 min, 50 ◦C,
ultrasound power 100 W, frequency 35 kHz). Dry lovage roots were ground in laboratory
grinder KM-100 (MRC group, Harlow, Essex, UK) till particle size 0.125 µm, and 1-g sample
was extracted by 50 mL of methanol with double sonication (ultrasonic bath, 40 min, 50 ◦C,
ultrasound power 100 W, frequency 35 kHz). Methanolic extract (after fresh or dry tissue
extraction) was filtered through 0.22-µm syringe filters into a measuring flask (100 mL) and
the final volume was filled up to 100 mL by methanol. The resultant extract was stored at
2 ◦C before analysis.

2.3. High-Performance Liquid Chromatography with Photodiode Array Detection and Electrospray
Ionization Triple Quadrupole Mass Spectrometric Detection (HPLC-PDA-ESI-TQ-MS)
Metabolite Profiling

Lovage roots metabolite profiling was performed by HPLC-PDA-ESI-TQ-MS assay on
the liquid chromatograph LC-20 Prominence coupled with photodiode array detector SPD-
M30A (wavelength range 200–600 nm), triple-quadrupole mass spectrometer LCMS 8050
(all Shimadzu, Columbia, MD, USA) and ProntoSIL 120-5 C18 AQ column (1 mm × 50 mm,
1 µm; Knauer, Berlin, Germany). The gradient elution used eluents A (1% acetic acid
in water) and B (1% acetic acid in acetonitrile) and the gradient program (%B): 0–4 min
5–100%, 4–5 min 100%, 5–6 min 100–5%, and 6–7 min 5%. The injection volume was 0.5 µL
and the flow rate was 500 µL/min. Ultraviolet spectra were recorded in a spectral range
200–600 nm. Electrospray ionization triple quadrupole mass spectrometric detection used
temperature 300 ◦C in the ESI interface, 250 ◦C in the desolvation line, and 400 ◦C in the heat
block. The nebulizing gas (N2) flow value was 3 L/min, heating gas (air)—10 L/min, and
collision-induced dissociation gas (Ar)—0.3 mL/min. The source voltage of mass spectra
was 3 kV, collision energy was +10–+25 eV (positive ionization), and the scanning range
was m/z 80–1900. LabSolution’s workstation software managed the LC-MS system. The
integrated analysis of retention time, ultraviolet and mass spectra data after comparison
with the inner LC-MS library, reference standards and the literature data were used for the
identification of metabolites.

2.4. HPLC-PDA-MS Metabolite Quantification

To quantify four coumarins (apterin, xanthotoxin, isopimpinellin, pimpinellin) in
plant extracts, the HPLC-PDA-ESI-TQ-MS separation and detection conditions were used
(Section 2.3). Reference standards were separately weighed (10 mg), dissolved in the
methanol in volumetric flasks (10 mL), and the stock solution (1000 µg/mL) was used to
prepare the calibration solutions (1–100 µg/mL). After the separation, PDA data were used
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to create ‘concentration–PDA peak area’ correlation. Correlation coefficient (r2), standard
deviation (SYX), limit of detection (LOD), limit of quantification (LOQ), and linear range
were calculated in Advanced Grapher 2.2 (Alentum Software Inc., Ramat-Gan, Israel)
using calibration curve data. Values of intra-day and inter-day precisions and recovery of
spiked sample were determined as described early [38]. Three HPLC runs were sufficient
for the quantitative analyses, and the results were expressed as mean values ± standard
deviation (S.D.).

2.5. Lovage Roots Storage Experiment

Six and five portions of the fresh lovage samples (10 roots, approx. equal; cv. Lider)
were deposited into the individual polystyrene bags (2 L) and incubated at (1) 1 ◦C
(6 months) or (2) at 20 ◦C (14 days), respectively, in a ventilated MK 53 thermostat (BINDER
GmbH, Tuttlingen, Germany). Five roots of stored samples were taken out for analysis
(1) every month or (2) at 1, 3, 7, 11 and 14 days, and extraction/analysis procedure was
applied (Sections 2.2–2.4). The samples of dry lovage roots (manufacturer Evalar, CJSC;
production year 2016; 1 kg) were deposited into the individual polystyrene bags (2 L) and
incubated at 10 ◦C in a ventilated MK 53 thermostat (BINDER GmbH, Tuttlingen, Germany)
for 6 years. Two-hundred portions of stored sample were taken out for analysis every year
and extraction/analysis procedure was applied (Sections 2.2–2.4).

2.6. Statistical Analysis

Statistical analyses were performed by one-way analysis of variance, and the signif-
icance of the mean difference was determined by Duncan’s multiple range test. Differ-
ences at p < 0.05 were considered statistically significant. The results are presented as
the mean ± S.D. The linear regression analysis and generation of calibration graphs were
conducted using Advanced Grapher 2.2 (Alentum Software, Inc., Ramat-Gan, Israel).

3. Results and Discussion
3.1. Phenolic Metabolite Profiling of Fresh Lovage Roots

Application of HPLC–PDA–ESI–tQ–MS and micro-sized column (1 × 50 mm) suc-
cessfully separated 25 metabolites in 5 min in fresh lovage root extract. Identification was
achieved after comparison of retention times and ultraviolet (UV) and mass spectra with
reference standards and the literature data [51–62] (Figure 1a and Table 2). The most abun-
dant group of metabolites was coumarins, including nineteen compounds (1–3, 5, 6, 9, 10,
14–25), and a lesser group of hydroxycinnamates consisted of six acids (4, 7, 8, and 11–13).
Coumarins have specific absorbance in the UV region [60] and gave a typical triplet in the
positive ionization mass spectra, featuring signals of protonated ion [M+H]+ and 23 and
39 amu larger adducts with sodium [M+Na]+ and potassium [M+K]+ [38] (Figure 1b–e).

Table 2. Chromatographic (t), ultraviolet (UV) and mass-spectrometric data (MS) of compounds 1–25
found in L. officinale fresh roots.

No. t, min UV, λmax, nm [M+H]+, m/z [M+Na]+, m/z [M+K]+, m/z Other Ions, m/z Compound [Ref.]

1 1.124 350 341 (5) 363 (100) 379 (32) 179 (9) Esculin (esculetin
6-O-glucoside) [51]

2 1.243 348 341 (3) 363 (100) 379 (24) 179 (2) Cichoriin (esculetin
7-O-glucoside) [52]

3 1.376 258, 312 457 (7) 479 (100) 495 (38) 163 (14) Apiosylskimmin [39]

4 1.567 240, 327 355 (100) 193 (30) 5-O-Caffeoylquinic
acid [53]

5 1.624 258, 298, 352 179 (100) 201 (7) 217 (4) Esculetin [54]
6 1.687 258, 312 325 (1) 347 (100) 363 (29) 163 (8) Skimmin (umbelliferone

O-glucoside) [55]
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Table 2. Cont.

No. t, min UV, λmax, nm [M+H]+, m/z [M+Na]+, m/z [M+K]+, m/z Other Ions, m/z Compound [Ref.]

7 1.752 240, 327 517 (100) 355 (42), 193 (2) 1,3-Di-O-caffeoylquinic
acid [53]

8 1.942 238, 321 369 (100) 195 (20), 191 (18) 5-O-Feruloylquinic
acid [53]

9 2.042 258, 324 425 (2) 447 (100) 463 (27) 263 (11) Apterin (vaginol
8-O-glucoside) [56]

10 2.084 322 163 (100) 185 (14) 201 (12) Umbelliferone [55]

11 2.127 240, 329 517 (100) 355 (38), 193 (4) 3,4-Di-O-caffeoylquinic
acid [53]

12 2.208 240, 329 517 (100) 355 (37), 193 (1) 3,5-Di-O-caffeoylquinic
acid [53]

13 2.458 240, 329 517 (100) 355 (40), 193 (1) 4,5-Di-O-caffeoylquinic
acid [53]

14 2.567 254, 326 263 (100) 285 (15) 301 (7) Vaginol [56]
15 2.693 244, 298, 334 187 (100) 209 (5) 225 (1) Psoralen [57]
16 2.942 245, 304 187 (100) 209 (10) 225 (3) Angelicin [57]
17 3.083 250, 270, 311 217 (100) 239 (11) 255 (7) Bergapten [58]
18 3.342 242, 251, 301 217 (100) 239 (5) 255 (1) Xanthotoxin [59]
19 3.621 268, 312 247 (100) 269 (21) 285 (18) Isopimpinellin [60]
20 3.759 251, 306 247 (100) 269 (4) 285 (1) Pimpinellin [60]
21 3.882 251, 270 217 (100) 239 (25) 255 (20) Isobergapten [60]
22 4.012 351, 301 271 (100) 293 (18) 309 (10) Imperatorin [60]
23 4.086 256, 324 245 (100) 267 (11) 283 (7) Osthole [61]
24 4.382 255, 294, 341 259 (100) 281 (7) 297 (3) Peucedanin [62]
25 4.501 252, 309 271 (100) 293 (5) 309 (2) Isoimperatorin [60]
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Figure 1. (a) High-performance liquid chromatography with electrospray ionization triple quadru-
pole mass spectrometric detection chromatogram (base peak intensity chromatogram, positive ion-
ization; MS: TIC) and photodiode array detection at 310 nm (PDA: 310 nm) chromatograms of an 
extract of L. officinale fresh roots (cv. Lider). (b) UV and mass spectra of principal coumarins: apterin 
(b), xanthotoxin (c), isopimpinellin (d), and pimpinellin (e). Compounds are numbered as listed in 
Table 2. 
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Figure 1. (a) High-performance liquid chromatography with electrospray ionization triple
quadrupole mass spectrometric detection chromatogram (base peak intensity chromatogram, positive
ionization; MS: TIC) and photodiode array detection at 310 nm (PDA: 310 nm) chromatograms of
an extract of L. officinale fresh roots (cv. Lider). (b) UV and mass spectra of principal coumarins:
apterin (b), xanthotoxin (c), isopimpinellin (d), and pimpinellin (e). Compounds are numbered as
listed in Table 2.

Simple coumarins with a bicyclic structure included esculetin (6,7-dihydroxycoumarin,
5) and two of its glycosides, i.e., of esculin (esculetin 6-O-glucoside, 1) [51] and cichoriin (es-
culetin 7-O-glucoside, 2) [52]; umbelliferone (7-hydroxycoumarin, 10) and two of its glyco-
sides, i.e., skimmin (umbelliferone O-glucoside, 6) [55] and apiosylskimmin (3) [39]; and os-
thole (7-methoxy-8-isopentenylcoumarin, 23) [61] (Figure 2). None of the simple coumarins
were previously found in the lovage roots. Eleven furanocoumarins have a non-glycosidic
nature with the 2′,3′:7,6-coupled furan ring (e.g., psoralen (15) [57], bergapten (17) [58],
xanthotoxin (18) [59], isopimpinellin (19) [60], imperatorin (22) [60], peucedanin (24) [62],
and isoimperatorin (25) [60]) or the 2′,3′:8,7-coupled furan ring (e.g., vaginol (14) [56],
angelicin (16) [57], pimpinellin (20) [60], and isobergapten (21) [60]). The only glycosidic fu-
ranocoumarin was vaginol 8-O-glucoside or apterin (9) [56]. Psoralen and imperatorin were
previously detected in lovage fruits [28], bergapten was detected in the roots [4], and apterin
was detected in the leaves of the plant [14,15]. Compounds 14, 16, 18, 19, 20, 21, 24, and 25
were found in L. officinale for the first time. The known dietary coumarins in rooting apia-
ceous foods have been found in carrot as 6-methoxymellein [63], bergapten, isopimpinellin,
and xanthotoxin [64]; they have been found in fennel as bergapten, isopimpinellin, and
xanthotoxin [64]; and they have been found in celery and parsley as umbellifereone, scopo-
letin and esculetin [34]. Thus, it is clear why lovage roots are able to accumulate coumarins
with various structures.
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Figure 2. Compounds 1–25 found in fresh lovage roots. βDApif–β-D-apiofuranose; Caf–caffeoyl; Fer–
feruloyl; βDGlcp–β-D-glucopyranose. 

Non-coumarin metabolites of fresh lovage roots are derivatives of caffeic acid as 
mono- (4) and di-O-caffeoylquinic acids (7, 11–13) as well as 5-O-feruloylquinic acid [53]. 
Acid 4 has been previously found in the herbal part of lovage [12,14,15,31], and the re-
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Non-coumarin metabolites of fresh lovage roots are derivatives of caffeic acid as mono-
(4) and di-O-caffeoylquinic acids (7, 11–13) as well as 5-O-feruloylquinic acid [53]. Acid
4 has been previously found in the herbal part of lovage [12,14,15,31], and the remaining
phenolics have been discovered for the first time in L. officinale. A previous report [29]
showed that some flavonoid compounds can be detected in lovage roots; however, in our
case, no member of this group was found.

3.2. Quantification of Four Principal Coumarins in Lovage Roots

Chromatographic conditions applied for metabolite profiling of fresh lovage roots gave
appropriate separation of four principal coumarins with more abundant peak areas, such as
for apterin (peak 9), xanthotoxin (peak 18), isopimpinellin (peak 19), and pimpinellin (peak
20), enabling their use for quantification of the mentioned coumarins in plant samples. To
simplify and lower the cost of the assay, in this study, PDA detection was used, resulting
in a fast and easy method of analysis. The validation procedure demonstrated the good
linearity of the calibration equations built for four coumarins with correlation coefficients
(r2) of 0.9925–0.9981 and standard deviations of (SYX) 9.76–11.52 × 10−2 (Table 3).

Table 3. Regression equations, correlation coefficients (r2), standard deviation (SYX), limits of detec-
tion (LOD), limits of quantification (LOQ), and linear ranges for four reference standards.

Compound a a b a Correlation
Coefficient (r2) SYX

LOD/
LOQ

(µg/mL)

Linear
Range

(µg/mL)
RSD%

(Intra-Day)
RSD%

(Inter-Day)
Recovery of

Spiked
Sample REC%

Apterin 1.4400 −0.5261 0.9925 10.14 · 10−2 0.23/0.70 0–1000 1.20 1.59 101.70
Xanthotoxin 1.7207 −0.0152 0.9981 9.76 · 10−2 0.18/0.56 0–800 0.96 1.40 98.92

Isopimpinellin 1.9320 −0.2419 0.9953 11.52 · 10−2 0.20/0.60 0–800 1.07 1.73 99.12
Pimpinellin 1.2844 −0.2915 0.9962 10.02 · 10−2 0.26/0.78 0–800 1.14 1.93 98.51

a Calibration equation parameters: y = a · x + b.

The limits of detection and limits of quantifications were 0.18–0.26 µg/mL and
0.56–0.78 µg/mL, respectively, and the linear range was 0–1000 µg/mL. The intra-day
and inter-day precisions were high and showed relative standard deviations (RSDs) of
0.96–1.20% and 1.40–1.93%, respectively, and spiked samples demonstrated high recovery
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levels from 98.51% to 101.70%. All these results showed the appropriateness of the method
for quantification of the principal coumarins in lovage roots.

Approbation of the quantification method was conducted on the fresh samples of
seven lovage cultivars and eight commercially available dried lovage roots (Table 4). The
contents of apterin, xanthotoxin, isopimpinellin, and pimpinellin varied in fresh roots as
197–357, 152–352, 486–863, and 904–1296 µg/g, respectively, showing that pimpinellin was
the most common coumarin in all lovage samples. The total coumarin content in fresh roots
ranged from 1739 (cv. Heracles) to 2902 µg/g (cv. Lider). Dried lovage roots demonstrated
wide variation of apterin, xanthotoxin, isopimpinellin, and pimpinellin, with values of
1.53–4.11, 1.40–3.75, 4.83–7.80, and 7.36–11.26 mg/g, respectively, and pimpinellin was a
common coumarin found in all samples. The range of total coumarin content in dried roots
was 15.12–24.46 mg/g. Thus, fresh and dried lovage roots are rich sources of coumarins.

Table 4. Content of four coumarins in fresh and dried lovage roots.

Plant Source Apterin Xanthotoxin Isopimpinellin Pimpinellin Total

Fresh roots, µg/g fresh weight ± S.D.
cv. Amur 357 ± 7 307 ± 6 683 ± 14 1152 ± 23 2499

cv. Don Juan 289 ± 5 273 ± 5 592 ± 11 1062 ± 21 2216
cv. Heracles 197 ± 4 152 ± 4 486 ± 10 904 ± 18 1739

cv. Lider 391 ± 7 352 ± 7 863 ± 17 1296 ± 25 2902
cv. Magnus 326 ± 6 286 ± 5 794 ± 15 1272 ± 25 2678

cv. Preobrazhenskii 321 ± 6 292 ± 5 837 ± 16 1110 ± 22 2560
cv. Udalets 350 ± 7 311 ± 6 783 ± 15 993 ± 19 2437

Dried roots, mg/g dry weight ± S.D.
A Gift from Nature Comp. (Orlando, FL, USA) 2.83 ± 0.05 2.96 ± 0.05 7.41 ± 0.14 11.26 ± 0.22 24.46

Alpine Herb Company Inc. (Scarborough, ON, Canada) 1.93 ± 0.03 2.53 ± 0.05 5.72 ± 0.11 8.63 ± 0.17 18.81
Evalar, CJSC (Biysk, Russia) 3.83 ± 0.07 3.25 ± 0.06 6.49 ± 0.12 10.68 ± 0.21 24.25

Khorst, LLC (Barnaul, Russia) 3.26 ± 0.06 2.83 ± 0.05 5.73 ± 0.11 9.14 ± 0.18 20.96
Lekra-Set, LLC (Barnaul, Russia) 4.11 ± 0.08 3.75 ± 0.07 5.37 ± 0.10 10.06 ± 0.20 23.29

Russkie Korni Comp. (Korolyov, Russia) 3.70 ± 0.07 3.14 ± 0.06 5.26 ± 0.10 9.47 ± 0.18 21.57
Starwest Botanicals, Inc. (Sacramento, CA, USA) 4.06 ± 0.08 3.52 ± 0.07 7.80 ± 0.15 8.26 ± 0.16 23.64

TerraVita Comp. (Wilmington, DE, USA) 1.53 ± 0.03 1.40 ± 0.02 4.83 ± 0.09 7.36 ± 0.14 15.12

Regarding the bioactive properties of lovage coumarins, apterin has been previously
determined to be a common apiaceous coumarin [65] and showed antioxidant [66], anti-
tumor [67], anticholinesterase [68], antidiabetic [69,70], and anti-inflammatory activities [71].
Xanthotoxin has demonstrated various bioactivities, such as anticancer, anti-inflammatory,
antioxidative stress and antibacterial activities [72], while pimpinellin was determined to
be an effective preventer of platelet-related thromboembolic diseases (such as atherosclero-
sis [73]), and isopimpinellin is antibacterial agent against methicillin-resistant Staphylococcus
aureus [74]. Thus, lovage roots are a valuable source of bioactive coumarins.

3.3. Post-Harvest Changes in Four Principal Coumarins in Lovage Roots

Traditionally, the methods of lovage root storage have been similar to those of other
apiaceous root (carrot, parsley, celery, and fennel). The best preservation has been observed
for chilled storage when the temperature is close to zero; however, room temperature
storage is popular for fresh roots. Therefore, postharvest changes in fresh lovage roots
were studied under two conditions: one group of samples was stored at 1 ◦C for 6 months,
and second group was conditioned at 20 ◦C for two weeks. These periods were chosen
taking into consideration the satisfactory appearance of vegetables; as a rule, after these
dates, roots became flabby (lost firmness) and were no longer stored. Additional study was
focused on the changes in dry lovage roots over long-term storage for 6 years at 10 ◦C (the
temperature of a dry plant repository). Studies of the two different types of samples were
due to the widespread use of both fresh and dried lovage roots for which it is necessary to
determine the composition of coumarins before and after storage (Table 5 and Figure 3).
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Table 5. Content of four coumarins in fresh and dried lovage roots during post-harvest storage.

Storage Duration Apterin Xanthotoxin Isopimpinellin Pimpinellin Total

Fresh roots (cv. Lider), µg/g fresh weight ± S.D.
Before storage 391 ± 7 352 ± 7 863 ± 17 1296 ± 25 2902

Months Chill storage (1 ◦C)
1 342 ± 7 * 341 ± 7 854 ± 17 1215 ± 24 * 2752
2 304 ± 6 * 337 ± 7 * 832 ± 16 1183 ± 23 * 2656
3 286 ± 6 * 311 ± 6 * 806 ± 16 * 1157 ± 23 * 2560
4 221 ± 4 * 293 ± 6 * 782 ± 15 * 1102 ± 22 * 2398
5 163 ± 3 * 276 ± 5 * 774 ± 15 * 1083 ± 21 * 2296
6 127 ± 2 * 242 ± 5 * 764 ± 15 * 1026 ± 20 * 2159

Days Room storage (20 ◦C)
1 388 ± 7 350 ± 7 862 ± 17 1290 ± 25 2890
3 370 ± 7 * 348 ± 6 860 ± 17 1283 ± 23 2861
7 342 ± 6 * 345 ± 7 853 ± 18 1272 ± 25 2812

11 304 ± 7 * 340 ± 7 850 ± 16 1254 ± 24 2748
14 265 ± 5 * 332 ± 7 * 842 ± 18 1231 ± 24 * 2670

Dried roots (Evalar, CJSC), mg/g dry weight ± S.D.
Before storage 3.83 ± 0.07 3.25 ± 0.06 6.49 ± 0.12 10.68 ± 0.21 24.25

Years 10 ◦C storage
1 3.70 ± 0.07 3.25 ± 0.06 6.45 ± 0.12 10.65 ± 0.20 24.05
2 3.52 ± 0.07 * 3.22 ± 0.06 6.42 ± 0.12 10.60 ± 0.21 23.76
3 3.34 ± 0.06 * 3.21 ± 0.06 6.38 ± 0.11 10.58 ± 0.21 23.51
4 3.19 ± 0.06 * 3.19 ± 0.06 6.35 ± 0.12 10.54 ± 0.20 23.27
5 3.02 ± 0.06 * 3.16 ± 0.06 6.30 ± 0.11 10.40 ± 0.20 22.88
6 2.86 ± 0.05 * 3.10 ± 0.06 * 6.25 ± 0.11 * 10.22 ± 0.20 * 22.43

Asterisk indicates significant difference (p < 0.05) vs. before storage level.
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and pimpinellin (green).

Chilled storage of fresh lovage roots negatively affected the total coumarin content.
Storing roots for 6 months resulted in a loss of 25% of total coumarins, mostly because
glycoside apterin losses resulted in 67% damage. Reduction in the content of non-glycosidic
xanthotoxin, isopimpinellin, and pimpinellin was no more than 30% of the initial level.
Postharvest changes occurred much more rapidly when fresh lovage roots were stored at
room temperature. After 2 weeks of storage, a 32% loss of apterin was observed with almost
full preservation of other coumarins. Dried lovage roots demonstrated good stability of
coumarin content upon long-term storage. Non-glycosidic compounds were resistant and
demonstrated approximately a 5% loss after 6 years of storage, and the decrease in glycoside
apterin was more than 25%. Despite the loss of compounds during all types of storage, the
lovage roots remained a source of coumarins even at the end of the expiration date.
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The general trend of postharvest changes in both fresh and dried lovage roots is the
significant loss of the glycosidic coumarin apterin. The same changes were observed for
other storing plants. The roots of Hansenia forbesii (H.Boissieu) Pimenov and Kljuykov
(syn. Notopterygium forbesii H.Boissieu) can lose up to 60% of the coumarin glycoside
nodakenin (nodakenetin O-glucoside) during storage while maintaining non-glycosidic
compounds [75]. Scopolin (scopoletin O-glucoside) and scopoletin reduction was observed
in cassava roots (Manihot esculenta Crantz) after 7 days of dark storage at 29 ◦C [76].
Instability of flavonoid glycosides during short- and long-term storage was found for
apple [77] and strawberry fruits [78,79]. The possible reasons are increasing cleavage
processes that involved the influence of water, acids, and enzymes, resulting in hydrolysis
of storage compounds [80]. However, in the case of lovage roots, most coumarins are found
in the non-glycosidic form, thus preserving the valuable potential of the plant.

4. Conclusions

This study for the first time elucidated the phenolic profile of fresh lovage roots, a tra-
ditional food product that is still scarcely investigated. The basic components were simple
coumarins and furanocoumarins with various structures with or without glycosidic frag-
ments. Even though some metabolites were in the lovage roots, most identified compounds
were new for the Levisticum officinale species. Successful chromatographic separation of the
principal compounds resulted in creation of a convenient assay for quantification of four
coumarins (i.e., apterin, xanthotoxin, isopimpinellin, and pimpinellin), which were found
at high levels in both the various cultivars of the fresh lovage roots and in the dry com-
mercial roots. These findings suggest for the first time that lovage roots are a good source
of furanocoumarins with proven bioactivity, making lovage a functional food product.
The results of the postharvest stability study of lovage coumarins demonstrated a gradual
decrease in target compounds, especially the glycoside apterin in fresh and dried roots.
However, the final losses accounted for less than one quarter of the total coumarin content,
which confirmed satisfactory retention of furanocoumarins in lovage during postharvest
storage. Therefore, the known spicy-aromatic vegetable lovage roots accumulate not only
phthalides and volatile compounds but also coumarins, making it one of the most valuable
apiaceous plants used as food and medicine
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