Depuration and Starvation Regulate Metabolism and Improve Flesh Quality of Yellow Catfish (Pelteobagrus fulvidraco)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Ethics Statement
2.2. Metabolite Extraction
2.3. UPLC-Triple-TOF /MS Analysis
2.4. Metabolomics Data Processing
2.5. Statistical Analysis
3. Results
3.1. The Changes of Body Weight and Body Fat Index after Depuration and Starvation in Yellow Catfish
3.2. Characterizations of Metabolomics in the Muscle of Yellow Catfish during the Process of Depuration and Starvation
3.3. Differential Metabolites Related to Flesh Quality
3.3.1. Purine Metabolites Changes in Yellow Catfish Muscle during Depuration and Starvation
3.3.2. The Changes of Fatty Acids in Yellow Catfish Muscle during Depuration and Starvation
3.3.3. The Changes of Amino Acids in Yellow Catfish Muscle during Depuration and Starvation
3.3.4. Aldehydes and Ketones Metabolites of Yellow Catfish Muscle during Depuration and Starvation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mccrummen, S.T.; Wang, Y.; Hanson, T.R.; Bott, L.; Liu, S. Culture environment and the odorous volatile compounds present in pond-raised channel catfish (Ictalurus punctatus). Aquac. Int. 2018, 26, 685–694. [Google Scholar] [CrossRef]
- Rimando, A.M.; Schrader, K.K. Off-Flavors in Aquaculture; American Chemical Society: Washington, DC, USA, 2003. [Google Scholar]
- Moretto, J.A.; Freitas, P.N.N.; Souza, J.P.; Oliveira, T.M.; Brites, I.; Pinto, E. Off-Flavors in Aquacultured Fish: Origins and Implications for Consumers. Fishes 2022, 7, 34. [Google Scholar] [CrossRef]
- Ridha, M.T.; Hossain, M.A.; Azad, I.S.; Saburova, M. Effects of three carbohydrate sources on water quality, water consumption, bacterial count, growth and muscle quality of Nile tilapia (Oreochromis niloticus) in a biofloc system. Aquac. Res. 2020, 51, 4225–4237. [Google Scholar] [CrossRef]
- Fuentes, A.; Fernández-Segovia, I.; Serra, J.A.; Barat, J.M. Comparison of wild and cultured sea bass (Dicentrarchus labrax) quality. Food Chem. 2010, 119, 1514–1518. [Google Scholar] [CrossRef]
- Schrader, K.K.; Tucker, C.S. Evaluation of Off-Flavor in Pond-Raised Channel Catfish following Partial Crop Harvest. N. Am. J. Aquac. 2012, 74, 385–394. [Google Scholar] [CrossRef]
- Liu, S.; Liao, T.; McCrummen, S.T.; Hanson, T.R.; Wang, Y. Exploration of volatile compounds causing off-flavor in farm-raised channel catfish (Ictalurus punctatus) fillet. Aquac. Int. 2016, 25, 413–422. [Google Scholar] [CrossRef]
- Schrader, B.W.G.K.K. Physiological and hormonal changes during prolonged starvation in fish. J. Aquac. Res. Dev. 2015, 06, 1000314. [Google Scholar]
- Yong, J.; Li, Z.; Meilan, Y.; Ao, F. Identification and changes of different volatile compounds in meat of crucian carp under short-term starvation by GC-MS coupled with HS-SPME. J. Food Biochem. 2017, 41, e12375. [Google Scholar]
- Burr, G.S.; Wolters, W.R.; Schrader, K.K.; Summerfelt, S.T. Impact of depuration of earthy-musty off-flavors on fillet quality of Atlantic salmon, Salmo salar, cultured in a recirculating aquaculture system. Aquac. Eng. 2012, 50, 28–36. [Google Scholar] [CrossRef]
- Zajic, T.; Mraz, J.; Sampels, S.; Pickova, J. Fillet quality changes as a result of purging of common carp (Cyprinus carpio L.) with special regard to weight loss and lipid profile. Aquaculture 2013, 400, 111–119. [Google Scholar] [CrossRef]
- Medina, M.D.S.; Cervera, M.A.R.; Martínez, E.A.; Hernández, A.E.M.; Hernández, G.C. Influence of Starvation on Flesh Quality of Farmed Dentex, Dentex dentex. J. World Aquac. Soc. 2010, 41, 490–505. [Google Scholar]
- Du, H.; Lv, H.; Xu, Z.; Zhao, S.; Huang, T.; Manyande, A.; Xiong, S. The mechanism for improving the flesh quality of grass carp (Ctenopharyngodon idella) following the micro-flowing water treatment using a UPLC-QTOF/MS based metabolomics method. Food Chem. 2020, 327, 126777. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Xiong, S.; Lv, H.; Zhao, S.; Manyande, A. Comprehensive analysis of transcriptomics and metabolomics to understand the flesh quality regulation of crucian carp (Carassius auratus) treated with short term micro-flowing water system. Food Res. Int. 2021, 147, 110519. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Hu, W.; Xiong, S.; You, J.; Fan, Q. Depuration and starvation improves flesh quality of grass carp (Ctenopharyngodon idella). Aqua. Res. 2018, 49, 3196–3206. [Google Scholar] [CrossRef]
- Drake, S.; Drake, M.; Sanderson, R.; Daniels, H.; Yates, M. The effect of purging time on the sensory properties of aquacultured southern flounder (Paralichthys lethostigma). J. Sens. Stud. 2010, 25, 246–259. [Google Scholar] [CrossRef]
- Miao, X.; Guo, H.; Song, Y.; Du, C.; Feng, J.; Tao, Y.; Xu, H.; Li, Y. Improvement of Flesh Quality of Farmed Silver Carp (Hypophthalmichthys molitrix) by Short-Term Stocked in Natural Water. Fishes 2023, 8, 142. [Google Scholar] [CrossRef]
- Uehara, S.A.; Coutinho, C.E.R.; Aronovich, M.; Walter, E.H.M.; Furtado, A.A.L.; Calixto, F.A.A.; Takata, R.; Mesquita, E.d.F.M.d. Influence of saline environment and depuration time on quality and proximate composition of Nile tilapia fillet (Oreochromis niloticus). Food Sci. Technol. 2022, 42, e69322. [Google Scholar] [CrossRef]
- Dong, G.F.; Yang, Y.O.; Yao, F.; Chen, L.; Yue, D.D.; Yu, D.H.; Huang, F.; Liu, J.; Liu, L.H. Growth performance and whole-body composition of yellow catfish (Pelteobagrus fulvidraco Richardson) under feeding restriction. Aquac. Nutr. 2017, 23, 101–110. [Google Scholar] [CrossRef]
- Zeng, W.; Li, Z.; Ye, S.; Xie, S.; Liu, J.; Zhang, T.; Duan, M. Effects of stocking density on growth and skin color of juvenile darkbarbel catfish Pelteobagrus vachelli (Richardson). J. Appl. Ichthyol. 2010, 26, 925–929. [Google Scholar] [CrossRef]
- Xiong, Y.; Yu, G.; Wang, J.; Wu, J.; Mei, J. Effects of feeding rate and dietary protein levels on the breeding performance of female yellow catfish (Pelteobagrus fulvidraco). Aquac. Res. 2021, 53, 243–254. [Google Scholar] [CrossRef]
- Andersen, U.B.; Thomassen, M.S.; Rørå, A.M.B. Texture Properties of Farmed Rainbow Trout (Oncorhynchus mykiss): Effects of Diet, Muscle Fat Content and Time of Storage on Ice. J. Sci. Food Agric. 2015, 74, 347–353. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, W.; Zhang, H.; Chai, Y.; Ruan, G. Comparison of Muscle Quality of the Yellow Catfish Cultured in In-Pond Raceway Systems and Traditional Ponds. Water 2022, 14, 1223. [Google Scholar] [CrossRef]
- Guo, H.; Lin, W.; Wu, X.; Wang, L.; Qiu, Y. Survival strategies of Wuchang bream (Megalobrama amblycephala) juveniles for chronic ammonia exposure: Antioxidant defense and the synthesis of urea and glutamine. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 230, 108707. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, S.W.; Jong, C.J.; Ramila, K.C.; Azuma, J. Physiological roles of taurine in heart and muscle. J. Biomed. Sci. 2010, 17, S2–S8. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Xu, S.; Wang, Z. Kinetics of lipid oxidation and off-odor formation in silver carp mince: The effect of lipoxygenase and hemoglobin. Food Res. Int. 2009, 42, 85–90. [Google Scholar] [CrossRef]
- Gao, J.; Lin, H.; Song, Z.G.; Jiao, H.C. Corticosterone alters meat quality by changing pre-and postslaughter muscle metabolism. Poult. Sci. 2008, 87, 1609–1617. [Google Scholar] [CrossRef]
- Wan, X.; Wang, D.; Xiong, Q.; Xiang, H.; Li, H.; Wang, H.; Liu, Z.; Niu, H.; Peng, J.; Jiang, S.; et al. Elucidating a molecular mechanism that the deterioration of porcine meat quality responds to increased cortisol based on transcriptome sequencing. Sci. Rep. 2016, 6, 36589. [Google Scholar] [CrossRef]
- Guo, X.; Lü, H.; Liu, R.; Liu, Y.; Xiong, S. Effect of Depuration Treatment before Processing on the Flesh Quality of Blunt Snout Bream (Megalobrama amblycephala). Meat Res. 2018, 32, 1–7. [Google Scholar]
- Li, H.; Xu, W.; Jin, J.; Yang, Y.; Zhu, X.; Han, D.; Liu, H.; Xie, S. Effects of starvation on glucose and lipid metabolism in gibel carp (Carassius auratus gibelio var. CAS III). Aquaculture 2018, 496, 166–175. [Google Scholar] [CrossRef]
- Hsiao, S.W.; Kuo, I.C.; Su, C.W.; Wang, Y.H.; Mei, H.C.; Lee, C.K. Metabolite characterisation and profiling of Hermetia illucens L. larvae at various growth stages using Sesamum indicum residues as nutrient source. J. Insects Food Feed 2022, 8, 223–235. [Google Scholar]
- Mani, K.; Vitenberg, T.; Ben-Mordechai, L.; Schweitzer, R.; Opatovsky, I. Comparative untargeted metabolic analysis of natural-and laboratory-reared larvae of black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2023, 266, 110851. [Google Scholar]
- Bjornsdottir-Butler, K.; Green, D.P.; Bolton, G.E.; McClellan-Green, P.D. Control of Histamine-Producing Bacteria and Histamine Formation in Fish Muscle by Trisodium Phosphate. J. Food Sci. 2015, 80, 1253–1258. [Google Scholar] [CrossRef]
- Hosseini, A.R.; Rahimi, R.; Mirghaed, A.T. Determination of histamine content in muscle tissue of rainbow trout (Oncorhynchus mykiss) during ice storage. Comp. Clin. Pathol. 2014, 23, 775–778. [Google Scholar]
- Zhou, M.; Chen, L.L.; Yuan, M.L.; Zhao, L. Research on the Effects of Short Term Starvation to the Grass Carp Meat Quality and Volatile Flavor. Food Ind. 2016, 37, 139–143. [Google Scholar]
- Gao, Q.; An, Y.Q.; Chen, Z.; Xiong, S.B. The effect of short-term micro-flow water treatment on the muscle taste quality of bighead carp cultured in ponds. Acta Hydrobiol. Sin. 2021, 45, 1057–1066. [Google Scholar]
- Cai, L.B.; Ren, Z.R.; Lv, H.; Du, H.Y.; Liu, R.; Xiong, S.B. Effects of short-term micro-flowing water treatment on flesh quality of crucian carp (Carassius auratus gibelio). J. Huazhong Agric. Univ. 2020, 4, 128–136. [Google Scholar]
- Ouyang, F.F.; Wang, J.H.; Chen, Q.; Wang, F.X.; Li, X.H.; Yu, J.; Liu, Y.L. Machinery, Study on dynamics of ATP-related compounds and freshness of grass carp muscles of during storage. Food Mach. 2016, 32, 137–140+159. [Google Scholar]
- Liu, Y.; Chen, G.P.; Zhang, J.H.; Lu, J. Changes in ATP-Related Compound Contents and Freshness of Grass Carp during Cold Storage. Food Sci. 2014, 7, 261–266. [Google Scholar]
- Wu, G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 2020, 52, 329–360. [Google Scholar] [CrossRef]
- Ruetti, E.; Justel, N.; Mustaca, A.; Boccia, M. Corticosterone and propranolol’s role on taste recognition memory. Pharmacol. Biochem. Behav. 2014, 127, 37–41. [Google Scholar] [CrossRef]
- Secci, G.; Parisi, G. From farm to fork: Lipid oxidation in fish productsA review. Ital. J. Anim. Sci. 2016, 15, 124–136. [Google Scholar] [CrossRef]
- Fontagné-Dicharry, S.; Larroquet, L.; Dias, K.; Cluzeaud, M.; Heraud, C.; Corlay, D. Effects of dietary oxidized fish oil supplementation on oxidative stress and antioxidant defense system in juvenile rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2018, 74, 43–51. [Google Scholar] [CrossRef] [PubMed]
No. | Retention Time (Min) | Identification of Metabolites | MW (Da) | Relative Amount | |||
---|---|---|---|---|---|---|---|
10 d/0 d | 20 d/0 d | 30 d/0 d | 40 d/0 d | ||||
1 | 1.31 | 1-{4-[2-nitro-4-(trifluoromethyl) phenyl] piperazino} ethan-1-one | 339.08 | 1.80 | 1.80 | 1.52 | 1.65 |
2 | 5.30 | 11-Ketoetiocholanolone | 304.20 | 1.01 | 0.15 | 0.48 | 0.24 |
3 | 5.77 | 13Z,16Z-Docosadienoic acid | 336.30 | 0.63 | 0.55 | 0.56 | 0.55 |
4 | 5.22 | 17alpha-Hydroxyprogesterone | 330.22 | 1.38 | 0.09 | 0.94 | 0.23 |
5 | 1.49 | 2′-Deoxyadenosine | 273.08 | 0.44 | 0.26 | 0.30 | 0.31 |
6 | 5.28 | 3,4-dihydro-2H,6H- [1,3] thiazino [2,3-b] quinazolin-6-one | 218.05 | 0.81 | 2.30 | 7.84 | 1.32 |
7 | 5.02 | 4-Methyl-2-pentanone | 100.09 | 1.69 | 1.22 | 1.09 | 1.02 |
8 | 1.33 | 5-Methoxyindole-3-Carbaldehyde | 175.06 | 1.13 | 0.51 | 1.43 | 0.76 |
9 | 1.95 | 7-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl] oxy}-2H-chromen-2-one | 320.14 | 1.07 | 0.71 | 0.79 | 0.68 |
10 | 1.47 | AMP | 347.06 | 0.99 | 12.02 | 3.67 | 4.00 |
11 | 1.57 | ADP | 427.03 | 0.71 | 4.16 | 1.58 | 2.78 |
12 | 1.28 | Adenylyl sulfate | 427.02 | 1.02 | 1.56 | 0.88 | 1.23 |
13 | 1.55 | ADP-ribose | 559.07 | 1.45 | 14.93 | 4.03 | 1.94 |
14 | 5.15 | Aldosterone | 406.20 | 3.87 | 0.67 | 2.30 | 0.84 |
15 | 5.52 | Arachidonic acid | 304.24 | 0.47 | 0.14 | 0.44 | 0.31 |
16 | 5.16 | Corticosterone | 392.22 | 1.36 | 0.14 | 0.97 | 0.30 |
17 | 1.34 | Cytidine | 243.09 | 0.33 | 0.21 | 0.24 | 0.26 |
18 | 5.53 | DHA | 328.24 | 1.46 | 0.25 | 1.06 | 0.36 |
19 | 5.73 | Docosatrienoic acid | 334.29 | 0.59 | 0.30 | 0.49 | 0.39 |
20 | 5.57 | EPA | 302.22 | 0.73 | 0.22 | 0.53 | 0.40 |
21 | 5.69 | 11Z,14Z,17Z-Eicosatrienoic acid | 306.26 | 1.32 | 0.11 | 0.90 | 0.28 |
22 | 5.60 | 8Z,11Z,14Z-Eicosatrienoic acid | 306.26 | 0.78 | 0.23 | 0.56 | 0.31 |
23 | 1.46 | Erythronolactone | 118.03 | 1.41 | 4.67 | 2.80 | 2.78 |
24 | 2.00 | Guanosine 5′-diphosphate | 443.02 | 6.79 | 8.32 | 3.57 | 18.48 |
25 | 1.65 | Guanosine | 283.09 | 0.36 | 0.40 | 0.34 | 0.40 |
26 | 1.51 | Inosine 5′-diphosphate | 111.08 | 1.28 | 1.65 | 1.53 | 1.66 |
27 | 1.56 | Inosine | 136.04 | 1.12 | 0.98 | 1.07 | 1.15 |
28 | 1.61 | IMP | 428.01 | 1.32 | 2.12 | 1.83 | 2.03 |
29 | 5.57 | Isophorone | 268.08 | 0.79 | 0.71 | 0.76 | 0.75 |
30 | 1.45 | Methionine | 348.05 | 0.83 | 0.57 | 0.45 | 0.68 |
31 | 1.24 | Arginine | 138.10 | 0.35 | 0.33 | 0.21 | 0.47 |
32 | 1.39 | Aspartic acid | 149.05 | 0.72 | 1.05 | 1.13 | 2.27 |
33 | 1.53 | Glutamic acid | 174.11 | 0.33 | 0.33 | 0.31 | 1.03 |
34 | 1.26 | Lysine | 133.04 | 0.69 | 0.45 | 0.21 | 0.32 |
35 | 1.39 | Methionine sulfone | 147.05 | 0.32 | 0.43 | 0.29 | 0.42 |
36 | 1.63 | Phenylalanine | 146.11 | 0.34 | 0.32 | 0.41 | 0.42 |
37 | 1.35 | Threonine | 181.04 | 0.74 | 0.73 | 0.47 | 0.63 |
38 | 5.57 | N-Octyl-2-pyrrolidone | 148.05 | 0.75 | 1.08 | 0.88 | 1.04 |
39 | 2.66 | o-Veratraldehyde | 119.06 | 0.23 | 0.04 | 0.13 | 0.11 |
40 | 5.61 | C 16:0 | 197.18 | 0.89 | 0.68 | 0.67 | 0.63 |
41 | 5.47 | Palmitoleic acid | 166.06 | 0.44 | 0.34 | 0.20 | 0.33 |
42 | 1.54 | Pantothenic acid | 256.24 | 1.02 | 0.97 | 0.92 | 0.87 |
43 | 5.25 | Pentadecanoic acid | 254.22 | 0.31 | 0.33 | 0.30 | 0.37 |
44 | 1.51 | p-Hydroxybenzaldehyde | 219.11 | 0.51 | 0.45 | 0.57 | 0.61 |
45 | 5.51 | Pregnenolone | 288.23 | 0.98 | 0.36 | 0.76 | 0.39 |
46 | 5.30 | Progesterone | 122.04 | 1.09 | 0.09 | 0.64 | 0.27 |
47 | 1.43 | Proline | 316.24 | 0.35 | 0.16 | 0.29 | 0.29 |
48 | 1.68 | Reduced nicotinamide adenine dinucleotide | 314.22 | 2.49 | 0.72 | 1.36 | 0.63 |
49 | 1.17 | S-adenosylmethionine | 115.06 | 2.14 | 1.68 | 1.45 | 1.03 |
50 | 4.90 | Sebacic acid | 665.13 | 0.84 | 1.63 | 1.11 | 1.57 |
51 | 5.77 | C 18:0 | 398.14 | 0.61 | 0.60 | 0.40 | 0.64 |
52 | 1.37 | Taurine | 202.12 | 0.93 | 1.47 | 0.98 | 1.39 |
53 | 1.32 | UDP-galactose | 284.27 | 1.20 | 1.19 | 1.25 | 0.80 |
54 | 1.71 | UDP-N-acetyl-alpha-D-glucosamine | 125.01 | 0.71 | 2.02 | 0.75 | 1.70 |
55 | 1.43 | Uridine | 566.05 | 0.29 | 0.30 | 0.23 | 0.46 |
56 | 1.57 | Uridine diphosphate glucose | 607.08 | 2.11 | 14.34 | 10.98 | 16.75 |
57 | 1.50 | Uridine monophosphate | 244.07 | 1.67 | 1.46 | 1.28 | 1.33 |
58 | 1.31 | Histamine | 566.05 | 0.98 | 0.35 | 0.18 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Xiong, Y.; He, X.; Xue, X.; Tang, G.; Mei, J. Depuration and Starvation Regulate Metabolism and Improve Flesh Quality of Yellow Catfish (Pelteobagrus fulvidraco). Metabolites 2023, 13, 1137. https://doi.org/10.3390/metabo13111137
Zhou Y, Xiong Y, He X, Xue X, Tang G, Mei J. Depuration and Starvation Regulate Metabolism and Improve Flesh Quality of Yellow Catfish (Pelteobagrus fulvidraco). Metabolites. 2023; 13(11):1137. https://doi.org/10.3390/metabo13111137
Chicago/Turabian StyleZhou, Ya, Yang Xiong, Xianlin He, Xiaoshu Xue, Guo Tang, and Jie Mei. 2023. "Depuration and Starvation Regulate Metabolism and Improve Flesh Quality of Yellow Catfish (Pelteobagrus fulvidraco)" Metabolites 13, no. 11: 1137. https://doi.org/10.3390/metabo13111137
APA StyleZhou, Y., Xiong, Y., He, X., Xue, X., Tang, G., & Mei, J. (2023). Depuration and Starvation Regulate Metabolism and Improve Flesh Quality of Yellow Catfish (Pelteobagrus fulvidraco). Metabolites, 13(11), 1137. https://doi.org/10.3390/metabo13111137