Metabolomic Profiling of Second-Trimester Amniotic Fluid for Predicting Preterm Delivery: Insights from NMR Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
Data Collection and Eligibility Criteria
2.2. NMR Metabolomics Analysis
2.2.1. Sample Preparation
2.2.2. 1H–NMR Analysis
2.2.3. Data Processing
2.2.4. Metabolites Screening
2.3. Statistical Analysis
2.3.1. Demographics
2.3.2. Metabolomics
3. Results
3.1. NMR Analysis
3.2. Statistics
3.2.1. Overview of the Studied Samples
3.2.2. Data Reduction Method for Unique Potential Biomarker Discovery
3.2.3. Discriminant and Pathway Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.N.; Laukens, K. Getting Your Peaks in Line: A Review of Alignment Methods for NMR Spectral Data. Metabolites 2013, 3, 259–276. [Google Scholar] [CrossRef] [PubMed]
- Wojtowicz, W.; Zabek, A.; Deja, S.; Dawiskiba, T.; Pawelka, D.; Glod, M.; Balcerzak, W.; Mlynarz, P. Serum and urine 1H NMR-based metabolomics in the diagnosis of selected thyroid diseases. Sci. Rep. 2017, 7, 9108. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.T.; Mayrink, J.; Leite, D.F.; Costa, M.L.; Calderon, I.M.; Rocha, E.A.; Vettorazzi, J.; Feitosa, F.E.; Cecatti, J.G. Metabolomics applied to maternal and perinatal health: A review of new frontiers with a translation potential. Clinics 2019, 74, e894. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- Gil, A.M.; Duarte, D. Biofluid metabolomics in preterm birth research. Reprod. Sci. 2018, 25, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.; Bose, S.; You, Y.; Park, S.; Kim, Y. Molecular mechanism of microbiota metabolites in preterm birth: Pathological and therapeutic insights. Int. J. Mol. Sci. 2021, 22, 8145. [Google Scholar] [CrossRef]
- Li, X.; Huang, S.; Jiao, A.; Yang, X.; Yun, J.; Wang, Y.; Xue, X.; Chu, Y.; Liu, F.; Liu, Y. Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis. Environ. Pollut. 2017, 227, 596–605. [Google Scholar] [CrossRef]
- Michaelidou, A.-M.; Tsakoumaki, F.; Fotiou, M.; Kyrkou, C.; Athanasiadis, A.P. Metabolomics in amniotic fluid. In New Technologies and Perinatal Medicine; CRC Press: Boca Raton, FL, USA, 2019; pp. 139–148. [Google Scholar]
- Kolvatzis, C.; Tsakiridis, I.; Kalogiannidis, I.A.; Tsakoumaki, F.; Kyrkou, C.; Dagklis, T.; Daniilidis, A.; Michaelidou, A.-M.; Athanasiadis, A. Utilizing Amniotic Fluid Metabolomics to Monitor Fetal Well-Being: A Narrative Review of the Literature. Cureus 2023, 15, e36986. [Google Scholar] [CrossRef]
- Graça, G.; Diaz, S.O.; Pinto, J.; Barros, A.S.; Duarte, I.F.; Goodfellow, B.J.; Galhano, E.; Pita, C.; Almeida, M.d.C.; Carreira, I.M. Can biofluids metabolic profiling help to improve healthcare during pregnancy? Spectrosc. Int. J. 2012, 27, 515–523. [Google Scholar] [CrossRef]
- Graca, G.; Moreira, A.S.; Correia, A.J.V.; Goodfellow, B.J.; Barros, A.S.; Duarte, I.F.; Carreira, I.M.; Galhano, E.; Pita, C.; do Céu Almeida, M. Mid-infrared (MIR) metabolic fingerprinting of amniotic fluid: A possible avenue for early diagnosis of prenatal disorders? Anal. Chim. Acta 2013, 764, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Graça, G.; Goodfellow, B.J.; Barros, A.S.; Diaz, S.; Duarte, I.F.; Spagou, K.; Veselkov, K.; Want, E.J.; Lindon, J.C.; Carreira, I.M. UPLC-MS metabolic profiling of second trimester amniotic fluid and maternal urine and comparison with NMR spectral profiling for the identification of pregnancy disorder biomarkers. Mol. BioSystems 2012, 8, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
- Virgiliou, C.; Gika, H.G.; Witting, M.; Bletsou, A.A.; Athanasiadis, A.; Zafrakas, M.; Thomaidis, N.S.; Raikos, N.; Makrydimas, G.; Theodoridis, G.A. Amniotic fluid and maternal serum metabolic signatures in the second trimester associated with preterm delivery. J. Proteome Res. 2017, 16, 898–910. [Google Scholar] [CrossRef] [PubMed]
- Graca, G.; Duarte, I.F.; Barros, A.S.; Goodfellow, B.J.; Diaz, S.O.; Pinto, J.; Carreira, I.M.; Galhano, E.; Pita, C.; Gil, A.M. Impact of prenatal disorders on the metabolic profile of second trimester amniotic fluid: A nuclear magnetic resonance metabonomic study. J. Proteome Res. 2010, 9, 6016–6024. [Google Scholar] [CrossRef]
- Hallingström, M.; Barman, M.; Savolainen, O.; Viklund, F.; Kacerovsky, M.; Brunius, C.; Jacobsson, B. Metabolomic profiles of mid-trimester amniotic fluid are not associated with subsequent spontaneous preterm delivery or gestational duration at delivery. J. Matern. -Fetal Neonatal Med. 2022, 35, 2054–2062. [Google Scholar] [CrossRef]
- Giovannopoulou, E.; Tsakiridis, I.; Mamopoulos, A.; Kalogiannidis, I.; Papoulidis, I.; Athanasiadis, A.; Dagklis, T. Invasive prenatal diagnostic testing for aneuploidies in singleton pregnancies: A comparative review of major guidelines. Medicina 2022, 58, 1472. [Google Scholar] [CrossRef]
- Jacob, D.; Deborde, C.; Lefebvre, M.; Maucourt, M.; Moing, A. NMRProcFlow: A graphical and interactive tool dedicated to 1D spectra processing for NMR-based metabolomics. Metabolomics 2017, 13, 36. [Google Scholar] [CrossRef]
- Xia, J.; Bjorndahl, T.C.; Tang, P.; Wishart, D.S. MetaboMiner–semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. BMC Bioinform. 2008, 9, 507. [Google Scholar] [CrossRef]
- Murgia, F.; Monni, G.; Corda, V.; Hendren, A.J.; Paci, G.; Piras, A.; Ibba, R.M.; Atzori, L. Metabolomics analysis of amniotic fluid in euploid foetuses with thickened nuchal translucency by gas chromatography-mass spectrometry. Life 2021, 11, 913. [Google Scholar] [CrossRef]
- Gauthier, D.W.; Meyer, W.J.; Bieniarz, A. Correlation of amniotic fluid glucose concentration and intraamniotic infection in patients with preterm labor or premature rupture of membranes. Am. J. Obstet. Gynecol. 1991, 165, 1105–1110. [Google Scholar] [CrossRef]
- Romero, R.; Quintero, R.; Nores, J.; Avila, C.; Hanaoka, S.; Hagay, Z.; Merchant, L.; Hobbins, J.C. Amniotic fluid white blood cell count: A rapid and simple test to diagnose microbial invasion of the amniotic cavity and predict preterm delivery. Am. J. Obstet. Gynecol. 1991, 165, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Kirshon, B.; Rosenfeld, B.; Mari, G.; Beifort, M. Amniotic fluid glucose and intraamniotic infection. Am. J. Obstet. Gynecol. 1991, 164, 818–820. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, S.; Soundararajan, P.; Sakthivelu, M.; Karuppiah, K.M.; Velusamy, P.; Gopinath, S.C.; Pachaiappan, R. The role of prognostic biomarkers and their implications in early detection of preeclampsia: A systematic review. Process Biochem. 2023, 126, 238–251. [Google Scholar] [CrossRef]
- Wang, M.; Wang, H.; Zheng, H.; Uhrin, D.; Dewhurst, R.J.; Roehe, R. Comparison of HPLC and NMR for quantification of the main volatile fatty acids in rumen digesta. Sci. Rep. 2021, 11, 24337. [Google Scholar] [CrossRef]
- Shyer, J.A.; Flavell, R.A.; Bailis, W. Metabolic signaling in T cells. Cell Res. 2020, 30, 649–659. [Google Scholar] [CrossRef]
- Wan, J.; Jiang, F.; Zhang, J.; Xu, Q.; Chen, D.; Yu, B.; Mao, X.; Yu, J.; Luo, Y.; He, J. Amniotic fluid metabolomics and biochemistry analysis provides novel insights into the diet-regulated foetal growth in a pig model. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Romero, R.; Mazaki-Tovi, S.; Vaisbuch, E.; Kusanovic, J.P.; Chaiworapongsa, T.; Gomez, R.; Nien, J.K.; Yoon, B.H.; Mazor, M.; Luo, J. Metabolomics in premature labor: A novel approach to identify patients at risk for preterm delivery. J. Matern. -Fetal Neonatal Med. 2010, 23, 1344–1359. [Google Scholar] [CrossRef]
- Harman, C.R. Amniotic fluid abnormalities. Semin. Perinatol. 2008, 32, 288–294. [Google Scholar] [CrossRef]
- Dessì, A.; Fanos, V. Myoinositol: A new marker of intrauterine growth restriction? J. Obstet. Gynaecol. 2013, 33, 776–780. [Google Scholar] [CrossRef]
- Orczyk-Pawilowicz, M.; Jawien, E.; Deja, S.; Hirnle, L.; Zabek, A.; Mlynarz, P. Metabolomics of human amniotic fluid and maternal plasma during normal pregnancy. PLoS ONE 2016, 11, e0152740. [Google Scholar] [CrossRef]
- Menon, R. Oxidative stress damage as a detrimental factor in preterm birth pathology. Front. Immunol. 2014, 5, 567. [Google Scholar] [CrossRef] [PubMed]
Preterm (n = 17) | Full Term (n = 43) | Mann–Whitney U Test | |
---|---|---|---|
% (n) | % (n) | p Value | |
Sex | |||
Boy | 58.8% (10) | 51.2% (22) | 0.595 |
Girl | 41.2% (7) | 48.8% (21) | |
Delivery | |||
Cesarean section | 17.6% (3) | 7% (3) | 0.218 |
Normal delivery | 82.4% (14) | 93% (40) | |
Mean (SD) | Mean (SD) | ||
Gestational age (weeks) | 35.3 (2.8) | 38.5 (0.9) | <0.001 |
Amniocentesis (week) | 20.31 (2.46) | 19.68 (1.82) | 0.479 |
Age (years) | 36.54 (2.70) | 37.29 (3.63) | 0.548 |
Weight (Kg) | 71.82 (10.54) | 73.16 (9.11) | 0.755 |
Weight gain (Kg) | 12.9 (6.4) | 12.9 (5.9) | 0.786 |
Neonatal weight (g) | 2695.29 (553.85) | 3340.23 (380.77) | <0.001 |
Neonatal weight (z-scores) | −0.886 (1.06) | 0.350 (0.730) | <0.001 |
Neonatal length (cm) | 51.2 (2.2) | 51.2 (1.6) | 0.744 |
No. | Pathway | Total | Expected | Hits | Raw p | log (p) | Holm Adjust | FDR | Impact |
---|---|---|---|---|---|---|---|---|---|
1 | Aminoacyl-tRNA biosynthesis | 48 | 0.34 | 4 | 0.0002 | 3.6417 | 0.0192 | 0.02 | 0.00 |
2 | Alanine, aspartate, and glutamate metabolism | 28 | 0.20 | 3 | 0.0008 | 3.1015 | 0.0657 | 0.03 | 0.20 |
3 | Glyoxylate and dicarboxylate metabolism | 32 | 0.23 | 3 | 0.0012 | 2.9282 | 0.0968 | 0.03 | 0.03 |
4 | Butanoate metabolism | 15 | 0.11 | 2 | 0.0046 | 2.3397 | 0.3705 | 0.10 | 0.00 |
5 | Citrate cycle (TCA cycle) | 20 | 0.14 | 2 | 0.0081 | 2.0906 | 0.6494 | 0.14 | 0.12 |
6 | Glycolysis/ Gluconeogenesis | 26 | 0.18 | 2 | 0.0136 | 1.8676 | 1.0000 | 0.19 | 0.03 |
7 | Glycine, serine, and threonine metabolism | 33 | 0.23 | 2 | 0.0214 | 1.6686 | 1.0000 | 0.26 | 0.07 |
8 | Phenylalanine, tyrosine, and tryptophan biosynthesis | 4 | 0.03 | 1 | 0.0281 | 1.5511 | 1.0000 | 0.30 | 0.50 |
9 | Nitrogen metabolism | 6 | 0.04 | 1 | 0.0419 | 1.3778 | 1.0000 | 0.35 | 0.00 |
10 | D-Glutamine and D-glutamate metabolism | 6 | 0.04 | 1 | 0.0419 | 1.3778 | 1.0000 | 0.35 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolvatzis, C.; Christodoulou, P.; Kalogiannidis, I.; Tsiantas, K.; Tsakiridis, I.; Kyrkou, C.; Cheilari, A.; Thomaidis, N.S.; Zoumpoulakis, P.; Athanasiadis, A.; et al. Metabolomic Profiling of Second-Trimester Amniotic Fluid for Predicting Preterm Delivery: Insights from NMR Analysis. Metabolites 2023, 13, 1147. https://doi.org/10.3390/metabo13111147
Kolvatzis C, Christodoulou P, Kalogiannidis I, Tsiantas K, Tsakiridis I, Kyrkou C, Cheilari A, Thomaidis NS, Zoumpoulakis P, Athanasiadis A, et al. Metabolomic Profiling of Second-Trimester Amniotic Fluid for Predicting Preterm Delivery: Insights from NMR Analysis. Metabolites. 2023; 13(11):1147. https://doi.org/10.3390/metabo13111147
Chicago/Turabian StyleKolvatzis, Charalampos, Paris Christodoulou, Ioannis Kalogiannidis, Konstantinos Tsiantas, Ioannis Tsakiridis, Charikleia Kyrkou, Antigoni Cheilari, Nikolaos S. Thomaidis, Panagiotis Zoumpoulakis, Apostolos Athanasiadis, and et al. 2023. "Metabolomic Profiling of Second-Trimester Amniotic Fluid for Predicting Preterm Delivery: Insights from NMR Analysis" Metabolites 13, no. 11: 1147. https://doi.org/10.3390/metabo13111147
APA StyleKolvatzis, C., Christodoulou, P., Kalogiannidis, I., Tsiantas, K., Tsakiridis, I., Kyrkou, C., Cheilari, A., Thomaidis, N. S., Zoumpoulakis, P., Athanasiadis, A., & Michaelidou, A. -M. (2023). Metabolomic Profiling of Second-Trimester Amniotic Fluid for Predicting Preterm Delivery: Insights from NMR Analysis. Metabolites, 13(11), 1147. https://doi.org/10.3390/metabo13111147