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Abstract: Non-invasive, simple, and fast tests for lung cancer diagnostics are one of the urgent needs
for clinical practice. The work describes the results of exhaled breath analysis of 112 lung cancer
patients and 120 healthy individuals using gas chromatography-mass spectrometry (GC-MS). Volatile
organic compound (VOC) peak areas and their ratios were considered for data analysis. VOC profiles
of patients with various histological types, tumor localization, TNM stage, and treatment status
were considered. The effect of non-pulmonary comorbidities (chronic heart failure, hypertension,
anemia, acute cerebrovascular accident, obesity, diabetes) on exhaled breath composition of lung
cancer patients was studied for the first time. Significant correlations between some VOC peak areas
and their ratios and these factors were found. Diagnostic models were created using gradient boosted
decision trees (GBDT) and artificial neural network (ANN). The performance of developed models
was compared. ANN model was the most accurate: 82–88% sensitivity and 80–86% specificity on the
test data.

Keywords: volatile organic compounds; exhaled breath; lung cancer; thermal desorption; GC-MS;
comorbidities

1. Introduction

The development of new non-invasive and comfortable methods to diagnose various
diseases is an urgent task in modern medicine. Exhaled breath [1], exhaled breath con-
densate [2], saliva [1,3], skin [1,4,5], and urine [1,6] are intensively studied to develop new
diagnostic approaches. Exhaled breath is especially interesting for diagnostic purposes
since it can be obtained without any discomfort for patients [7].

A few non-invasive tests have already been implemented in clinical practice: 13C-urea
breath test in the diagnostics of Helicobacter pylori infection [8], nitric oxide breath test
in asthma, and allergic airway inflammation management [9]. However, many diseases
with high mortality rate are still diagnosed using complex and invasive procedures. Lung
cancer remains the leading cause of death [10], since the disease develops rapidly and
asymptomatically at the initial stage and can be diagnosed only by harmful and invasive
procedures such as low dose computed tomography (LDCT) and biopsy. Biopsy is an
invasive procedure; LDCT scanning includes radiation exposure. As such, the development
of new, accurate, simple to use and non-invasive methods for lung cancer diagnostics is
highly required.

Lung cancer biomarkers can be identified using various analytical methods [11,12].
Among them, gas chromatography coupled with mass spectrometry (GC-MS) is extremely
useful since it allows to conduct quantitative and qualitative analysis of the samples. Many
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scientists reported results of exhaled breath analysis using GC-MS [13–17] to identify lung
cancer biomarkers. Multidimensional gas chromatography seems to be particularly useful
to consider such complex issues as biomarkers identification [13].

GC-MS is a laborious method which demands extensive experience. Proton transfer
reaction mass spectrometry (PTR-MS) [18], selected ion flow tube mass spectrometry (SIFT
MS) [19], ion mobility spectrometry (IMS) [20] are also applied to solve the task. They allow
to perform fast analysis of exhaled breath without any sample preparation.

Another possible analytical scheme is obtaining the informative signal from the whole
exhaled breath composition instead of searching for specific biomarkers. Electronic noses
based on different sensor systems are vigorously applied to address the issue. The most
popular electronic noses are Aeonose® [21] and Cyranose 320 [22] which are commercially
available. They were used to analyze exhaled breath for lung cancer diagnostics. There
exist electronic noses based on a plethora of different sensor types such as colorimetric
sensors [23], nanomaterials [24], quartz crystal microbalance sensors [25,26], and combined
gas sensors [27] for exhaled breath analysis.

It is hardly possible to diagnose lung cancer by a unique marker; no biomarker
separately can diagnose the disease accurately enough to be applied in clinical practice.
Mostly, the discrimination of lung cancer patients and healthy controls can be achieved
applying statistical data analysis methods. As a rule, Wilcoxon rank sum test [28,29]
or Mann–Whitney U-test [18] are applied to identify statistically significant differences
between exhaled breath samples of the investigated cohorts of people. Different machine
learning algorithms, such as support vector machine [22], k-nearest neighbor classifier [27],
and others [13,16,19,21,30,31], have been applied to create diagnostic models.

The results obtained by different research groups in the field of exhaled breath analysis
for lung cancer diagnostics using various analytical methods are significantly different. No
consistency in the set of biomarkers, statistical data analysis methods, and performance
of predictive models is observed [32]. Traditionally, the group of lung cancer patients
includes patients with various exact diagnoses. The resulting products of metabolomic
pathways excreted in exhaled breath can vary significantly for different kinds of malignancy.
It can contribute to inconsistency of the results. On the other hand, patients with lung
cancer can suffer from other diseases, which can also affect the results. To find lung cancer
biomarkers, the scientists prefer to exclude the patients with other lung diseases. However,
not only lung comorbidities, but other pathologies can alter VOC profile, such as diabetes,
hypertension, and so on. Several researchers have presented the results of exhaled breath
analysis for diagnosing other diseases: diabetes [33], obesity [34], heart failure [35], and
others. However, variation in VOC profile of lung cancer patients dependently from other
non-pulmonary comorbidities has not been studied.

This research is devoted to the study of lung cancer variability and comorbidities.
Effects of chronic heart failure, hypertension, anemia, acute cerebrovascular accident,
obesity, and diabetes on VOC profile of lung cancer patients were studied. The influence of
the most frequently occurring comorbidities among lung cancer patients was investigated
for the first time. TD-GC-MS was used to analyze exhaled breath samples of lung cancer
patients and healthy volunteers. VOC peak areas and their ratios were considered as
quantitative parameters. Additionally, variation in exhaled breath composition of lung
cancer patients dependently from tumor histological type, localization, TNM stage, and
effect of chemotherapy was studied. The parameters, which varied dependently from
treatment status and comorbidities, were not considered as putative lung cancer biomarkers.
Two kinds of machine learning algorithms, namely, gradient boosted decision trees (GBDT)
and artificial neural network (ANN), were applied for the creation of a diagnostic model.

2. Materials and Methods
2.1. Materials

Ethyl ether (>95%) was obtained from Acros Organics (New Jersey, USA). Benzene,
toluene, n-hexane, acetonitrile, methanol, and ethanol (>95%) were purchased from Sigma–
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Aldrich (St. Louis, MI, USA). N-butanol, 2-butanol, and acetone (99.9%) were obtained from
Ecos-1 (Moscow, Russia); 2-propanol was obtained from Vecton (Moscow, Russia). Butyl acetate
and ethyl acetate and (99%) were purchased from Component-Reaktiv (Moscow, Russia).

2.2. Human Subjects

The study involved 2 groups of participants: lung cancer patients and healthy vol-
unteers. A volunteer was defined as healthy based on a yearly physical exam report.
Inclusion criteria were absence of pathologies and inflammation processes in lungs, which
was verified by fluorography. Diagnosis of lung cancer patients was confirmed by biopsy.
Patients with other lung comorbidities along with lung cancer were excluded. Most
patients were treated with chemotherapy (88 patients), immunotherapy (7 patients), or
target therapy (1 patient). The rest individuals provided the samples before a treatment
course. Information on the volunteers is reflected in Table 1. Each participant provided an
informed consent.

2.3. Exhaled Breath Collection

Mixed expiratory breath samples were collected in 5-L Tedlar (Supelco, Bellefonte,
PA, USA) sampling bags pre-cleaned by flushing with nitrogen. The possibility of sample
pollution by compounds from the sampling bag was studied earlier [36]. The intensities of
phenol and N,N-dimethylacetamide increased after 2 h of sample storage in the sampling
bag. Therefore, these compounds were omitted from a list of putative biomarkers. The
samples of lung cancer patients and some healthy volunteers were collected in the hospi-
tal. The samples of other healthy volunteers were collected in a room without solvents.
Ambient air was sampled on the day of exhaled breath sampling to consider the influence
of exogenous compounds. The subjects were fasted overnight before breath sampling.
Exhaled breath of active smokers was sampled not earlier than 2.5 h after smoking. It was
found that anatomic dead space, breath hold, and flow rate might affect the results in case
of healthy volunteers but not in lung cancer patients [37]. Therefore, it was essential to
provide the same sampling conditions for both groups of participants. On the other hand,
establishing the certain flow rate during sampling can be associated with discomfort and
pain for patients. Therefore, these parameters were not controlled. However, the sampling
procedure was the same for both cohorts of people. It was conducted as follows: after
a 10-min rest in a sampling room, volunteers were asked to deeply breathe, hold their
breath for 10 s and breathe out into the sampling bag in a calm manner, repeating the
procedure until filling it. Breath samples were stored in sampling bags no longer than 6 h
after sampling.

2.4. GC-MS Analysis of Exhaled Breath

The samples of exhaled breath were analyzed by GC-MS. A system consisting of a gas
chromatograph (Chromatec crystal 5000.2, Yoshkar-Ola, Russia) coupled with a quadrupole
mass spectrometer equipped with an electron ionization source (Chromatec MSD, Yoshkar-
Ola, Russia), combined with a two-stage thermal desorber TD2 (Chromatec, Yoshkar-Ola,
Russia). The Chromatec Analytic (Chromatec, Yoshkar-Ola, Russia) software and the mass
spectral library NIST 2017, Version 2.3 (Gatesburg, PA, USA) were used for data acquisition
and processing. Sorbent tubes with the external diameter and length of 6.2 and 115 mm
filled with 0.4 g of Tenax TA (60–80 mesh, Chromatec, Yoshkar-Ola, Russia) sorbent with
the surface area of 35 m2/g were used to preconcentrate VOCs. Exhaled breath VOCs
were preconcentrated upon passing a 0.5-L sample through a Tenax TA sorbent tube at
a rate of 200 mL/min using a PV-2 aspirator (Chromatec, Yoshkar-Ola, Russia). Supelco
Supel-Q PLOT (30 m × 0.32 mm × 15 µm) column was applied to separate the compounds.
The flow rate of carrier gas was 1.30 mL/min. Oven temperature program was as follows:
initial 50 ◦C ramped at 10 ◦C/min to 150 ◦C, next ramped at 6 ◦C/min to 220 ◦C and
finally ramped at 4 ◦C/min to 250 ◦C. GC-MS analysis conditions were optimized earlier
(Table 2) [36]. Identification of VOCs was conducted by applying analytical standards by
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introducing gaseous compounds in the sorbent tube with subsequent thermal desorption
and GC-MS analysis. The rest VOCs were identified by comparing the obtained mass
spectra with library ones. All VOCs showing mass spectra with match factor ≥ 85%
were considered.

Table 1. Clinical characteristics of subjects.

Cohort Feature Number

Healthy participant

Number 120
Male 36

Female 84
Age (median, range) 21, 21–67

Smokers 17

Lung cancer

Number 112
Male 88

Female 24
Age (median, range) 63, 21–77

Smokers 22

Localization of tumor
Central 59

Peripheral 53

Histology
Adenocarcinoma 50

Squamous cell carcinoma 38
Small cell carcinoma 12
Non differentiated 12

TNM (tumor, nodules, metastasis) stage
T1N0M1 1
T2N0M0 8
T2N0M1 5
T2N1M0 8
T2N1M1 1
T2N2M0 2
T2N2M1 6
T2N3M0 1
T2N3M1 2
T3N0M0 6
T3N0M1 2
T3N1M0 7
T3N1M1 1
T3N2M0 15
T3N2M1 4
T3N3M0 1
T4N0M0 5
T4N0M1 5
T4N1M0 8
T4N1M1 1
T4N2M0 10
T4N2M1 10
T4N3M0 2
T4N3M1 1

Comorbidity
Chronic heart failure 19

Hypertension 18
Anemia 8

Acute cerebrovascular
accident 5

Obesity 4
Diabetes 4
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Table 2. Thermal desorber and GC-MS operation modes.

Equipment Parameter Value

Thermal desorber

Carrier gas Helium
Carries gas flow rate (desorption
from the sorption tube), mL/min 30

Valve temperature, ◦C 150
Transition line temperature, ◦C 180

Desorption temperature, ◦C 250
Initial trap temperature, ◦C −10
Final trap temperature, ◦C 250

Carrier gas flow rate (desorption
from the trap), mL/min 50

Desorption time, min 5
Speed of the trap heating, ◦C/min 2000

GC-MS

Carrier gas Helium
Injector temperature, ◦C 250

Split ratio 1:10
Ion source temperature, ◦C 200

Transfer line temperature, ◦C 250
Scan mode Full scan

Scan range, amu 29–250
Electron impact ionization, eV 70

2.5. Statistical Analysis

The chromatograms of exhaled breath samples were recorded in the full scan mode for
quantification purposes. Extracted ion chromatogram (EIC) mode was applied to calculate
the peak areas. The room air influence was eliminated by subtraction of room air peak
area values from the exhaled breath. Negative results were equated to zero. To provide the
reliability of the results, statistical analysis was conducted only for VOCs with peak areas
at least 20% greater than in ambient air and occurring in more than 50% of samples. The
ratios of the compound peak areas to the main ones (more than 86% of the samples) as well
as ratios of the main VOCs were considered for statistical analysis.

The statistical analysis was conducted using StatSoft STATISTICA (version 10). Pre-
liminary sample size calculations were conducted using power analysis to determine the
minimum sample size required. For the correlation analysis, the results showed that the
required sample size to achieve 85% power for detecting a correlation at a level of 0.2 at a
significance criterion of α = 0.05 was N = 221. The study includes 232 samples, which is con-
sidered adequate. The normality of distribution was estimated using Kolmogorov–Smirnov
test. Due to the non-normal distribution, nonparametric Spearman’s rank correlation test
(p = 0.05) was applied to identify statistically significant correlations between the peak
areas of VOCs, their ratios and disease status.

Spearman’s rank correlation test (p = 0.05) was used to find statistically significant
correlations between the parameters and tumor localization (central or peripheral). His-
tological tumor type groups (adenocarcinoma, squamous cell carcinoma, and small cell
carcinoma) were ranged according to their malignant course, from least malignant to the
highest, in the following order: squamous cell carcinoma, adenocarcinoma, and small
cell carcinoma. The correlation analysis was applied to estimate correlation between the
parameters and malignant course as well as TNM stage.

The influence of chemotherapy on VOC profile was evaluated by comparing the VOC
profiles of patients before beginning of any treatment and under the treatment using the
correlation analysis. Further, the correlation analysis was used to estimate the effect of
comorbidities on exhaled breath VOC profile.

The dataset was randomly divided into 2 datasets: training (70%) and test (30%) to
create a diagnostic model. Sensitivity and specificity for both training and test data were
calculated for each model. Gradient boosted decision trees (GBDT) and artificial neural
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network (ANN) were applied for the creation of a diagnostic model. ANN was trained using
Broyden–Fletcher–Goldfarb–Shanno algorithm. Multilayer perceptron artificial neural
network with one hidden layer was used to create the diagnostic model. The hidden layer
included 5 neurons and the output layer contained 2 neurons, which determined whether
the input data belonged to the healthy or lung cancer group.

3. Results

Exhaled breath samples of 112 lung cancer patients and 120 healthy volunteers were
analyzed by GC-MS. Typical GC-MS chromatograms of exhaled breath samples from a
lung cancer patient and a healthy volunteer are shown in Figure 1. A total of 205 VOCs
were identified in the study. Table 3 represents the most frequently occurring compounds.
The VOCs occurring in more than 50% of samples were used for statistical analysis.
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Figure 1. Typical total ion current (TIC) chromatograms of a lung cancer patient (a) and a
healthy individual (b): 1—acetaldehyde, 2—isobutene, 3—ethanol, 4—acetonitrile, 5—acetone, 6—2-
propanol, 7—ethyl ester, 8—isoprene, 9—2,3-butandione, 10—2-butanone, 11—dimethyl carbonate,
12—hexane, 13—benzene, 14—2-pentanone, 15—allyl methyl sulfide, 16—1-methylthiopropane,
17—1-methylthiopropene, 18—heptane, 19—1-pentanol, 20—toluene, 21—hexanal, 22—N,N-
dimethylacetamide, 23—ethylbenzene, 24—o-xylene, 25—2-heptanone, 26—heptanal, 27—phenol,
28—benzaldehyde, 29—octanal, 30—decane, 31—limonene, 32—nonanal, 33—undecane, 34—
decanal, 35—dodecane.

Statistical analysis was conducted using VOC peak areas and their ratios. In case of
ratios, to avoid division by zero, it is reasonable to use VOCs with frequency of occurring
of 100% as a denominator, which was observed for acetone, isoprene, and dimethyl sulfide
(Table 3). To consider a wider list of ratios, it was rational to apply the VOCs occurring
the most frequently in the samples of both groups as a denominator, which was observed
for the first 10 VOCs (Table 3). Among them, the lowest frequency was observed for
acetonitrile. The frequency of occurring for rest compounds was lower and was different in
the studied groups. These VOCs were applied only as a numerator.

At the initial step of the study, the correlation coefficients between VOC peak areas,
their ratios and different factors were evaluated. Several ratios of 2-heptanone significantly
correlated with the treatment status (before or under chemotherapy course): 2-heptanone/1-
methylthiopropane, 2-heptanone/1-methylthiopropene, and 2-heptanone/dimethyl disul-
fide (correlation coefficients of −0.196, −0.206, −0.202, respectively).
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Table 3. Frequency of VOCs occurring in exhaled breath of healthy volunteers and lung cancer
patients (%).

No Retention Time, min VOC CAS Number Lung Cancer Patients Healthy Volunteers

1 7.40 Isoprene 78-79-5 100 100
2 6.20 Acetone 67-64-1 100 100
3 6.56 Dimethylsulfide 75-18-3 100 100
4 11.99 1-Methylthiopropene 10152-77-9 100 92
5 11.34 Allyl methyl sulfide 10152-76-8 98 97
6 11.76 1-Methylthiopropane 3877-15-4 98 95
7 11.43 2-Pentanone 107-87-9 97 99
8 12.20 Dimethyl disulfide 624-92-0 97 93
9 8.81 2.3-Butandione 431-03-8 88 92
10 5.20 Acetonitrile 75-05-8 87 88
11 8.95 2-Butanone 78-93-3 76 86
12 18.51 Dimethyl trisulfide 3658-80-8 71 55
13 18.26 Benzaldehyde 100-52-7 58 57
14 12.83 1-Pentanol 71-41-0 56 59
15 16.72 2-Heptanone 110-43-0 54 51
16 12.41 Heptane 142-82-5 53 73
17 22.45 Nonanal 124-19-6 53 56
18 9.86 Hexane 110-54-3 51 62
19 16.54 3-Heptanone 106-35-4 51 52
20 19.64 Octanal 124-13-0 51 52
21 15.13 Octane 111-65-9 51 50
22 13.36 Toluene 108-88-3 51 32
23 11.39 Pentanal 110-62-3 50 72
24 14.31 Hexanal 66-25-1 49 49
25 20.16 Decane 124-18-5 49 48
26 25.04 Dodecane 112-40-3 46 49
27 22.54 Undecane 1120-21-4 45 49
28 17.25 Propylbenzene 103-65-1 45 13
29 24.97 Decanal 112-31-2 42 49
30 17.15 Heptanal 111-71-7 39 48
31 8.90 Butanal 123-72-8 37 48
32 20.37 Nonane 111-84-2 37 46
33 10.44 Benzene 71-43-2 31 22
34 7.87 1.3-pentadiene 504-60-9 25 15
35 16.14 Ethylbenzene 100-41-4 25 12
36 10.32 1-Butanol 71-36-3 24 49
37 7.78 1.4-pentadiene 591-93-5 22 10
38 14.57 Butyl acetate 123-86-4 21 48
39 16.25 o-Xylene 95-47-6 20 13
40 16.76 M + p-Xylene 108-38-3 + 106-42-3 20 12

The influence of different comorbidities on exhaled breath VOC profile of lung cancer
patients was estimated using the correlation analysis. Statistically significant correla-
tion between such comorbidities as anemia and acute cerebrovascular accident status,
and VOC peak areas and their ratios was not found. Benzaldehyde/acetonitrile and
benzaldehyde/2.3-butandione ratios significantly correlated with obesity status (corre-
lation coefficients of 0.237 and 0.240). 2-Butanone (0.245) and some ratios of benzalde-
hyde and 2-butanone, i.e., benzaldehyde/allyl methyl sulfide (0.211), benzaldehyde/1-
methylthiopropene (0.212), benzaldehyde/dimethyl sulfide (0.230), significantly correlated
with diabetes status. Toluene and some ratios significantly correlated with both chronic
heart failure and hypertension: toluene (−0.220 and −0.268), toluene/acetonitrile (−0.196
and −0.237), toluene/isoprene (−0.214 and −0.257), toluene/1-methylthiopropene (−0.208
and −0.257), toluene/dimethyl disulfide (−0.252 and −0.270), and 1-pentanol/dimethyl
disulfide (−0.213 and −0.215). Significant correlation only with hypertension was observed



Metabolites 2023, 13, 203 8 of 13

for 1-pentanol (−0.205), toluene/allyl methyl sulfide (−0.236), 1-pentanol/2-butanone
(−0.214), 1-pentanol/2,3-butandione (−0.218), and pentanal/acetone (−0.202).

In case of tumor localization, statistically significant correlations were found for 1-
pentanol (correlation coefficient of 0.222), 1-pentanol/2,3-butandione (0.262), 1-pentanol/
isoprene (0.210), 1-pentanol/acetone (0.193), dimethyl disulfide/acetonitrile (0.196), and
2-butanone/isoprene (0.191).

Statistically significant correlations were found between TNM stage and some VOC
peak areas and their ratios (Table 4).

Table 4. Correlation coefficients between VOCs (their ratios) and TNM stage.

VOC (Ratio) Correlation Coefficient

2,3-Butandione 0.343
Dimethyl trisulfide −0.235
Octane 0.272
Octane/Acetone 0.300
Octane/Acetonitrile 0.319
Octane/Isoprene 0.312
Octane/1-methylthiopropene 0.356
Octane/Dimethyl disulfide 0.375
Dimethyl trisulfide/Acetone −0.272
Dimethyl trisulfide/Isoprene −0.237
Dimethyl trisulfide/2-butanone −0.259
Dimethyl trisulfide/dimethyl sulfide −0.242
Dimethyl trisulfide/dimethyl disulfide −0.237
Dimethyl trisulfide/2-pentanone −0.279
Benzaldehyde/acetonitrile 0.249
2,3-Butandione/2-pentanone 0.380
Acetonitrile/allyl methyl sulfide 0.275

In case of tumor histological type ranged by malignant course, statistically significant
correlations were found only for some VOC peak area ratios (Table 5).

Table 5. Correlation coefficients between VOCs (their ratios) and histological type.

VOC (Ratio) Correlation Coefficient

Octane/acetone 0.207
3-Heptanone/acetone 0.234
3-Heptanone/2-butanone 0.229
3-Heptanone/allyl methyl sulfide 0.229
3-Heptanone/1-methylthiopropane 0.235
Dimethyl trisulfide/Acetone 0.204
Dimethyl trisulfide/Isoprene 0.199
Dimethyl trisulfide/2-butanone 0.244
Dimethyl trisulfide/dimethyl sulfide 0.215
Dimethyl trisulfide/1-methylthiopropane 0.256

Further, the correlation analysis was applied to find difference between the param-
eters of lung cancer patients and healthy individuals. Significant correlations between
the disease status and peak areas of several VOC were found, i.e., acetone (−0.163), 1-
methylthiopropene (0.140), 2-pentanone (0.244), hexane (−0.287), toluene (0.249), pentanal
(−0.254), and dimethyl trisulfide (0.260). Additionally, a lot of ratios were significantly
different between lung cancer patients and healthy volunteers. The ratios with the highest
correlation coefficients were selected for the development of diagnostic models (Table 6).
The group of healthy volunteers was significantly younger than lung cancer patients. To
avoid confounding influence of age, correlation between age and all ratios selected for the
creation of diagnostic models was estimated in groups of lung cancer patients and healthy
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volunteers separately (Table 6). None of ratios selected for the creation of diagnostic models
had statistically significant correlation with age.

Table 6. Ratios selected for the creation of diagnostic models.

Ratio

Correlation Coefficient

Disease Status Age
(Lung Cancer Patients)

Age
(Healthy Volunteers)

Hexane/2-Pentanone −0.309 0.005 −0.024
Toluene/Acetone 0.252 −0.169 −0.038
1-Pentanol/Acetone 0.136 −0.089 0.026
Pentanal/2-Pentanone −0.346 0.059 −0.159
Dimethyl trisulfide/Dimethyl disulfide 0.271 0.028 0.005
Nonanal/2.3-Butandione −0.153 0.082 −0.166
Heptane/Allyl methyl sulfide −0.157 −0.028 0.135
2-Butanone/2-Pentanone −0.320 0.006 −0.121
Isoprene/Acetone 0.227 −0.163 0.174
1-Methylthiopropane/Acetone −0.149 −0.146 0.175
Dimethyl sulfide/Acetone 0.205 −0.123 0.097
Acetonitrile/Acetone −0.269 −0.033 0.149

Diagnostic models were created using GBDT and ANN. The input values of each
model represented the same set of 12 ratios (Table 6). To provide reliability of diagnostic
models, 3-fold cross validation method was applied. Performance of models created using
3 datasets is shown in Table 7. The highest sensitivity on the training dataset was observed
in case of GBDT. However, ANN diagnostic model has the best accuracy on the test dataset.

Table 7. Accuracy of diagnostic models.

Machine Learning
Algorithm

Training Dataset Test Dataset

Sensitivity, % Specificity, % Sensitivity, % Specificity, %

Dataset 1 2 3 1 2 3 1 2 3 1 2 3

GBDT 92 94 96 82 85 92 88 78 77 77 68 81
ANN 89 88 87 85 85 75 88 85 82 86 80 81

GBDT allows to estimate the importance of all variables which construct the model in
relation to the most important ones. Bar plots illustrate the importance of the variables for
each dataset (Figure 2). As it can be seen, the ratio of hexane/2-pentanone contributes less
to the prediction in all datasets, but ratios of dimethyl trisulfide/dimethyl disulfide and
isoprene/acetone were the most significant for distinguishing the two groups.
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4. Discussion

Different research groups have shown an ability of exhaled breath analysis to diagnose
lung cancer [17–19,22,31]. However, the results obtained by these groups were incoherent.
Numerous analysis conditions, groups of volunteers, putative biomarker sets were used for
the creation of diagnostic models, various learning algorithms and different performances
of the models were obtained.

Inconformity of the results partially can be explained by variability of lung cancer
groups in different studies. One of the aims of this study was to evaluate possible VOC
profile variations in lung cancer group dependently from different factors. Considering that
a part of lung cancer patients involved in the study was under the treatment, it was essential
to evaluate the influence of treatment on exhaled breath composition. For this, correlations
between the treatment status (before or under chemotherapy course) and VOC profile were
calculated. Several ratios of 2-heptanone significantly correlated with the treatment status.
The majority of other research groups have studied the effect of treatment only in case of
surgery [16,38]. The results of exhaled breath analysis for monitoring response to treatment
in lung cancer were demonstrated in work [39]. The effect of different kinds of treatment
was studied. Alterations in concentrations of dodecane, styrene, 4-methyldodecane, and
α-phellandrene were observed after treatment. We did not consider these VOCs due to low
frequency of occurring in samples. In our study, the majority of lung cancer patients were
under the treatment. Therefore, it was essential to exclude the VOCs and ratios affected
by the treatment status. It was found that a small number of ratios were affected by the
treatment status. However, the issue should be considered in detail in further studies.

Another issue which can influence the results is comorbidities. The better part of
scientists prefers to exclude patients with lung comorbidities when it comes to involving
volunteers to the study. We also excluded patients with other lung comorbidities in the
study. However, metabolic pathway of other pathologies can also lead to alterations
in exhaled breath profile. In this study, for the first time, the effect of non-pulmonary
comorbidities on exhaled breath profile of lung cancer patients was studied. Hypertension
and diabetes affect the VOC profile the most. The parameters correlating with other
pathologies should be excluded to avoid their effect on discrimination of lung cancer
patients and heathy volunteers. The current study has several limitations considering
comorbidities. First, we have not studied the effect of other lung comorbidities, which can
influence other parameters. Second, not all possible comorbidities were considered. Third,
the ratio of the patients with comorbidities was low compared with patients without them.
Therefore, the list of parameters correlating with other comorbidities can be extended with
increasing the cohort of participants. However, the analysis of comorbidities effect allows
us to exclude parameters correlating with other diseases and eliminate their influence.

Exhaled breath composition can be varied dependently of tumor localization. A lung
tumor localized in the central part is closer to the airways than peripheral, which can affect
the alterations in VOC profile of patients differently. Further, 1-pentanol and some its ratios
as well as dimethyl disulfide/acetonitrile and 2-butanone/isoprene significantly correlated
with tumor localization. Differences in VOC profiles of lung cancer patients in relation to
tumor localization have never been investigated by other researchers. This issue should be
considered further to confirm the results.

In case of TNM stage, peak areas of 2-butanone, 1-methylthiopropene and some ratios
(Table 4) significantly correlated with TNM stage. Concentration of 2-butanone was found
to be higher in advanced stages [29], which was proved by our findings, since positive
significant correlation with TNM stage was observed. However, in other studies, no differ-
ences were found in VOC profiles of patients with different stages of lung cancer [15,29,40].
In this study, VOC profiles were considered based on the detailed TNM diagnosis instead of
lung cancer stage (I, II, III, IV), which allows to reveal common tendencies not unclear when
considering the groups separately. However, conformity with other works was observed,
which proves the effect of disease stage on 2-butanone levels.
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The results of different research groups concerning histological type effect are in-
consistent. In a study [15], no differences were found in exhaled breath composition of
patients with different histological types. Statistically significant differences in 1-butanol
and 3-hydroxy-2-butanone concentrations in samples of patients with adenocarcinoma and
squamous cell carcinoma were found in a study [29]. We have studied VOC profiles of
patients with different histological types dependently from tumor malignancy (squamous
cell carcinoma, adenocarcinoma, and small cell carcinoma). Statistical analysis has shown
that no VOC significantly correlated with the tumor histological type. However, predomi-
nantly dimethyl trisulfide and 3-heptanone ratios (Table 5) significantly correlated with the
histological type. Considering the inconformity of the results obtained by different research
groups, it is worthy to continue the study involving larger cohorts of participants.

Previously, we have optimized analysis conditions, proposed a new approach for the
data analysis by using VOC ratios instead of VOC peak area values and demonstrated
the efficiency of the proposed approach using different analytical methods (GC-FID and
GC-MS) and different cohorts of participants [36,41]. In this work, we analyzed exhaled
breath of a significantly larger cohort of volunteers by GC-MS. A wider range of VOC ratios
was considered for the creation of diagnostic models as well. We used GBDT to estimate
the contribution of ratios in predictive power of the model. Dimethyl trisulfide/dimethyl
disulfide ratio contributes the most in classification of the groups. The same results were
obtained earlier on a lower cohort of people [41], which confirms reliability of the ratio as a
lung cancer biomarker. ANN outperform GBDT in terms of performance on the test dataset
with 82–88% sensitivity and 80–86% specificity. The performance of the previous model [36]
was higher (more than 90% for both sensitivity and specificity), which can be caused by
several reasons: first, the larger cohort of people was involved in the present research
and 30% of samples instead of 15% were assigned to the test dataset, which increases
the reliability of the present models; second, in this research, the participants were fasted
overnight before sampling, which can additionally decrease interfering effects; third, the
number of smoking participants was equal; thus, the influence of smoking was eliminated.
Most lung cancer patients are active smokers, which does not allow us to consider only the
patients who do not smoke. However, cigarette smoking significantly influences exhaled
breath composition [42]. Thus, to consider smoking factor we had to involve a comparable
number of smokers in both lung cancer patient and healthy volunteer groups. The group
of healthy volunteers was significantly younger, than lung cancer patients. However, none
of parameters selected for the creation of diagnostic models had statistically significant
correlation with age. Further, it should be noted that the young participants (from 21 years
old) were also present in the group of lung cancer patients. Unfortunately, the increasing
trend in the number of young people among cancer patients should be considered.

Notably, significant correlations with the disease status were observed for ratios
of toluene/acetonitrile, hexane/acetonitrile, and pentanal/isoprene. The same results
were obtained in the previous research (correlation coefficients of 0.248, −0.307, −0.296,
respectively). It evidences the robustness of the parameters as potential lung cancer
biomarkers. Further study is required to confirm the reliance of other biomarkers found in
this study.

5. Conclusions

The study has revealed that not only pulmonary, but also non-pulmonary comorbidi-
ties can influence the exhaled breath VOC profile. Among them, chronic heart failure and
hypertension affect mostly. Variations in exhaled breath VOC profiles among lung cancer
patients with different histological types, TNM stages, tumor localization, and treatment
status have been observed, which can influence the performance of diagnostic models.
These factors should be considered before creating a lung cancer diagnostic model, which
allows to build a useful test for diagnosing the dangerous disease timely.
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