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Abstract: Obesity is a severe health problem linked to an increased risk of comorbidity and mortality
and its etiopathogenesis includes genetic, epigenetic, microbiota composition, and environmental
factors, such as dietary habits. The olfactory system plays an important role in controlling food
intake and meal size, influencing body weight and energy balance. This study aims to identify the
connection between olfactory function and clinical and nutritional aspects related to weight excess
in a group of 68 patients with overweight or obesity. All participants underwent the evaluation of
olfactory function, anthropometric data (weight, height, BMI, waist circumference), clinical data
(hypertension, disglycemia, dyslipidemia, metabolic syndrome), and adherence to the Mediterranean
diet (Mediterranean Diet Score). A fourth-generation artificial neural network data mining approach
was used to uncover trends and subtle associations between variables. Olfactory tests showed that
65% of patients presented hyposmia. A negative correlation was found between olfactory scores and
systolic blood pressure, fasting plasma glucose, and triglycerides levels, but a positive correlation was
found between olfactory scores and the Mediterranean diet score. The methodology of artificial neural
networks and the semantic connectivity map “Auto-Contractive Map” highlighted the underlying
scheme of the connections between the variables considered. In particular, hyposmia was linked
to obesity and related metabolic alterations and the male sex. The female sex was connected with
normosmia, higher adherence to the Mediterranean diet, and normal values of blood pressure, lipids,
and glucose levels. These results highlight an inverse correlation between olfactory skills and BMI
and show that a normosmic condition, probably because of greater adherence to the Mediterranean
diet, seems to protect not only from an excessive increase in body weight but also from associated
pathological conditions such as hypertension and metabolic syndrome.

Keywords: metabolism; data mining; body weight; diet; Mediterranean; machine learning; feeding
behaviour; olfaction; Sniffin’ Sticks; nutrition; overweight

1. Introduction

The sense of smell provides critical information on the environment and plays a rele-
vant role in various aspects of the individual’s life: safety and survival, eating habits, social
interaction, and quality of life [1–4]. Subjects with an impaired sense of smell report perceiv-
ing less palatable foods and experiencing less gratification in eating [5]. As a result, these
people change their eating habits and try to compensate for reduced sensory gratification
by adding spices and seasonings to foods and by preferring sweet and high-fat foods rather
than healthier, but less palatable foods such as fruits and vegetables [5,6]. Among humans,
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there is a great inter-individual variability of olfactory function, ranging from normosmia
(normal olfactory capacity) to anosmia (defined as total or specific olfactory blindness for
some odors), passing through hyposmia (reduced olfactory ability) [1,7–10]. The causes
of these alterations can be genetic [11–15], environmental [16–19], metabolic [20,21], and
physiological [22–25]. As regards the physiological causes, an aspect of particular interest
and still a matter of debate is represented by the differences in olfactory function between
females and males. Although it is commonly accepted that females perform better than
males, some studies do not report any sex-related differences [26,27]. Cognitive [24,28,29],
social [24,29], and neuroendocrine factors have been suggested [30,31] as factors involved
in supporting the better olfactory performance of females compared to males. Moreover,
a recent study has highlighted the presence of possible genetic factors on the basis of the
different olfactory performances related to sex [32].

Olfactory deficits are also associated with numerous chronic diseases, among which we
can list hypertension, Parkinson’s and Alzheimer’s neurodegenerative diseases, depression,
autoimmune/inflammatory diseases, diabetes, and obesity [33–43]. The metabolic changes
associated with obesity, particularly circulating levels of hormones such as leptin, insulin,
and ghrelin, seem to negatively affect the olfactory function of individuals [20,44–46]. On
the other hand, by considering that the excessive consumption of foods rich in refined
sugars and saturated fatty acids is one of the factors contributing to the development of
obesity, at the expense of healthier foods rich in vitamins, minerals, and fibers, an alteration
of olfactory function could favor the choice of the former type of food and can therefore be
considered among the causes of obesity [47–49].

Overweight and obesity are chronic metabolic diseases affecting people of both sexes
and all ages, with an increasing rate worldwide [50]. In the particular case of visceral adi-
posity, they are associated with an increased risk of cardiovascular and metabolic morbidity
and mortality [51]. The biological mechanisms linked to the excess of visceral fat, among
which low-grade chronic inflammation, oxidative stress, and altered adipokine pattern,
also favor the development of other pathological conditions such as osteoarticular [52],
respiratory [53], dermatological [54] diseases, or some types of cancer [55]. Furthermore,
people with overweight or obesity frequently show sleep [56] and psychological distur-
bances [57] which in turn could worsen the outcome of obesity. The pathogenesis of obesity
is complex, involving genetic, epigenetic, and environmental factors [58]. Among the
latter, a hypercaloric, nutritionally poor diet, and sedentary behaviors play a key role in
determining a persistent imbalance between energy intake and expenditure [59]. Conse-
quently, lifestyle interventions characterized by changes in nutrition and increased physical
activity represent a fundamental tool in the management of obesity [60]. As regards the
dietary approach, the Mediterranean Diet (MD), consisting of a high consumption of food
of vegetable origin and monounsaturated fats and a low consumption of red or processed
meat and saturated fats, is known to have a protective effect against mortality and several
chronic non-communicable diseases such as cardiovascular or neurodegenerative diseases,
cancer, type 2 diabetes mellitus and obesity [61–63]. MD has also been shown to positively
modulate the gut microbiota composition in patients with obesity [64], and an association
between high adherence to MD and a beneficial microbiota pattern has been reported in
extremely long-lived individuals [65]. However, despite the numerous reported health
benefits, adherence to MD is progressively lowering, especially among young people in
favor of a globalized diet based on packaged processed food rich in simple sugar and
saturated fats [66].

Based on these considerations, the purpose of this work is divided into three objectives:
(1) to assess the incidence of olfactory dysfunction in individuals with excess body weight;
(2) to evaluate the presence of correlations between the olfactory function and the metabolic
alterations associated with obesity; (3) to identify the connections between excess body
weight and olfactory function, using an innovative data-mining approach with a fourth-
generation Artificial Neural Network (ANN) analysis, a computational adaptive system
capable of highlighting and identifying subtle trends and associations between variables.
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By means of this approach, the goal was to provide more information on the complex
relationship between olfactory dysfunction and body weight and metabolic alterations
associated with obesity, especially regarding sex-related differences. Therefore, this study
will aim to highlight the positive and/or negative correlations between olfactory function
and metabolic alterations associated with obesity; subsequently, an artificial neural net-
works (ANN) analysis and an innovative data mining analysis will allow us to understand
natural processes, recreating these processes using automated models, and to discover
hidden trends and associations among variables.

2. Materials and Methods
2.1. Participants

Sixty-eight outpatients (51 women, 17 men; age 54.87 ± 1.76 yrs) with overweight or
obesity registered at the Obesity Unit of the University Hospital of Cagliari (Sardinia, Italy),
hereafter referred to as OC patients, agreed to take part in this study. Exclusion criteria were
pregnancy or lactation, the presence of head trauma, history of cancer, sinusitis or nasal
sept disorders, and neurological or psychiatric diseases. Patients who asserted to have had
nasal congestion or allergic reactions before undergoing the smell tests were excluded. All
subjects were required to fast for at least 2 h prior to testing and to be fragrance-free.

All participants underwent the evaluation of anthropometric data (height, body
weight, BMI, waist circumference), clinical data (hypertension, diabetes, dyslipidemia,
metabolic syndrome), adherence to the Mediterranean diet (Mediterranean Diet Score,
MDS), and olfactory function by means of the “Sniffin’ Sticks” test (as described in the next
paragraph). As for the MDS, we also reported the mean score obtained in a control group
of adult people (50 M, 50 F, age range 18–89 yrs) from the general population of the same
geographical area (Sardinia, Italy).

The anthropometric evaluation was performed by the same expert nutritionist accord-
ing to the current methodology [67]. Height, expressed in centimeters (cm), was measured
using a wall-mounted stadiometer (SECA, Hamburg, Germany) on barefoot patients with
the head being in the “Frankfort plane”. Body weight expressed in kilograms (kg) was
measured by means of an impedance scale (TANITA BC420MA, Amsterdam, The Nether-
lands) while patients were in a fasting state and wearing only light clothes. The BMI was
calculated through the ratio between the weight and the square of height (kg/m2) and
was used to classify the weight status of the subjects: a BMI value ≥ 25 kg/m2 indicates
overweight, while a BMI value ≥ 30 kg/m2 defines obesity. The waist circumference (WC),
expressed in cm, was measured according to the NIH protocol (NIH, 2008), considering the
International Diabetes Federation (IDF) cut-off values for the European population (94 cm
for men and 80 cm for women) [68].

The clinical evaluation includincludeded the measurement of Sistolic and Diastolic
Blood Pressure (S-BP and D-BP), Fasting Plasma Glucose (FPG), HDL cholesterol (HDL-C),
and triglycerides (TG) values. The BP measurement was performed by the endocrinologist
during the physical examination according to a standardized procedure [69]. The assess-
ment of the metabolic variables consisted of a 12 h fasting blood sample for determination
with standard methods of fasting plasma glucose (FPG), HDL cholesterol (HDL-C), and
total triglycerides (TG) values. As for WC, also for all the aforementioned clinical variables
we considered the IDF cutoff values, and Metabolic Syndrome (MS) was defined by the pres-
ence of a WC value higher than the sex-specific cut-off plus at least 2 of FPG ≥ 100 mg/dl
or specific treatment for diabetes mellitus; TG ≥ 150 mg/dl; HDL-C < 40 mg/dl males,
<50 mg/dl females or specific treatment for dyslipidemia; SBP and DBP ≥ 130/85 mmHg
or specific treatment for hypertension [68].

The adherence to the Mediterranean Diet was evaluated by means of a validated and
standardized questionnaire which allows the establishment of the degree of adherence
through a score (Mediterranean Diet Score, MDS) in the range of 0–55. More specifically,
the questionnaire considers the monthly or weekly consumption of 11 food groups, and
assigns an increasing score from 0 to 5 for the consumption of foods typical of the Mediter-
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ranean model (unrefined cereals, potatoes, vegetables, fruit, legumes, fish, and olive oil),
and a decreasing score from 5 to 0 for the consumption of foods considered far from the
same model (meat or derivatives, poultry, whole dairy products); as for alcohol consump-
tion, decreasing scores from 5 to 1 indicate a consumption <300 mL/day, <400 mL/day,
<500 mL/day, <600 mL/day, respectively, while a score of 0 corresponds both to a con-
sumption >700 mL/d or no consumption. The total score, obtained from the sum of the
11 individual scores, ranges from 0 to 55, with higher values indicating a higher adherence
to MD [70]. Due to the lack of a specific cutoff, we considered the MDS of 30, corresponding
to the mean value obtained in the control group from the general population, as a reference
value of adherence to the MD. Table 1 shows the mean values ± ES of the anthropometric
and clinical data, Mediterranean Diet Score and olfactory scores of the patients enrolled in
the study considered separately by sex.

Table 1. Anthropometric, clinical, nutritional, and olfactory characteristics of the whole sample and
divided by sex.

Sex F M

N 51 17
Age (years) 57.69 ± 20.8 50.59 ± 3.73
Height (m) 1.56 ± 0.01 1.71 ± 0.02
Weight (kg) 83.19 ± 2.65 97.94 ± 4.55

BMI (kg/m2) 34.09 ± 0.95 33.59 ± 1.45
WC (cm) 108.21 ± 2.15 111.62 ± 2.45

S-BP (mmHg) 125.28 ± 2.19 129.53 ± 3.15
D-BP (mmHg) 78.82 ± 1.51 81 ± 2.20
FPG (mg/dl) 97.04 ± 2.64 103.47 ± 6.03

HDL-C (mg/dl) 59.77 ± 2.17 50.19 ± 3.44
TG (mg/dl) 108.22 ± 7.49 102.81 ± 13.43

MDS 30.22 ± 0.70 28.35 ± 1.50
TDI 26.96 ± 0.78 24.29 ± 1.40

T 5.86 ± 0.34 4.94 ± 0.57
D 10.24 ± 0.42 9.59 ± 0.73
I 10.86 ± 0.33 9.77 ± 0.43

WC: Waist Circumference; S-BP: Systolic Blood Pressure; D-BP: Diastolic Blood Pressure; FPG: Fasting Plasma
Glucose; HDL-C: High-Density Lipoprotein-Cholesterol; TG: TriGlycerides; MDS: Mediterranean Diet Score;
TDI: composite score as the sum of results for Threshold, Discrimination, and Identification Olfactory Test; T: odor
Threshold score; D: odor Discrimination score; I: odor Identification score.

2.2. Olfactory Sensitivity Screening

The “Sniffin’ Sticks” test battery (Burghart Instruments, Wedel, Germany) was used
to assess the individual orthonasal olfactory function. This method is validated in the
health field and internationally credited. In fact, evaluation of the olfactory threshold
(t-test), discrimination (D-test), and identification (I-test) are generally applied for olfactory
screening [71]. Felt-tip pens were used to present odors: after removing the cap, the pen tip
is placed for 3 s about 2 cm away from the nostrils.

The olfactory threshold was established by means of 16 triplets. Each triplet consists of a
pen containing an increasing concentration of n-butanol and two pens containing a solvent.
The experimenter presents the triplets in increasing order till the test subject recognizes the
pen with n-butanol in the same triplet twice in a row. This represents the starting position
and the first reversal, i.e., the point at which the triplets are presented in descending order of
n-butanol dilution. Each time the subject fails to recognize the target pen twice in the same
triplet, the dilution order in which the triplets are displayed is reversed. The threshold score is
the average of the last four of the seven reversals. To evaluate the odor discrimination, each
triplet of the 16 used by the experimenter, is composed of two pens filled with the same odor
and one soaked with a different one (target pen). The objective is to recognize the target pen
and the number of correct answers represents the score obtained by the individual. Finally,
16 pens containing odors familiar to the subjects were used to ascertain the ability to identify
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them. For each pen, the participant has to choose among four possibilities and the number of
correct identifications represents the score obtained.

Information about the participants’ olfactory scores, age, gender, height, weight, and
BMI of the participants are recorded by the experimenter on a protocol during the test. The
sum of the scores obtained with the t-test, D-test, and I-test gives the total TDI. This TDI
score, as well as the scores obtained with t-test, D-test, and I-test, help classify subjects by
their olfactory performance as normosmic or hyposmic [72].

2.3. Data Analysis

The results for continuous variables were expressed as mean value and standard error
(M ± ES), while the results for categorical variables were expressed as absolute numbers
and percentages. The comparison of the olfactory status between males and females was
performed by means of the Fisher exact test, while the relationship between the continuous
variables was evaluated using Pearson’s correlation test. For all the tests a p-value p < 0.05
was considered as the significance limit. The analyses were performed with GraphPad
Prism 6 (GraphPad Software, San Diego, CA, USA).

The analyses were carried out using a fourth-generation artificial neural network
(ANN) data mining approach. Using a mathematical strategy based on ANNs, Auto Con-
tractive Map (Auto-CM) is a mapping method that can calculate the multidimensional
association strength of each variable with all other variables in a dataset. Auto cm is
very efficient at pointing out any form of recurring patterns, regular correlations, hidden
trends, and associations between variables. In fact, this approach may create and construct
a semantic connectivity map that preserves nonlinear relationships between variables,
captures elusive connection schemes between clusters, and emphasizes intricate similarities
between variables. ANNs aim to understand natural processes and recreate them using
automated models, and have been used successfully in many fields of medicine to under-
stand non-linear relationships among variables. This is useful when conclusive evidence
is lacking on these associations due to intrinsic methodological limitations of standard
statistical techniques in describing nonlinear and complex associations typically observed
in biological systems. In recent years, these limits have been overcome by the introduction
of artificial neural networks (ANN) analysis and an innovative data mining analysis known
as auto-contractive map (AutoCM) based on ANN architecture: AutoCM allows to uncover
hidden trends and associations among variables, using a fuzzy clustering approach. The
added value of this approach in the study of biological systems is represented by its ability
to highlight the organizational principles of a network of variables and therefore to map
biological processes using automatic and analytical models to reconstruct the imprecise,
nonlinear, and simultaneous pathways underlying a complex set of data. In the last decade,
AutoCM has been successfully tested across the medical field. Recently, a machine learn-
ing model has been created and used to predict with high precision the taste function of
subjects [73]. The description of the 3-layer architecture and the mathematical models of
Auto-CM is reported in Buscema and Grossi [74]. This model has a training phase and
a learning phase. To put it in non-technical terms, Auto-CM chooses the “weights” of
the vector matrix, which describe the dataset warped landscape and allows for a direct
interpretation. In fact, these weights may be easily visualized by converting them into
physical distances: variables with greater connection weights move relatively closer to one
another, and vice versa. The distances are proportional to the importance of many-to-many
relationships across all variables. A graph known as a “semantic connectivity map” is
produced by applying a mathematical filter, the minimum spanning tree, to the matrix
of distances [75,76]. This approach enables a visual mapping of the intricate network of
connection patterns between variables, making it easier to identify the variables that are
crucial for understanding the graph. The dimensionality issue is solved by the adaptive
learning inference algorithms, which are based on the idea of a functional estimation sim-
ilar to ANNs. Due to this, we opted against using the Bonferroni adjustment (which is
used when significance tests are conducted with dependent variables) and instead used an
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exploratory approach to investigate significant connections among numerous independent
factors. The Minimum Spanning Tree (MST) displays the shortest combination out of all
potential methods to connect the variables in a tree, as shown by the example in Figure 1.
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(B) 16 possible spanning trees.

Figure 1 shows the graph theory applied to four points (variables) having in multidi-
mensional space the distances visible on the arches. Figure 1A depicts a complete graph
in which all points are connected. Figure 1B describes 16 possible spanning trees, i.e., the
possibilities to connect the four points avoiding loops. By considering the distances there is
one spanning tree in which the sum of distances produces the shortest path (sum = 6). This
is the minimum spanning tree of this set of points.

The Auto-CM, which is based on the MST theory, provides a graph in which the
distances between variables indicate their bonding strength (weights), revealing links
between variables [74,77,78]. Practically speaking, MST demonstrates the shortest possible
combination that displays the data in a condensed graph as well as the optimum approach
to connect the variables in a tree. This method offers a diagram showing the relationships
between the main hubs of the system and the variables. Hubs are variables in the map that
have the greatest number of connections. The initial weights are not posed at random by
the Auto-CM. The Auto-CM, on the other hand, begins with the same value. As a result, the
generated graph can be replicated throughout numerous runs. In other words, the graph
simply recognizes the pertinent associations, arranging them into a logical whole, while
the Auto-CM visualizes in space the connections among variables (“closeness”). The inner
node that is left after the “leaves” nodes are removed by bottom-up recursively pruning
is known as the “central node.” The “nervous system” of any data set can be represented
by the MST. In fact, the total energy of the system is obtained by adding the connection
strengths of all variables. The MST selects just the connections that minimize this energy,
that is, only those really necessary to make the system coherent.

3. Results
3.1. Anthropometric and Metabolic Variables

The anthropometric evaluation allowed us to classify the patients who took part in the
study as overweight or obese subjects on the basis of their BMI value. In detail, 22/68 patients
(16 F, 6 M) were overweight, while 46/68 patients (35 F, 11 M) presented obesity (Table 2).
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Table 2. Distribution of patients of the whole sample divided by sex (females n = 51, males n = 17)
and classified as individuals with overweight or obesity based on their BMI (Kg/h2).

Variable Sex

BMI Status F (%) M (%)

Overweight 16 (31.37) 6 (35.29)
Obesity 35 (68.63) 11 (64.71)

The clinical evaluation made it possible to assess the presence of metabolic alterations
obesity-related such as hypertension, hyperglycemia, and abnormal HDL and TG levels. In
particular, as shown in Table 3, we found that 41/68 patients (29 F, 12 M) had hypertension,
22/68 patients (15 F, 7 M) had hyperglycemia, 17/68 patients (15 F, 2 M), and 16/68 patients
(11 F, 5 M) showed low HDL and high TG levels, respectively. In addition, according
to the above-mentioned IDF criteria (Alberti, 2005), 27/68 patients (20 F, 7 M) showed
metabolic syndrome, while 41/68 patients (31 F, 10 M) did not meet the diagnostic criteria
for metabolic syndrome, as shown in Table 3. Finally, considering the score obtained
with the Mediterranean Diet Questionnaire, we assessed the patients’ adherence to the
Mediterranean Diet. The results shown in Table 3 highlight that 38/68 patients (30 F, 8 M)
scored ≥ 30, while 30/68 patients (21 F, 9 M) scored less than 30, indicating a higher or
lower adherence to MD, respectively.

Table 3. Distribution of patients of the whole sample, and divided by sex (female n = 51, male
n = 17) showing hypertension, hyperglycemia, abnormal levels of high density lipoprotein (HDL)
and triglycerides (TG), metabolic syndrome (MS), and lower adherence to the Mediterranean Diet
(MDS) based on their clinical, metabolic and nutritional data.

Sex

Variable F (%) M (%)

Hypertension 29 (56.86) 12 (70.59)
Hyperglycemia 15 (29.41) 7 (41.18)

Low HDL 15 (29.41) 2 (11.75)
High TG 11 (21.57) 5 (29.41)

MS 20 (39.22) 7 (41.18)
MDS (<30) 21 (41.18) 9 (52.94)

3.2. Olfactory Function and Correlation Analysis

The distribution of subjects classified as normosmic and hyposmic based on their
overall TDI olfactory status and individually for their T, D, or I olfactory status is shown
in Table 4. In detail, based on TDI scores, 44/68 patients were classified as hyposmic and
24/68 as normosmic. Instead, based on the score obtained from each subtest, 20/68 pa-
tients were classified as hyposmic and 48/68 as normosmic by means of T olfactory score,
28/68 patients were classified as hyposmic and 40/68 as normosmic by means of D olfac-
tory score. Finally, 34/68 patients were classified as hyposmic and 34/68 as normosmic by
means of I olfactory score. None were classified as anosmic.

Table 5 shows the distribution of female and male patients classified by their olfactory
status. The percentage of female patients classified as normosmic or hyposmic by their TDI
olfactory status differed from that determined for male patients (χ2 = 8.5859, p = 0.0034)
(Table 5). In detail, 45.10% (n = 23/51) and 54.90% (n = 28/51) of females were, respectively
normosmic or hyposmic, while 5.88% and 94.12% of males were normosmic or hyposmic,
respectively. Table 5 also shows the distribution of female and male patients classified as
normosmic or hyposmic based on their Threshold (T), Discrimination (D), and Identification
(I) olfactory status. Fisher’s method showed that the percentage of females classified as
normosmic or hyposmic for their I olfactory status differed from that of male patients
(χ2 = 5.6717, p = 0.0172). Specifically, 56.86% (n = 29/51) and 43.14% (n = 22/51) of females
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were, respectively normosmic or hyposmic, while in the case of male patients, 29.41% were
classified as normosmic and 70.59% as hyposmic. No differences were found in distribution
between subjects classified as normosmic or hyposmic on the basis of T and D olfactory status.

Table 4. Distribution of patients classified as normosmic or hyposmic based on their overall TDI olfactory
status and singly for their Threshold (T), Discrimination (D), and Identification (I) olfactory status.

Variable Olfactory Status n (%)

TDI
Normosmic 24 (35.29)
Hyposmic 44 (64.71)

T
Normosmic 48 (70.59)
Hyposmic 20 (29.41)

D
Normosmic 40 (58.82)
Hyposmic 28 (41.18)

I
Normosmic 34 (50)
Hyposmic 34 (50)

Table 5. Distribution of female and male patients classified as normosmic or hyposmic based on
their overall TDI olfactory status and separately for their Threshold (T), Discrimination (D), and
Identification (I) olfactory status.

Group F M p-Value

Variable Olfactory Status n (%) n (%)

TDI
Normosmic 23 (45.10) 1 (5.88) 0.003
Hyposmic 28 (54.90) 16 (94.12)

T
Normosmic 35 (68.63) 13 (76.47) 0.538
Hyposmic 16 (31.37) 4 (23.53)

D
Normosmic 29 (56.86) 11 (64.71) 0.569
Hyposmic 22 (43.14) 6 (35.29)

I
Normosmic 29 (56.86) 5 (29.41) 0.017
Hyposmic 22 (43.14) 12 (70.59)

p-Value derived from Fisher’s Exact Test. Females (n = 51), males (n = 17).

Figure 2 shows the correlation results between olfactory scores and S-BP, FPG, HDL,
and TG plasma levels. Pearson’s correlation test highlighted a negative correlation between
the TDI olfactory score obtained by each patient and her/his S-BP, FPG, and TG levels
(Pearson’s r > −0.59, p < 0.0001). The same negative correlations were also found between
S-BP, FPG, and TG levels of each patient and her/his T (Pearson’s r > −0.42, p < 0.0005),
D (Pearson’s r > −0.55, p < 0.0001) and I (Pearson’s r > −0.40, p < 0.001) olfactory scores.
Instead, no correlation was found between each patient’s olfactory score and her/his HDL
levels (Pearson’s r < 0.15, p > 0.21).

Figure 3 shows a negative correlation between olfactory scores obtained by each female
patient and her S-BP (Pearson’s r > −0.39, p < 0.005), FPG (Pearson’s r > −0.39, p ≤ 0.005),
and TG levels (Pearson’s r > −0.46, p < 0.001). No correlation was found between each
female’s olfactory score and her HDL levels (Pearson’s r < 0.20, p > 0.16).

Figure 4 shows a negative correlation between TDI and D olfactory scores obtained by
each male patient and his S-BP (Pearson’s r > −0.58, p ≤ 0.015), FPG (Pearson’s r > −0.68,
p < 0.005), and TG levels (Pearson’s r > −0.58, p ≤ 0.016). Instead, in the case of the T olfac-
tory score, the results showed a negative relationship only with FPG (Pearson’s r = −0.56,
p = 0.019) and TG levels (Pearson’s r = −0.66, p = 0.004). Finally, no correlation was found
between each male’s olfactory score and his HDL levels (Pearson’s r < 0.16, p > 0.55).
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A positive correlation was found between the Mediterranean Diet Score (MDS) ob-
tained by each patient and her/his TDI (Pearson’s r = 0.58, p < 0.0001), T (Pearson’s r = 0.40,
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p < 0.001), D (Pearson’s r = 0.62, p < 0.0001), and I (Pearson’s r = 0.30, p = 0.012) olfactory
score (Figure 5). When patients were divided according to sex, Pearson’s correlation test
showed a positive correlation in the case of females, for all olfactory scores considered
(Pearson’s r > 0.48, p < 0.001). Conversely, no correlation was found in the case of males
(Pearson’s r < 0.48, p < 0.051).
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3.3. Semantic Connectivity Map

The semantic connectivity map (Auto-CM method)-MST graph (Map I in Figure 6) shows
the connections between the variables considered and highlights that these are arranged to
form a tree that can be divided into two parts: the unhealthy pattern of the variables appears
in the upper part, while the healthy one appears in the lower one. In particular, it is noted
that in the upper part of the graph, the variable “obesity” acts as a hub, a clinical condition
having a considerable number of connections with the clinical, olfactory, anthropometric, and
nutritional variables in the unhealthy area, while in the lower part of the tree the variable
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“norm TG” acts as a hub, which has a considerable number of connections with the same
variables, but in the healthy and/or non-compromised area. In detail, map 1 (Figure 6)
shows that obesity condition is strongly connected with olfactory dysfunction and male sex,
hypertension, disglycemia, dislipidemia, metabolic syndrome, and older age. Instead, “norm
TG” is connected with a normal olfactory function, healthy clinical parameters (blood pression,
glycemia, HDL, and TG), and with adherence to the Mediterranean diet through the female
node, marked in red since it is the central node of the graph.
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Figure 6. Map I shows the connections among variables in the unhealthy (red circle) or healthy (blue
circle) form.

Hypo-T, Hypo-D, Hypo-I, and Hypo-TDI: subjects classified as hyposmic based on
their scores obtained with the Threshold (T), Discrimination (D), Identification (I) test, and
their sum (TDI); Norm-T, Norm-D, Norm-I, Norm-TDI: subjects classified as normosmic
based on their scores obtained with the Threshold (T), Discrimination (D), Identification (I)
test and their sum (TDI); OW: subjects with overweight; Ob: subjects with obesity; High
BP: high blood pressure; Norm BP: normal blood pressure; High Gly: high glycemia; Norm
Gly: normal glycemia; High TG: high triglycerides; Norm TG: normal triglycerides; Low
HDL: High-Density Lipoprotein; Norm HDL: High-Density Lipoprotein; MS: subjects with
metabolic syndrome; High MDS: high adherence to the Mediterranean diet (score ≥ 30);
Low MDS: poor adherence to the Mediterranean diet (score < 30).

Map II in Figure 7 shows the strength of the association between the variables considered:
olfactory function, clinical parameters, anthropometric data, and eating behavior. The associa-
tions are visualized by the concept of “proximity”: the variables whose connection weights are
greater are relatively close and vice versa. The strength of the relationship between variables
progressively increases up to the value of 1 (the strongest connection level). In our maps,
most of the link strength values were above 0.92, indicating a strong connection, and most of
them were very close to 1. Only the connection between poor adherence to the Mediterranean
diet and young age and that between normal blood pression and a cigarette smoking habit
showed connection strength values of 0.87 and 0.78, respectively.
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Figure 7. Map II shows the strength of the association among the variables considered.

Hypo-T, Hypo-D, Hypo-I, and Hypo-TDI: subjects classified as hyposmic based on
their score obtained with the Threshold (T), Discrimination (D), Identification (I) test, and
their sum (TDI); Norm-T, Norm-D, Norm-I, Norm-TDI: subjects classified as normosmic
based on their score obtained with the Threshold (T), Discrimination (D), Identification (I)
test and their sum (TDI); OW: subjects with overweight; Ob: subjects with obesity; High
BP: high blood pressure; Norm BP: normal blood pressure; High Gly: high glycemia; Norm
Gly: normal glycemia; High TG: high triglycerides; Norm TG: normal triglycerides; Low
HDL: High-Density Lipoprotein; Norm HDL: High-Density Lipoprotein; MS: subjects with
metabolic syndrome; High MDS: high adherence to the Mediterranean diet (score ≥ 30);
Low MDS: poor adherence to the Mediterranean diet (score < 30).

4. Discussion

One of the main functions of the olfactory system is to play a relevant role in the
choice of food and in the eating behavior of individuals [4,5,79]. Changes in dietary habits
and/or the desire for certain foods that characterize subjects who have problems with
their sense of smell could affect body weight and metabolic control, even with long-term
consequences [20,80].

Based on these considerations, the first goal of this work was to assess the incidence
of olfactory dysfunction in a group of patients with overweight or obesity. The results
we found show that approximately 65% of patients presented a reduced general olfactory
function and that 30%, 40%, and 50% of them were classified as hyposmic for odor percep-
tion, discrimination, and identification skills, respectively. These data are in accordance
with previous studies which showed that patients with excess body weight have a reduced
olfactory function and that hyposmia increases with increasing BMI [41,49,81,82]. While
obesity leads to imbalances in the circulating levels of peptides such as leptin, insulin, and
ghrelin which can decrease or increase olfactory sensitivity [20,44,45,83], a compromised
sense of smell can instead affect body weight by acting on the control mechanisms of
eating behavior. In fact, the olfactory information can reach the lateral and ventromedial
hypothalamic regions where hunger and satiety centers are located, respectively; in this
way the olfactory system appears to control the activity of those neurons that regulate
food intake and body weight [84]. Furthermore, some evidence suggests that higher order
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neurons in the orbitofrontal cortex are involved in the process of food-related gratification,
thus contributing to satiety and consequently to meal termination [85,86]. Finally, the sense
of smell participates in the responses of the cephalic phase of digestion, which are not
only useful for preparing the body to digest, absorb and metabolize food, but also for the
mechanisms that lead to starting and ending a meal [87]. In this regard, we looked for
a correlation between olfactory function and eating habits, and the finding of a positive
correlation between the olfactory scores obtained by the patients and their adherence to
the Mediterranean diet, suggests that subjects with a better olfactory sensitivity are also
those that are best suited for a particular type of diet. The Mediterranean diet is generally
recommended as the most suitable to improve the metabolic status [88,89] and reduce
cardiovascular risk [90]. Indeed, MD is known to promote good health [91] due to several
beneficial effects it provides against oxidative stress, low-grade inflammation, and gut mi-
crobiota which are strong contributors for the development of non-communicable diseases
(NCDs) such as cardiovascular, metabolic, neurodegenerative diseases, and cancer [92].
The health benefits of MD are linked to its plant-based composition and the richness in
fiber, vitamins, and minerals of the vegetable unprocessed foods and monounsaturated
fats typical of this dietary model [62,93]. Nonetheless, despite the numerous and well-
known healthy properties, plant foods, especially if consumed without seasoning, are
commonly perceived as poorly palatable so that a low olfactory sensitivity could be a
reason to limit or exclude them, preferring instead highly palatable foods rich in simple
sugars or saturated fats [94], generally ultra-processed and hypercaloric, which also affect
the reward system [95]. According to the energy balance model, a dietary pattern based on
the overconsumption of high-density and poor nutrient foods, especially if associated with
a sedentary lifestyle, is one of the main drivers of the obesity pandemic [96], and metabolic
diseases [97]. Moreover, ultra-processed food, particularly added with sugar, plays an
essential role in the development of NCDs [98]. Indeed, beyond the effect on weight loss, a
healthy diet is a key for cardiovascular prevention [99–101], although a long-term slimming
is not often achieved [102].

Considering that obesity is a complex disease and has multiple metabolic comor-
bidities such as hypertension, dysglycemia, dyslipidemia, and a resulting metabolic syn-
drome [99–101], the second objective was to evaluate the possible correlation between the
olfactory scores obtained by patients and their values of systolic blood pressure, fasting
plasma glucose, HDL and triglyceride levels. The results we obtained revealed an inverse
correlation between TDI, T, D, and I olfactory scores on the one hand, and both systolic
blood pressure, fasting plasma glucose, and triglyceride levels on the other, while no
relationship was found with plasma HDL levels. These results confirm those of previous
studies reporting that subjects with hypertension, diabetes/dysglycemia, and hypertriglyc-
eridemia show a significantly higher prevalence of olfactory dysfunction [103,104].

Taken together, these results show the presence of correlations between smell, metabolic
alterations associated with obesity, and eating habits. Therefore, the ultimate goal of our
study was to try to understand how all these factors are connected to one another, what is
the strength of connections, and whether there are any differences related to sex, through the
Artificial Neural Network and the semantic connectivity map Auto-Contractive. By exploit-
ing the functional distances within the entire spectrum of variables, this methodology has
highlighted the underlying scheme of connections among variables. These analyses show a
strong connection (0.98) between obesity and hyposmia, confirming and reinforcing previ-
ous findings on the inverse relationship between olfactory scores and BMI [41]. Furthermore,
the semantic maps highlight a strong and direct connection between obesity and elevated
systolic blood pressure, elevated blood glucose and triglyceride levels, and low plasma
HDL levels. Given the direct connection between obesity and these metabolic alterations
and between obesity and hyposmia, the obesity factor seems to act as a bridge between
hypertension, dysglycemia and dyslipidemia, and olfactory dysfunction, in agreement with
the inverse correlations we found. It has been suggested that in individuals with increased
body weight, the circulating levels of orectic and anorectic peptides such as ghrelin, leptin,
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and insulin are modified, thus decreasing olfactory sensitivity [20,44,45,83]. An impairment
of the olfactory function could modify the eating behavior and the choice of foods to com-
pensate for the decreased gratification that occurs with eating due to sensory change [80,105].
Since people with hyposmia tend to prefer saltier and spicy foods, sweets and refined sugars,
and a high-fat diet over fruits, vegetables, and sour and bitter foods [5,106–108], olfactory
dysfunction can lead to overeating of high-calorie foods and weight gain [20,109,110], and
a high-fat diet can worsen olfactory impairment due to the pro-inflammatory state that
characterizes a high-fat diet [111]. A study on mice fed a fat diet showed that the number of
olfactory neurons and their axonal projections were reduced; the Authors suggested that fat
diet caused an increase in the degree of cell death, responsible for the reduced connections
between epithelium and olfactory bulb, with consequent impairment of olfactory abilities
such as discrimination and identification of odors [112].

Another controversial aspect linked to the olfactory function concerns the possible dif-
ferences related to sex; some studies report a higher prevalence of olfactory dysfunction in
males, while others do not observe any difference [26,27,113,114]. The semantic connection
maps we obtained show a direct and strong connection between olfactory dysfunction and
males, while females are directly connected with a normal olfactory function. These results,
obtained with statistical methods of the latest generation, support those relating to the
different distribution between males and females classified by their olfactory status. In fact,
we found that the number of normosmic males for general olfactory function and for the
identification of odors is significantly lower than that of females. In general, these findings
support the idea that females perform better than males. The reasons can be multiple:
endocrine factors (such as fluctuations associated with the menstrual cycle and circulating
estrogen levels) [31,115,116], social factors (females show more attention and familiarity
with odors) [28,29,117], and cognitive factors (sex-related differences were highlighted in
episodic olfactory memory in favor of females) [24,29]. Furthermore, a recent study has
highlighted the involvement of genetic factors in the sex-related differences in olfactory
function (such as a polymorphism in the Kv1.3 gene) [32]. We assume that, in addition to
the aforementioned reasons, an important role may be played by the higher adherence to
the Mediterranean diet presented by females. In fact, not only did the Pearson test results
show a positive correlation between the olfactory scores and the Mediterranean diet score,
but the connectivity maps also showed a direct and very strong connection (0.97) between
females and their adherence level to the Mediterranean diet. Instead, no correlation or
connection was found in the case of males. This could be due to the fact that the male
sample size is small compared to the female one, limiting the possibility of visualizing
any connections, especially if these are weak, and this represents a limitation of the study.
Further studies will therefore be needed to confirm these correlations and connections and,
in particular, to try to bring out others that have not yet been found.

In conclusion, the mechanism that we propose could be the following: the better
olfactory performance of females for the reasons previously reported can lead to a greater
adherence to the Mediterranean diet, known to be the healthiest dietary model [118,119];
this seems to prevent the onset of dyslipidemia (as demonstrated by the direct and strong
connection (0.98) between females and normal triglyceride levels). Consequently, the
pro-inflammatory state that leads to the destruction of the olfactory neurons and their
connections with the olfactory bulb cells would not occur and therefore a normal olfactory
function would be maintained.
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