Constituents of the Stem Bark of Trichilia monadelpha (Thonn.) J. J. De Wilde (Meliaceae) and Their Antibacterial and Antiplasmodial Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Material
2.3. Extraction and Purification
2.4. X-ray Crystallography
2.5. Biological Assays
2.5.1. In Vitro Antibacterial Activity
2.5.2. In Vitro Antiplasmodial Activity: Plasmodium falciparum Culture and Growth Inhibition Assay
3. Results and Discussion
3.1. Chemical Investigation
3.2. Biological Activity
3.2.1. Antibacterial Activities
3.2.2. Antiplasmodial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vieira, I.J.C.; Terra, W.D.S.; Gonçalves, M.D.S.; Filho, B. Secondary Metabolites of the Genus Trichilia: Contribution to the Chemistry of Meliaceae Family. Am. J. Anal. Chem. 2014, 5, 91–121. [Google Scholar] [CrossRef] [Green Version]
- Abbiw, D.K. Useful Plants of Ghana; Richmond Intermediate Technology Publications and The Royal Botanic Gardens Kew: London, UK, 1990. [Google Scholar]
- Burkill, H.M. The Useful Plants of West Tropical Africa, 2nd ed.; Families A–D; Royal Botanic Gardens: Kew, UK, 1985; Volume 1.
- Kukuia, K.K.E.; Mensah, J.A.; Amoateng, P.; Amponsah, S.K.; N’Guessan, B.B.; Gyekye, I.J.A. Antidepressant Potentials of Components from Trichilia monadelpha (Thonn.) J.J. de Wilde in Murine Models. Evid. Based Complement. Alternat. Med. 2018, 6863973. [Google Scholar]
- Abiodun, O.; Ogunleye, F.; Upaka, E.B. Protective Effect of Trichilia monadelpha (TM) Thonn J.J. de Wilde in Trinitrobenzene Sulfonic Acid Induced Colitis in Rats. Acta Pharm. Sci. 2020, 58, 453–469. [Google Scholar] [CrossRef]
- Irvine, F.R. Woody Plants of Ghana; Oxford University Press: London, UK, 1961. [Google Scholar]
- Ben, I.O.; Gamey, L.E.; Harley, B.K.; Agyei, P.E.O.; Woode, E. Effect of Trichilia monadelpha (Thonn.) J. J. de Wilde (Meliaceae) extract on C-reactive proteins levels and acute inflammation. Sci. Afr. 2022, 16, e01119. [Google Scholar]
- Oliver, B. Medicinal Plant in Nigeria; University of Ibadan Press: Ibadan, Nigeria, 1960. [Google Scholar]
- Umoh, R.A.; Ajaiyeoba, E.O.; Ogbole, O.; Fadare, D.A.; Johnny, I.I.; Offor, S.J. Meliaceae plants and vector control of malaria: Larvicidal toxicity of extracts and fractions of Trichilia monadelpha and Trichilia emetica on larvae of Anopheles gambiae. World. J. Pharm. Res. 2020, 9, 2259–2267. [Google Scholar]
- Tsamo, T.A.; Mkounga, P.; Njayou, F.N.; Manutou, J.; Kirk, M.; Philip, G.H.; Nkengfack, A.E. Rubescins A, B and C: New havanensin type limonoids from root bark of Trichilia rubescens (Meliaceae). Chem. Pharm. Bull. 2013, 61, 1178–1183. [Google Scholar] [CrossRef] [Green Version]
- Okorie, D.A.; Taylor, D.A.H. Limonoids from the timber of Trichilia heudelottii Planch Ex Oliv. J. Chem. Soc. C. 1968, 1828–1831. [Google Scholar] [CrossRef]
- Adesida, G.A.; Okorie, D.A. Heudebolin: A new limonoid from Trichilia heudelotii. Phytochemistry 1973, 12, 3007–3008. [Google Scholar] [CrossRef]
- Nangmo, K.P.; Tsamo, T.A.; Zhen, L.; Mkounga, P.; Akone, S.H.; Tsabang, N.; Müller, W.E.G.; Marat, K.; Proksch, P.; Nkengfack, A.E. Chemical constituents from leaves and root bark of Trichilia monadelpha (Meliaceae). Phytochem. Lett. 2018, 23, 120–126. [Google Scholar] [CrossRef]
- Ben, I.O.; Woode, E.; Abotsi, W.K.M.; Boakye-Gyasi, E. Preliminary phytochemical screening and in vitro antioxidant properties of Trichilia monadelpha (Thonn.) J.J.de Wilde (Meliaceae). J. Med. Biomed. Sci. 2013, 2, 6–15. [Google Scholar]
- Aladesanmi, A.J.; Odediran, S.A. Antimicrobial activity of Trichilia heudelotti leaves. Fitoterapia 2000, 71, 179–182. [Google Scholar] [CrossRef]
- Clark, P.D.; Omo-Udoyo, E. A Comparative Assessment on Antioxidant and Phytochemical of Trichilia monadelpha (Thonn) J.J. De Wilde (Meliaceae) plant extracts. Int. J. Chem. Sci. 2021, 30, 24–33. [Google Scholar] [CrossRef]
- Pupo, M.T.; Vieira, P.C.; Fernandes, J.B.; Silva, M.F.G.F. Androstane and pregnane 2β, 19-hemiketal steroids from Trichilia claussenii. Phytochemistry 1997, 45, 1495–1500. [Google Scholar] [CrossRef]
- Olorunniyi, O.F. In Vivo antimalarial activity of crude aqueous bark extract of Trichilia monadelpha against plasmodium berghei berghei (NK65) in mice. Int. J. Pharm. Med. Bio Sci. 2013, 2, 1–7. [Google Scholar]
- Ainooson, G.K.; Owusu, G.; Woode, E.; Ansah, C.; Annan, K. Trichilia monadelpha bark extracts inhibit carrageenan-induced foot-oedema in the 7-day old chick and the oedema associated with adjuvant-induced arthritis in rats. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woode, E.; Amoh-Barimah, A.K.; Abotsi, W.K.M.; Ainooson, G.K.; Owusu, G. Analgesic effects of stem bark extracts of Trichilia monadelpha (Tonn.) JJ de Wilde. Indian J. Pharmacol. 2012, 44, 765–773. [Google Scholar] [PubMed] [Green Version]
- Ben, I.O.; Woode, E.; Kofuor, G.A.; Asiamah, E.A. Antianaphylactic efects of Trichilia monadelpha (Tonn.) J. J. de Wilde extracts on rodent models of anaphylaxis. Res. Pharm. Sci. 2016, 11, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Mambou, S.C.; Nono, N.R.; Chouna, J.R.; Tamokou, J.-D.; Nkeng-Efouet-Alango, P.; Sewald, N. Antibacterial secotirucallane triterpenes from the stem bark of Pseudocedrela kotschyi. Z. Naturforsch. C 2018, 73, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Dongmo, K.A.; Nono, N.R.; Kaaniche, F.; Mawabo, K.I.; Frese, M.; Chouna, J.R.; Nkenfou, N.C.; Lenta, N.B.; Ngnokam, D.; Nkeng-Efouet-Alango, P.; et al. A-type doubly linked proanthocyanidin trimer and other metabolites from Canthium venosum fruits, and their biological activities. Phytochem. Lett. 2020, 36, 134–138. [Google Scholar] [CrossRef]
- Zeutsop, J.F.; Nono, N.R.; Frese, M.; Chouna, J.R.; Lenta, N.B.; Nkeng-Efouet-Alango, P.; Sewald, N. Phytochemical, antibacterial, antioxidant and cytoxicity investigation of Tarenna grandiflora. Z. Naturforsch. C 2020, 76, 285–290. [Google Scholar] [CrossRef]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef] [Green Version]
- Trager, W.; Jensen, J.B. Human malaria parasites in continuos culture. Science 1976, 193, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Ulana, C.S.; Carlos, H.M.; Luís, H.A.; Cleusa, R.G.G.; Lilliam, M.G.E.; Albert, S.S.; Walmir, S.G.; Fernanda, R.G. Larvicidal efficacies of plants from Midwestern Brazil: Melianodiol from Guarea kunthiana as a potential biopesticide against Aedes aegypti. Mem. Inst. Oswaldo Cruz 2016, 111, 469–474. [Google Scholar]
- Hu, J.; Song, Y.; Li, H.; Yang, B.; Mao, X.; Zhao, Y.M.; Shi, X. Cytotoxic and anti–inflammatory tirucallane triterpenoids from Dysoxylum binectariferum. Fitoterapia 2014, 99, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, M.; Abdelgaleil, S.A.M.; Kasse, S.M.I.; Takezaki, K.; Okamura, H.; Iwagawa, T.; Doe, M. Three new modified limonoids from Khaya senegalensis. J. Nat. Prod. 2002, 65, 1219–1221. [Google Scholar] [CrossRef]
- Yuan, T.Z.; Hu, R.X.; Zhang, H.; Odeku, O.A.; Yang, S.P.; Liao, S.G.; Yue, J.M. Structure determination of grandifotane A from Khaya grandifoliola by NMR, X-ray diffraction, and ECD calculation. Org. Lett. 2010, 12, 252–255. [Google Scholar] [CrossRef]
- Mahato, S.B.; Kundu, P.A. 13C-NMR spectra of pentacyclic triterpenoids. A compilation and some salient features. Phytochemistry 1994, 37, 1517–1575. [Google Scholar] [CrossRef]
- Davis, A.L.; Cai, Y.; Davies, A.P.; Lewis, J.R. 1H and 13C NMR assignments of some green tea polyphenols. Magn. Reson. Chem. 1996, 34, 887–890. [Google Scholar] [CrossRef]
- Wei, K.; Li, W.; Koike, K.; Pei, Y.; Chen, Y.; Nikaido, T. Complete 1H and 13C NMR assignments of two phytosterols from roots of Piper nigrum. Magn. Reson. Chem. 2004, 42, 355–359. [Google Scholar] [CrossRef]
- Yadav, J.P.; Vedpriya, A.; Sanjay, Y.; Manju, P.; Sandeep, K.; Seema, D. A review on its ethnobotany, phytochemical and pharmacological profle. Fitoterapia 2010, 81, 223–230. [Google Scholar] [CrossRef]
- Erwin, E.; Pusparohmana, W.R.; Safitry, R.D.; Marliana, E.; Usman, E.; Kusuma, I.W. Isolation and characterization of stigmasterol and β-sitosterol from wood bark extract of Baccaurea macrocarpa Miq. Mull. Arg. Rasayan J. Chem. 2020, 13, 2552–2558. [Google Scholar] [CrossRef]
- Nono, N.R.; Barboni, L.; Teponno, R.B.; Quassinti, L.; Bramucci, M.; Vitali, L.A.; Petrelli, D.; Lupidi, G.; Tapondjou, A.L. Antimicrobial, antioxidant, anti-inflammatory activities and phytoconstituents of extracts from the roots of Dissotis thollonii Cogn. (Melastomataceae). S. Afr. J. Bot. 2014, 93, 19–26. [Google Scholar] [CrossRef]
- Zhou, F.; Ma, X.; Li, Z.; Li, W.; Zheng, W.; Wang, Z.; Zeng, X.; Sun, K.; Zhang, Y. Four new tirucallane triterpenoids from the fruits of Melia azedarach and their cytotoxic activities. Chem. Biodivers. 2016, 13, 1738–1746. [Google Scholar] [CrossRef] [PubMed]
- Miguita, C.H.; Barbosa, C.D.S.; Hamerski, L.; Sarmento, U.C.; Nascimento, J.N.; Garcez, W.S.; Garcez, F.R. 3β-O-tigloylmelianol from Guarea kunthiana: A new potential agent to control Rhipicephalus (Boophilus) microplus, a cattle tick of veterinary significance. Molecules 2015, 20, 111–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakanishi, T.; Inada, A.; Lavie, D. A new tirucallane-type triterpenoid derivative, Lipomelianol from fruits of Melia toosendun Sieb. et Zucc. Chem. Pharm. Bull. 1986, 34, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Tan, J.; Van-Derveer, D.; Wang, X.; Wargovich, M.J.; Chen, F. Khayanolides from African mahogany Khaya senegalensis (Meliaceae): A revision. Phytochemistry 2009, 70, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Abdelgaleil, S.A.M.; Okamura, H.; Iwagawa, T.; Sato, A.; Miyahara, I.; Doe, M.; Nakatani, M. Khayanolides, rearranged phragmalin limonoid antifeedants from Khaya senegalensis. Tetrahedron 2001, 57, 119–126. [Google Scholar]
- Kuete, V.; Efferth, T. Cameroonian medicinal plants: Pharmacology and derived natural products. Front. Pharmacol. 2010, 1, 123. [Google Scholar] [CrossRef] [Green Version]
- Biavatti, M.W.; Vieira, P.C.; Da-Silva, M.F.G.F.; Fernandes, J.B.; Albuquerque, S.; Magalhães, C.M.I.; Pagnocca, F.C. Chemistry and bioactivity of Raulinoa echinata Cowan, an endemic Brazilian Rutaceae species. Phytomedicine 2001, 8, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Masika, P.J.; Sultana, N.; Afolayan, A.J. Antibacterial activity of two flavonoids isolated from Schotia latifolia. Pharm. Biol. 2004, 42, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Germanò, M.P.; Angelo, V.D.; Sanogo, R.; Catania, S.; Alma, R.; Pasquale, D.R.; Bisignano, G. Hepatoprotective and antibacterial effects of extracts from Trichilia emetica Vahl (Meliaceae). J. Ethnopharmacol. 2005, 96, 227–232. [Google Scholar] [CrossRef]
- Liu, H.B.; Zhang, C.R.; Dong, S.H.; Dong, L.; Wu, Y.; Yue, J.M. Limonoids and triterpenoids from the seeds of Melia azedarach. Chem. Pharm. Bull. 2011, 59, 1003–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Q.G.; Luo, X.-D. Meliaceous limonoids: Chemistry and biological activities. Chem Rev. 2011, 111, 7437–7522. [Google Scholar] [CrossRef] [PubMed]
- Bickii, J.; Njifutie, N.; Ayafor, F.J.; Basco, K.L.; Ringwald, P. In vitro antimalarial activity of limonoids from Khaya grandifoliola C.D.C. (Meliaceae). J. Ethnopharmacol. 2000, 69, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Passos, M.S.; Nogueira, T.S.R.; Azevedo, O.A.; Gonc, M.; Vieira, A.C.; Terra, W.S.; Braz-Filho, R.; Vieira, I.J.C. Limonoids from the genus Trichilia and biological activities: Review. Phytochem. Rev. 2021, 20, 1055–1086. [Google Scholar] [CrossRef]
Position | 1 | 2 | ||
---|---|---|---|---|
δH (Integral, Multiplicity, J in Hz) | δC | δH (Integral, Multiplicity, J in Hz) | δC | |
1 | 2.06 (2H, m) | 38.3/38.2 | 85.3 | |
2 | 2.87/2.20 (1H, td, 14.5, 5.4)/(1H, m) | 34.4/34.3 | 4.40 (1H, d, 10.5) | 75.8 |
3 | 216.8 | 208.5 | ||
4 | 48.4 | 51.8 | ||
5 | 1.77 (1H, dd, 12.6, 6.9) | 52.5/52.4 | 3.60 (1H, d, 1.7) | 43.6 |
6 | 2.15 (2H, m) | 24.0 | 4.49 (1H, d, 1.7) | 72.9 |
7 | 5.37 (1H, brs) | 117.9 | 176.5 | |
8 | 145.7/145.8 | 88.5 | ||
9 | 2.13 (1H, m) | 49.0 | 2.44 (1H, d, 9.5) | 56.8 |
10 | 34.8 | 59.5 | ||
11 | 1.66 (1H, m) | 17.5 | 1.77 (1H, m)/2.08 (1H, m) | 17.1 |
12 | 1.81 (1H, m) | 31.5/31.2 | 1.07 (1H, m)/1.94 (1H, m) | 26.9 |
13 | 43.5/43.3 | 38.7 | ||
14 | 50.8/50.5 | 84.4 | ||
15 | 1.56 (2H, dd, 9.4, 2.3) | 34.0/33.5 | 2.79 (1H, d, 16.9)/3.27 (1H, d, 18.9) | 33.9 |
16 | 1.94 (1H, m) | 27.1 | 173.0 | |
17 | 2.11 (1H, m) | 44.9 | 5.59 (1H, s) | 82.1 |
18 | 0.90 (3H, s) | 22.3 | 1.19 (3H, s) | 14.8 |
19 | 1.08 (3H, s) | 11.7 | 1.44 (3H, s) | 20.4 |
20 | 1.97 (1H, m) | 46.6 | 121.7 | |
21 | 5.19/5.18 (1H, d, 5.3/3.6) | 101.0/96.7 | 7.52 (1H, d, 2.6) | 142.1 |
22 | 2.07 (2H, m) | 31.0 | 6.46 (1H, d, 2.0) | 110.8 |
23 | 4.25/4.34 (1H, dt, 14.5, 5.4) | 77.3/75.4 | 7.53 (1H, t, 1.9) | 144.0 |
24 | 4.99/4.92 (1H, d, 5.4) | 79.6/78.9 | - | - |
25 | 71.2/71.1 | - | - | |
26 | 0.93 (3H, s) | 21.7 | - | - |
27 | 1.23 (3H, s) | 25.2 | - | - |
28 | 1.05 (3H, s) | 23.6 | 1.23 (3H, s) | 15.7 |
29 | 1.15 (3H, s) | 25.4/25.3 | 1.88 (1H, d, 12.5)/2.23 (1H, d, 12.6) | 45.7 |
30 | 1.09 (3H, s) | 26.4 | 2.91 (1H, d, 10.5) | 64.8 |
1′ | 170.8 | |||
2′ | 2.12 (3H, s) | 19.7/19.6 | ||
7-OMe | 3.83 (3H, s) | 53.0 |
Extracts/Compounds | Minimum Inhibitory Concentrations (µg/mL) | ||||||
---|---|---|---|---|---|---|---|
ST | SA1 | SA2 | SA | PA | KP | KP1 | |
EtOH extract | 250 | 1000 | 1000 | <62.5 | 125 | 1000 | 500 |
EtOAc sub-extract | >1000 | 500 | 1000 | >1000 | >1000 | 1000 | 500 |
n-BuOH sub-extract | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 |
FA | nd | >1000 | >1000 | nd | nd | >1000 | >1000 |
FB | nd | >1000 | >1000 | nd | nd | >1000 | 250 |
FC | nd | >1000 | >1000 | nd | nd | >1000 | >1000 |
FD | nd | >1000 | >1000 | nd | nd | >1000 | >1000 |
FE | nd | 3.9 | 250 | nd | nd | 1000 | 125 |
FF | nd | >1000 | >1000 | nd | nd | >1000 | 500 |
1 | nd | >500 | >500 | nd | nd | >500 | >500 |
2 | nd | >500 | >500 | nd | nd | >500 | >500 |
3 | nd | 62.5 | 125 | nd | nd | 500 | 62.5 |
5 | nd | >500 | >500 | nd | nd | >500 | >500 |
6 | nd | >500 | >500 | nd | nd | >500 | >500 |
7 | nd | >500 | >500 | nd | nd | >500 | >500 |
9 | nd | 7.8 | 125 | nd | nd | 500 | 500 |
Ciprofloxacin | 0.015 | 0.0625 | 0.031 | 0.015 | 0.031 | 0.015 | 0.0625 |
Extracts and Compounds | % Growth Inhibition | IC50 (µM) |
---|---|---|
EtOH extract | 0 | nd |
1 | 24.3 | nd |
2 | 7.69 | nd |
3 | 25.48 | nd |
5 | 45.07 | 1.68 |
6 | 54.17 | 1.37 |
9 | 34.87 | nd |
Chloroquine | nd | 0.020 |
Artemisinin | nd | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djoumessi, A.K.; Nono, R.N.; Neumann, B.; Stammler, H.-G.; Bitchagno, G.T.M.; Efange, N.M.; Nkenfou, C.N.; Ayong, L.; Lenta, B.N.; Sewald, N.; et al. Constituents of the Stem Bark of Trichilia monadelpha (Thonn.) J. J. De Wilde (Meliaceae) and Their Antibacterial and Antiplasmodial Activities. Metabolites 2023, 13, 298. https://doi.org/10.3390/metabo13020298
Djoumessi AK, Nono RN, Neumann B, Stammler H-G, Bitchagno GTM, Efange NM, Nkenfou CN, Ayong L, Lenta BN, Sewald N, et al. Constituents of the Stem Bark of Trichilia monadelpha (Thonn.) J. J. De Wilde (Meliaceae) and Their Antibacterial and Antiplasmodial Activities. Metabolites. 2023; 13(2):298. https://doi.org/10.3390/metabo13020298
Chicago/Turabian StyleDjoumessi, Arnauld Kenfack, Raymond Ngansop Nono, Beate Neumann, Hans-Georg Stammler, Gabin Thierry Mbahbou Bitchagno, Noella Molisa Efange, Celine Nguefeu Nkenfou, Lawrence Ayong, Bruno Ndjakou Lenta, Norbert Sewald, and et al. 2023. "Constituents of the Stem Bark of Trichilia monadelpha (Thonn.) J. J. De Wilde (Meliaceae) and Their Antibacterial and Antiplasmodial Activities" Metabolites 13, no. 2: 298. https://doi.org/10.3390/metabo13020298
APA StyleDjoumessi, A. K., Nono, R. N., Neumann, B., Stammler, H. -G., Bitchagno, G. T. M., Efange, N. M., Nkenfou, C. N., Ayong, L., Lenta, B. N., Sewald, N., Nkeng-Efouet-Alango, P., & Chouna, J. R. (2023). Constituents of the Stem Bark of Trichilia monadelpha (Thonn.) J. J. De Wilde (Meliaceae) and Their Antibacterial and Antiplasmodial Activities. Metabolites, 13(2), 298. https://doi.org/10.3390/metabo13020298