Application of Machine Learning to Metabolomic Profile Characterization in Glioblastoma Patients Undergoing Concurrent Chemoradiation
Abstract
:1. Introduction
- ➢
- Specific metabolomic changes are associated with concurrent chemoradiation;
- ➢
- Metabolomics has the potential to characterize treatment phases in glioblastoma patients;
- ➢
- In the future, metabolomics may enable the detection of early or distant recurrence.
2. Methods
2.1. Metabolomic Profiling
2.2. Statistical Studies
2.3. ML Modeling: Data Preprocessing and Machine Learning Models
3. Results
3.1. Patients
3.2. Metabolomic Changes
4. ML Models for Classifying Treatment Stage
5. Correlation Analysis
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Cioffi, G.; Gittleman, H.; Patil, N.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016. Neuro. Oncol. 2019, 21 (Suppl. S5), v1–v100. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, J.T.; Ostrom, Q.T.; Cioffi, G.; Neff, C.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. Primary brain and other central nervous system tumors in the United States (2014–2018): A summary of the CBTRUS statistical report for clinicians. Neuro-Oncol. Pract. 2022, 9, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Barthel, F.P.; Johnson, K.C.; Varn, F.S.; Moskalik, A.D.; Tanner, G.; Kocakavuk, E.; Anderson, K.J.; Abiola, O.; Aldape, K.; Alfaro, K.D.; et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 2019, 576, 112–120. [Google Scholar] [CrossRef]
- Al Tameemi, W.; Dale, T.P.; Al-Jumaily, R.M.K.; Forsyth, N.R. Hypoxia-Modified Cancer Cell Metabolism. Front. Cell Dev Biol. 2019, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Baranovičová, E.; Galanda, T.; Galanda, M.; Hatok, J.; Kolarovszki, B.; Richterová, R.; Račay, P. Metabolomic profiling of blood plasma in patients with primary brain tumours: Basal plasma metabolites correlated with tumour grade and plasma biomarker analysis predicts feasibility of the successful statistical discrimination from healthy subjects—A preliminary study. IUBMB Life 2019, 71, 1994–2002. [Google Scholar] [CrossRef]
- Mayers, J.R.; Wu, C.; Clish, C.B.; Kraft, P.; Torrence, M.; Fiske, B.; Yuan, C.; Bao, Y.; Townsend, M.; Tworoger, S.; et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med. 2014, 20, 1193–1198. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-L.; Wang, J.-H.; Zhao, A.-H.; Xu, X.; Wang, Y.-H.; Chen, T.-L.; Li, J.-M.; Mi, J.-Q.; Zhu, Y.-M.; Liu, Y.-F.; et al. A distinct glucose metabolism signature of acute myeloid leukemia with prognostic value. Blood 2014, 124, 1645–1654. [Google Scholar] [CrossRef]
- Hoyles, L.; Fernández-Real, J.-M.; Federici, M.; Serino, M.; Abbott, J.; Charpentier, J.; Heymes, C.; Luque, J.L.; Anthony, E.; Barton, R.H.; et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 2018, 24, 1070–1080. [Google Scholar] [CrossRef]
- Ismail, I.T.; Fiehn, O.; Elfert, A.; Helal, M.; Salama, I.; El-Said, H. Sugar Alcohols Have a Key Role in Pathogenesis of Chronic Liver Disease and Hepatocellular Carcinoma in Whole Blood and Liver Tissues. Cancers 2020, 12, 484. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, S.; Taylor, S.L.; Barupal, D.K.; Taguchi, A.; Wohlgemuth, G.; Wikoff, W.R.; Yoneda, K.Y.; Gandara, D.R.; Hanash, S.M.; Kim, K.; et al. Systemic Metabolomic Changes in Blood Samples of Lung Cancer Patients Identified by Gas Chromatography Time-of-Flight Mass Spectrometry. Metabolites 2015, 5, 192–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiehn, O. Metabolomics by Gas Chromatography–Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr. Protoc. Mol. Biol. 2016, 114, 30.4.1–30.4.32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnapuram, B.; Carin, L.; Figueiredo, M.; Hartemink, A. Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 957–968. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Abraham, A.; Pedregosa, F.; Eickenberg, M.; Gervais, P.; Mueller, A.; Kossaifi, J.; Gramfort, A.; Thirion, B.; Varoquaux, G. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 2014, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Y.; Ye, B.; Ding, J.; Yu, Y.; Alptekin, A.; Thangaraju, M.; Prasad, P.D.; Ding, Z.-C.; Park, E.J.; Choi, J.-H.; et al. Metabolic Reprogramming by MYCN Confers Dependence on the Serine-Glycine-One-Carbon Biosynthetic Pathway. Cancer Res. 2019, 79, 3837–3850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, S.; Fan, M.; Liu, Z.; Li, X.; Wang, H. Serine, glycine and one-carbon metabolism in cancer (Review). Int. J. Oncol. 2021, 58, 158–170. [Google Scholar] [CrossRef]
- Budczies, J.; Denkert, C.; Müller, B.M.; Brockmöller, S.F.; Klauschen, F.; Györffy, B.; Dietel, M.; Richter-Ehrenstein, C.; Marten, U.; Salek, R.M.; et al. Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue—a GC-TOFMS based metabolomics study. BMC Genom. 2012, 13, 334. [Google Scholar] [CrossRef] [Green Version]
- Weiss, R.H. Metabolomics and Metabolic Reprogramming in Kidney Cancer. Semin. Nephrol. 2018, 38, 175–182. [Google Scholar] [CrossRef]
- Perroud, B.; Lee, J.; Valkova, N.; Dhirapong, A.; Lin, P.-Y.; Fiehn, O.; Kültz, D.; Weiss, R.H. Pathway analysis of kidney cancer using proteomics and metabolic profiling. Mol. Cancer 2006, 5, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draaisma, K.; Chatzipli, A.; Taphoorn, M.; Kerkhof, M.; Weyerbrock, A.; Sanson, M.; Hoeben, A.; Lukacova, S.; Lombardi, G.; Leenstra, S.; et al. Molecular Evolution of IDH Wild-Type Glioblastomas Treated With Standard of Care Affects Survival and Design of Precision Medicine Trials: A Report From the EORTC 1542 Study. J. Clin. Oncol. 2020, 38, 81–99. [Google Scholar] [CrossRef]
- Pandey, R.; Caflisch, L.; Lodi, A.; Brenner, A.J.; Tiziani, S. Metabolomic signature of brain cancer. Mol. Carcinog. 2017, 56, 2355–2371. [Google Scholar] [CrossRef] [PubMed]
- Chinnaiyan, P.; Kensicki, E.; Bloom, G.; Prabhu, A.; Sarcar, B.; Kahali, S.; Eschrich, S.; Qu, X.; Forsyth, P.; Gillies, R. The Metabolomic Signature of Malignant Glioma Reflects Accelerated Anabolic Metabolism. Cancer Res 2012, 72, 5878–5888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.; Song, R.; Hodges, T.R.; Heimberger, A.B.; Zhao, H. Identification of metabolites in plasma for predicting survival in glioblastoma. Mol. Carcinog. 2018, 57, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Heimberger, A.B.; Lu, Z.; Wu, X.; Hodges, T.R.; Song, R.; Shen, J. Metabolomics profiling in plasma samples from glioma patients correlates with tumor phenotypes. Oncotarget 2016, 7, 20486–20495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, T.A.; Loftus, T.J.; Filiberto, A.C.; Ozrazgat-Baslanti, T.; Ruppert, M.M.; Bandyopadhyay, S.; Laiakis, E.C.; Arnaoutakis, D.J.; Bihorac, A. Metabolomic Profiling for Diagnosis and Prognostication in Surgery: A Scoping Review. Ann. Surg. 2020, 273, 258–268. [Google Scholar] [CrossRef]
- Morrow, D.; Minami, J.; Nathanson, D.A. Metabolic Vulnerabilities in Brain Cancer. Neurosurg. Clin. North Am. 2021, 32, 159–169. [Google Scholar] [CrossRef]
Patient # | Sex | Ethnicity | Age at Dx yr | BMI at Dx | 0 | S | PR | RT |
---|---|---|---|---|---|---|---|---|
1 | M | White | 60 | 40 | X | X | X | X |
2 | M | White | 72 | 30 | X | X | X | |
3 | M | Hispanic | 43 | 28 | X | X | X | |
4 | M | Asian | 49 | 57 | X | X | X | |
5 | F | White | 78 | 23 | X | X | ||
6 | M | Hispanic | 65 | 22 | X | X | X | |
7 | M | White | 72 | 41 | X | X | X | |
8 | M | White | 80 | 24 | X | X | X | X |
9 | F | White | 61 | 27 | X | X | X | |
10 | F | White | 69 | 25 | X | X | X | |
11 | M | Indian | 60 | 27 | X | X | X | |
12 | F | White | 61 | 25 | X | X | X | |
13 | F | White | 52 | 27 | X | X | ||
14 | M | White | 62 | 30 | X | X | X | |
15 | M | White | 69 | 31 | X | X | X | X |
16 | M | White | 67 | 44 | X | X | ||
17 | F | White | 82 | 28 | X | X | X | |
18 | F | White | 55 | 29 | X | X | ||
19 | M | African American | 47 | 37 | X | X | X | X |
20 | M | White | 63 | 30 | X | X | X | X |
21 | F | White | 86 | 27 | X | X | X | |
22 | F | White | 64 | 31 | X | X | X | X |
23 | M | White | 56 | 22 | X | X | X | X |
24 | F | White | 69 | 26 | X | X | X | X |
25 | F | NA | 69 | 27 | X | X | X | |
26 | M | White | 64 | 36 | X | X | X | X |
27 | M | White | 68 | 28 | X | X | X | |
28 | M | White | 69 | 28 | X | X | X | X |
29 | F | White | 58 | 27 | X | X | X | |
30 | F | white | 66 | 27 | X | X | X | |
31 | M | White | 55 | 28 | X | X | X | X |
32 | F | White | 60 | 20 | X | X | X | |
33 | M | White | 58 | 28 | X | X | X | |
34 | M | White | 53 | 30 | X | X | X | |
35 | M | White | 58 | 26 | X | X | X | |
36 | M | White | 76 | 35 | X |
BinBase Name | PubChem | Superclass | Subclass | rq _est | p-Value |
---|---|---|---|---|---|
3-aminopiperidine-2,6-dione | 134508 | NA | NA | −0.54 | 0.033 |
succinic acid | 1110 | Organic acids | TCA acids | 0.45 | 0.03 |
fumaric acid | 444972 | Organic acids | TCA acids | 0.67 | 0.027 |
threonine | 6288 | Organic acids | Amino acids | 0.45 | 0.028 |
glycine | 750 | Organic acids | Amino acids | 0.66 | 0.002 |
serine | 5951 | Organic acids | Amino acids | 0.66 | 0.012 |
glycerol-alpha-phosphate | 754 | Organic acids | Organic phosphoric acids | 0.93 | 0.003 |
xylitol | 6912 | Carbohydrates | Sugar alcohols | 0.53 | 0.023 |
6-deoxyglucose | 441480 | Carbohydrates | Hexoses | 0.64 | 0.003 |
glucuronic acid | 94715 | Carbohydrates | Sugar acids | 0.46 | 0.049 |
linoleic acid | 5280450 | Fatty acyls | Unsaturated FA | 0.57 | 0.004 |
arachidonic acid | 444899 | Fatty acyls | Unsaturated FA | 0.56 | 0.027 |
ethanolamine | 700 | Organic nitrogen compounds | 1,2-aminoclcohols | 0.45 | 0.042 |
triethanolamine | 7618 | Organic nitrogen compounds | Tertiary amines | 0.59 | 0.018 |
propyleneglycol | 259994 | Organic oxygen compounds | 1,2-diols | 0.52 | 0.015 |
oxoproline | 7405 | Organoheterocyclic compounds | Pyrroline carboxylic acids | 0.65 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aboud, O.; Liu, Y.A.; Fiehn, O.; Brydges, C.; Fragoso, R.; Lee, H.S.; Riess, J.; Hodeify, R.; Bloch, O. Application of Machine Learning to Metabolomic Profile Characterization in Glioblastoma Patients Undergoing Concurrent Chemoradiation. Metabolites 2023, 13, 299. https://doi.org/10.3390/metabo13020299
Aboud O, Liu YA, Fiehn O, Brydges C, Fragoso R, Lee HS, Riess J, Hodeify R, Bloch O. Application of Machine Learning to Metabolomic Profile Characterization in Glioblastoma Patients Undergoing Concurrent Chemoradiation. Metabolites. 2023; 13(2):299. https://doi.org/10.3390/metabo13020299
Chicago/Turabian StyleAboud, Orwa, Yin Allison Liu, Oliver Fiehn, Christopher Brydges, Ruben Fragoso, Han Sung Lee, Jonathan Riess, Rawad Hodeify, and Orin Bloch. 2023. "Application of Machine Learning to Metabolomic Profile Characterization in Glioblastoma Patients Undergoing Concurrent Chemoradiation" Metabolites 13, no. 2: 299. https://doi.org/10.3390/metabo13020299
APA StyleAboud, O., Liu, Y. A., Fiehn, O., Brydges, C., Fragoso, R., Lee, H. S., Riess, J., Hodeify, R., & Bloch, O. (2023). Application of Machine Learning to Metabolomic Profile Characterization in Glioblastoma Patients Undergoing Concurrent Chemoradiation. Metabolites, 13(2), 299. https://doi.org/10.3390/metabo13020299