Risk of Environmental Chemicals on Bone Fractures Is Independent of Low Bone Mass in US Adults: Insights from 2017 to 2018 NHANES
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Study Design
2.2. Biomonitoring
2.3. Bone Densitometry
2.4. Statistical Analysis
3. Results
3.1. Demographic Characteristics of Participants with Osteopenia
3.2. Associations between Different Environmental Chemical Factors and Osteopenia
3.3. Associations between Different Environmental Chemical Factors and Fracture
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Medina-Gomez, C.; Kemp, J.P.; Trajanoska, K.; Luan, J.; Chesi, A.; Ahluwalia, T.S.; Mook-Kanamori, D.O.; Ham, A.; Hartwig, F.P.; Evans, D.S.; et al. Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects. Am. J. Hum. Genet. 2018, 102, 88–102. [Google Scholar] [CrossRef]
- Xue, S.; Kemal, O.; Lu, M.; Lix, L.M.; Leslie, W.D.; Yang, S. Age at attainment of peak bone mineral density and its associated factors: The National Health and Nutrition Examination Survey 2005–2014. Bone 2020, 131, 115163. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, R.; Naldini, G.; Chiavarini, M. Dietary Patterns in Relation to Low Bone Mineral Density and Fracture Risk: A Systematic Review and Meta-Analysis. Adv. Nutr. 2019, 10, 219–236. [Google Scholar] [CrossRef] [PubMed]
- Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet 2019, 393, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Ströhle, A.; Hahn, A. Nutrition and bone health: What ist the evidence? Med. Mon. Fur Pharm. 2016, 39, 236–244, quiz 245. [Google Scholar]
- Trajanoska, K.; Rivadeneira, F. The genetic architecture of osteoporosis and fracture risk. Bone 2019, 126, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Inaba, T.; Kobayashi, E.; Suwazono, Y.; Uetani, M.; Oishi, M.; Nakagawa, H.; Nogawa, K. Estimation of cumulative cadmium intake causing Itai-itai disease. Toxicol. Lett. 2005, 159, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Galvez-Fernandez, M.; Grau-Perez, M.; Garcia-Barrera, T.; Ramirez-Acosta, S.; Gomez-Ariza, J.L.; Perez-Gomez, B.; Galan-Labaca, I.; Navas-Acien, A.; Redon, J.; Briongos-Figuero, L.S.; et al. Arsenic, cadmium, and selenium exposures and bone mineral density-related endpoints: The HORTEGA study. Free Radic. Biol. Med. 2021, 162, 392–400. [Google Scholar] [CrossRef]
- Ryz, N.R.; Weiler, H.A.; Taylor, C.G. Zinc deficiency reduces bone mineral density in the spine of young adult rats: A pilot study. Ann. Nutr. Metab. 2009, 54, 218–226. [Google Scholar] [CrossRef]
- Lim, H.S.; Lee, H.H.; Kim, T.H.; Lee, B.R. Relationship between Heavy Metal Exposure and Bone Mineral Density in Korean Adult. J. Bone Metab. 2016, 23, 223–231. [Google Scholar] [CrossRef]
- Campbell, J.R.; Rosier, R.N.; Novotny, L.; Puzas, J.E. The association between environmental lead exposure and bone density in children. Environ. Health Perspect. 2004, 112, 1200–1203. [Google Scholar] [CrossRef] [PubMed]
- Karamati, M.; Yousefian-Sanni, M.; Shariati-Bafghi, S.E.; Rashidkhani, B. Major nutrient patterns and bone mineral density among postmenopausal Iranian women. Calcif. Tissue Int. 2014, 94, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ge, X.; Liu, Z.; Huang, L.; Zhou, Y.; Liu, P.; Qin, L.; Lin, S.; Liu, C.; Hou, Q.; et al. Association between long-term occupational manganese exposure and bone quality among retired workers. Environ. Sci. Pollut. Res. Int. 2020, 27, 482–489. [Google Scholar] [CrossRef]
- Qu, X.; He, Z.; Qiao, H.; Zhai, Z.; Mao, Z.; Yu, Z.; Dai, K. Serum copper levels are associated with bone mineral density and total fracture. J. Orthop. Transl. 2018, 14, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Kao, T.W.; Wang, C.C.; Wu, C.J.; Zhou, Y.C.; Chen, W.L. Association between polycyclic aromatic hydrocarbons exposure and bone turnover in adults. Eur. J. Endocrinol. 2020, 182, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Meng, X.; Sun, Y.; Jia, C. Association between polycyclic aromatic hydrocarbons and osteoporosis: Data from NHANES, 2005-2014. Arch. Osteoporos. 2018, 13, 112. [Google Scholar] [CrossRef]
- Guo, J.; Huang, Y.; Bian, S.; Zhao, C.; Jin, Y.; Yu, D.; Wu, X.; Zhang, D.; Cao, W.; Jing, F.; et al. Associations of urinary polycyclic aromatic hydrocarbons with bone mass density and osteoporosis in U.S. adults, NHANES 2005-2010. Environ. Pollut. (Barking Essex 1987) 2018, 240, 209–218. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Xia, Y.; Fan, H.; Fan, D.; Xi, X.; Ye, Q.; Zhu, Y.; Xiao, C. Subgroup analysis of the relationship between polycyclic aromatic hydrocarbons and rheumatoid arthritis: Data from the National Health and Nutrition Examination Survey, 2003–2014. Sci. Total Environ. 2021, 775, 145841. [Google Scholar] [CrossRef]
- Alwis, K.U.; Blount, B.C.; Britt, A.S.; Patel, D.; Ashley, D.L. Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS). Anal. Chim. Acta 2012, 750, 152–160. [Google Scholar] [CrossRef]
- National Health and Nutrition Examination Survey. 2017–2018 Data Documentation, Codebook, and Frequencies: Volatile Organic Compound (VOC) Metabolites—Urine (UVOC_J). Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/UVOC_J.htm (accessed on 30 January 2023).
- National Health and Nutrition Examination Survey. 2017–2018 Data Documentation, Codebook, and Frequencies: Arsenics—Speciated—Urine (UAS_J). Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/UAS_J.htm (accessed on 30 January 2023).
- Looker, A.C.; Orwoll, E.S.; Johnston, C.C., Jr.; Lindsay, R.L.; Wahner, H.W.; Dunn, W.L.; Calvo, M.S.; Harris, T.B.; Heyse, S.P. Prevalence of low femoral bone density in older U.S. adults from NHANES III. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 1997, 12, 1761–1768. [Google Scholar] [CrossRef]
- Cohen, L.L.; Berry, J.G.; Ma, N.S.; Cook, D.L.; Hedequist, D.J.; Karlin, L.I.; Emans, J.B.; Hresko, M.T.; Snyder, B.D.; Glotzbecker, M.P. Spinal Fusion in Pediatric Patients With Low Bone Density: Defining the Value of DXA. J. Pediatr. Orthop. 2022, 42, e713–e719. [Google Scholar] [CrossRef] [PubMed]
- National Health and Nutrition Examination Survey. 2017–2018 Data Documentation, Codebook, and Frequencies: Dual-Energy X-ray Absorptiometry—Whole Body (DXX_J). Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/DXX_J.htm (accessed on 30 January 2023).
- Fuggle, N.R.; Curtis, E.M.; Ward, K.A.; Harvey, N.C.; Dennison, E.M.; Cooper, C. Fracture prediction, imaging and screening in osteoporosis. Nat. Rev. Endocrinol. 2019, 15, 535–547. [Google Scholar] [CrossRef]
- Samelson, E.J.; Broe, K.E.; Xu, H.; Yang, L.; Boyd, S.; Biver, E.; Szulc, P.; Adachi, J.; Amin, S.; Atkinson, E.; et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): A prospective study. Lancet Diabetes Endocrinol. 2019, 7, 34–43. [Google Scholar] [CrossRef]
- Brandi, M.L. Microarchitecture, the key to bone quality. Rheumatology 2009, 48, iv3–iv8. [Google Scholar] [CrossRef]
- Eastell, R.; Szulc, P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017, 5, 908–923. [Google Scholar] [CrossRef] [PubMed]
- Clynes, M.A.; Harvey, N.C.; Curtis, E.M.; Fuggle, N.R.; Dennison, E.M.; Cooper, C. The epidemiology of osteoporosis. Br. Med. Bull. 2020, 133, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Management of Osteoporosis in Postmenopausal Women: The 2021 Position Statement of The North American Menopause Society’’ Editorial Panel. Management of osteoporosis in postmenopausal women: The 2021 position statement of The North American Menopause Society. Menopause 2021, 28, 973–997. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Ran, D.; Zhao, H.; Song, R.; Zou, H.; Gu, J.; Yuan, Y.; Bian, J.; Zhu, J.; Liu, Z. Cadmium exposure triggers osteoporosis in duck via P2X7/PI3K/AKT-mediated osteoblast and osteoclast differentiation. Sci. Total Environ. 2021, 750, 141638. [Google Scholar] [CrossRef]
- Baloh, R.W. Laboratory diagnosis of increased lead absorption. Arch. Environ. Health 1974, 28, 198–208. [Google Scholar] [CrossRef]
- Cui, A.; Xiao, P.; Hu, B.; Ma, Y.; Fan, Z.; Wang, H.; Zhou, F.; Zhuang, Y. Blood Lead Level Is Negatively Associated With Bone Mineral Density in U.S. Children and Adolescents Aged 8-19 Years. Front. Endocrinol. 2022, 13, 928752. [Google Scholar] [CrossRef]
- Liu, J.; Tang, Y.; Chen, Y.; Zhang, X.; Xia, Y.; Geng, B. Association between blood manganese and bone mineral density in US adolescents. Environ. Sci. Pollut. Res. Int. 2022. [Google Scholar] [CrossRef] [PubMed]
- Rył, A.; Miazgowski, T.; Szylińska, A.; Turoń-Skrzypińska, A.; Jurewicz, A.; Bohatyrewicz, A.; Rotter, I. Bone Health in Aging Men: Does Zinc and Cuprum Level Matter? Biomolecules 2021, 11, 237. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Yang, F.; Yan, Y.; Hong, J.; Wang, W.; Li, S.; Jiang, G.; Yan, S. Relationship between Serum Nutritional Factors and Bone Mineral Density: A Mendelian Randomization Study. J. Clin. Endocrinol. Metab. 2021, 106, e2434–e2443. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.; Liu, R. Association between dietary selenium intake and bone mineral density in the US general population. Ann. Transl. Med. 2022, 10, 869. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yi, Q.; Wang, S.; Xia, Y.; Geng, B. Normal concentration range of blood mercury and bone mineral density: A cross-sectional study of National Health and Nutrition Examination Survey (NHANES) 2005–2010. Environ. Sci. Pollut. Res. Int. 2022, 29, 7743–7757. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Nakahama, T.; Nguyen, C.H.; Tran, T.T.; Le, V.S.; Chu, H.H.; Kishimoto, T. Aryl hydrocarbon receptor antagonism and its role in rheumatoid arthritis. J. Exp. Pharmacol. 2015, 7, 29–35. [Google Scholar] [CrossRef]
- Izawa, T.; Arakaki, R.; Mori, H.; Tsunematsu, T.; Kudo, Y.; Tanaka, E.; Ishimaru, N. The Nuclear Receptor AhR Controls Bone Homeostasis by Regulating Osteoclast Differentiation via the RANK/c-Fos Signaling Axis. J. Immunol. 2016, 197, 4639–4650. [Google Scholar] [CrossRef]
- Lee, L.L.; Lee, J.S.; Waldman, S.D.; Casper, R.F.; Grynpas, M.D. Polycyclic aromatic hydrocarbons present in cigarette smoke cause bone loss in an ovariectomized rat model. Bone 2002, 30, 917–923. [Google Scholar] [CrossRef]
- Hsueh, Y.M.; Huang, Y.L.; Chen, H.H.; Shiue, H.S.; Lin, Y.C.; Hsieh, R.L. Alcohol Consumption Moderated the Association Between Levels of High Blood Lead or Total Urinary Arsenic and Bone Loss. Front. Endocrinol. 2021, 12, 782174. [Google Scholar] [CrossRef]
n = 2253 | No. Reported | No Osteopenia (%) | Osteopenia (%) | p Value |
---|---|---|---|---|
Age | 2253 | 81.4 | 18.6 | <0.001 |
Gender | 2253 | |||
Male | 1073 | 84.7 | 15.3 | <0.001 |
Female | 1180 | 78.3 | 21.7 | |
Body mass index | 2253 | |||
<18.5 | 43 | 51.2 | 48.8 | <0.001 |
18.5–24.9 | 625 | 75.8 | 24.2 | |
25–29.9 | 699 | 84.0 | 16.0 | |
30+ | 876 | 84.6 | 15.4 | |
Race and ethnicity | 2253 | |||
Mexican American | 350 | 82.6 | 17.4 | 0.801 |
Non-Hispanic White | 684 | 82.0 | 18.0 | |
Non-Hispanic Black | 445 | 79.6 | 20.4 | |
Non-Hispanic Asian | 416 | 80.8 | 19.2 | |
Other Hispanic | 225 | 79.1 | 20.9 | |
Other Race—Including Multi-Racial | 133 | 86.5 | 15.5 | |
Education level | 2252 | |||
Less than 9th grade | 132 | 78.0 | 22.0 | 0.049 |
Some high school | 243 | 84.8 | 15.2 | |
High school graduate or equivalent | 515 | 74.8 | 25.2 | |
Some college or AA degree | 762 | 83.9 | 16.1 | |
College graduate or above | 600 | 83.2 | 16.8 | |
Born in USA | 2252 | |||
Yes | 1441 | 83.0 | 17.0 | 0.008 |
No | 811 | 78.4 | 21.6 | |
Ratio of family income to poverty | 2002 | |||
0–4.9 | 1647 | 82.0 | 18.0 | 0.175 |
5+ | 355 | 78.9 | 21.1 | |
Currentsmoker status | 824 | |||
Every day | 361 | 77.8 | 22.2 | 0.089 |
Some days | 96 | 82.3 | 17.7 | |
Not at all | 367 | 82.8 | 17.2 |
Male | Female | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean (g/cm2) | Standard Deviation (g/cm2) | Range | Osteopenia | Osteoporosis | Mean (g/cm2) | Standard Deviation (g/cm2) | Range | Osteopenia | Osteoporosis | |
Mexican American | ||||||||||
Total body | 1.138 | 0.084 | 0.987–1.482 | 0.928–1.054 | <0.928 | 1.068 | 0.079 | 0.925–1.305 | 0.871–0.989 | <0.871 |
Upper body | ||||||||||
Left arm | 0.821 | 0.067 | 0.713–1.017 | 0.654–0.754 | <0.654 | 0.688 | 0.048 | 0.597–0.804 | 0.568–0.640 | <0.568 |
Right arm | 0.838 | 0.065 | 0.712–1.067 | 0.676–0.773 | <0.676 | 0.707 | 0.044 | 0.601–0.822 | 0.597–0.663 | <0.597 |
Total thoracic spine | 0.842 | 0.093 | 0.668–1.104 | 0.610–0.749 | <0.610 | 0.796 | 0.080 | 0.573–1.011 | 0.596–0.716 | <0.596 |
Lower body | ||||||||||
Left leg | 1.240 | 0.090 | 1.032–1.527 | 1.015–1.15 | <1.015 | 1.090 | 0.100 | 0.926–1.324 | 0.840–0.990 | <0.840 |
Right leg | 1.254 | 0.104 | 1.001–1.579 | 0.994–1.15 | <0.994 | 1.092 | 0.091 | 0.956–1.296 | 0.865–1.001 | <0.865 |
Total lumbar spine | 1.003 | 0.120 | 0.801–1.339 | 0.703–0.883 | <0.703 | 1.010 | 0.120 | 0.833–1.377 | 0.710–0.890 | <0.710 |
Pelvis | 1.278 | 0.133 | 1.035–1.787 | 0.946–1.145 | <0.946 | 1.205 | 0.141 | 0.941–1.592 | 0.853–1.064 | <0.853 |
Non-Hispanic White | ||||||||||
Total body | 1.144 | 0.100 | 0.893–1.363 | 0.894–1.044 | <0.894 | 1.095 | 0.084 | 0.940–1.348 | 0.885–1.011 | <0.885 |
Upper body | ||||||||||
Left arm | 0.840 | 0.081 | 0.659–1.108 | 0.638–0.759 | <0.638 | 0.718 | 0.049 | 0.614–0.853 | 0.596–0.669 | <0.596 |
Right arm | 0.869 | 0.088 | 0.664–1.124 | 0.649–0.781 | <0.649 | 0.730 | 0.049 | 0.635–0.846 | 0.608–0.681 | <0.608 |
Total thoracic spine | 0.835 | 0.101 | 0.536–1.110 | 0.583–0.734 | <0.583 | 0.814 | 0.091 | 0.648–1.160 | 0.587–0.723 | <0.587 |
Lower body | ||||||||||
Left leg | 1.231 | 0.121 | 0.890–1.459 | 0.929–1.11 | <0.929 | 1.124 | 0.085 | 0.949–1.347 | 0.912–1.039 | <0.912 |
Right leg | 1.238 | 0.117 | 0.928–1.456 | 0.946–1.121 | <0.946 | 1.138 | 0.085 | 0.921–1.331 | 0.926–1.053 | <0.926 |
Total lumbar spine | 1.038 | 0.133 | 0.759–1.358 | 0.706–0.905 | <0.706 | 1.069 | 0.126 | 0.831–1.556 | 0.754–0.943 | <0.754 |
Pelvis | 1.293 | 0.181 | 0.835–1.863 | 0.841–1.112 | <0.841 | 1.243 | 0.135 | 0.973–1.605 | 0.906–1.108 | <0.906 |
Non-Hispanic Black | ||||||||||
Total body | 1.216 | 0.104 | 0.942–1.517 | 0.956–1.112 | <0.956 | 1.136 | 0.067 | 0.960–1.271 | 0.969–1.069 | <0.969 |
Upper body | ||||||||||
Left arm | 0.854 | 0.068 | 0.709–1.074 | 0.684–0.786 | <0.684 | 0.744 | 0.060 | 0.643–0.957 | 0.594–0.684 | <0.594 |
Right arm | 0.881 | 0.079 | 0.711–1.132 | 0.684–0.802 | <0.684 | 0.761 | 0.066 | 0.667–0.997 | 0.596–0.695 | <0.596 |
Total thoracic spine | 0.884 | 0.108 | 0.642–1.164 | 0.614–0.776 | <0.614 | 0.843 | 0.073 | 0.666–1.015 | 0.661–0.770 | <0.661 |
Lower body | ||||||||||
Left leg | 1.322 | 0.126 | 1.045–1.694 | 1.007–1.196 | <1.007 | 1.158 | 0.089 | 0.964–1.378 | 0.936–1.069 | <0.936 |
Right leg | 1.333 | 0.121 | 1.043–1.602 | 1.031–1.212 | <1.031 | 1.182 | 0.091 | 0.993–1.419 | 0.955–1.091 | <0.955 |
Total lumbar spine | 1.145 | 0.174 | 0.761–1.646 | 0.710–0.971 | <0.710 | 1.105 | 0.122 | 0.886–1.406 | 0.800–0.983 | <0.800 |
Pelvis | 1.343 | 0.208 | 0.972–1.978 | 0.823–1.135 | <0.823 | 1.288 | 0.157 | 0.988–1.637 | 0.896–1.131 | <0.896 |
Non-Hispanic Asian | ||||||||||
Total body | 1.115 | 0.100 | 0.918–1.302 | 0.865–1.015 | <0.865 | 1.060 | 0.068 | 0.908–1.192 | 0.890–0.992 | <0.890 |
Upper body | ||||||||||
Left arm | 0.791 | 0.073 | 0.644–0.964 | 0.609–0.718 | <0.609 | 0.663 | 0.042 | 0.560–0.739 | 0.558–0.621 | <0.558 |
Right arm | 0.819 | 0.065 | 0.686–0.938 | 0.657–0.754 | <0.657 | 0.684 | 0.041 | 0.584–0.763 | 0.582–0.643 | <0.582 |
Total thoracic spine | 0.815 | 0.089 | 0.613–0.978 | 0.593–0.726 | <0.593 | 0.777 | 0.085 | 0.613–0.992 | 0.565–0.692 | <0.565 |
Lower body | ||||||||||
Left leg | 1.214 | 0.109 | 0.952–1.489 | 0.942–1.105 | <0.942 | 1.068 | 0.081 | 0.906–1.266 | 0.866–0.987 | <0.866 |
Right leg | 1.208 | 0.111 | 0.949–1.447 | 0.931–1.097 | <0.931 | 1.084 | 0.080 | 0.929–1.249 | 0.884–1.004 | <0.884 |
Total lumbar spine | 1.053 | 0.148 | 0.758–1.437 | 0.683–0.905 | <0.683 | 1.009 | 0.103 | 0.837–1.210 | 0.752–0.906 | <0.752 |
Pelvis | 1.260 | 0.167 | 0.901–1.620 | 0.843–1.093 | <0.843 | 1.181 | 0.131 | 0.979–1.476 | 0.854–1.050 | <0.854 |
Other Hispanic | ||||||||||
Total body | 1.149 | 0.090 | 0.940–1.323 | 0.924–1.059 | <0.924 | 1.065 | 0.061 | 0.919–1.181 | 0.913–1.004 | <0.913 |
Upper body | ||||||||||
Left arm | 0.835 | 0.069 | 0.732–1.044 | 0.663–0.766 | <0.663 | 0.699 | 0.051 | 0.637–0.687 | 0.572–0.648 | <0.572 |
Right arm | 0.851 | 0.054 | 0.759–0.979 | 0.716–0.797 | <0.716 | 0.716 | 0.040 | 0.646–0.823 | 0.616–0.676 | <0.616 |
Total thoracic spine | 0.848 | 0.100 | 0.664–1.042 | 0.598–0.748 | <0.598 | 0.803 | 0.077 | 0.670–0.975 | 0.611–0.726 | <0.611 |
Lower body | ||||||||||
Left leg | 1.225 | 0.106 | 1.006–1.481 | 0.96–1.119 | <0.96 | 1.102 | 0.082 | 0.963–1.345 | 0.897–1.020 | <0.897 |
Right leg | 1.223 | 0.095 | 1.026–1.434 | 0.986–1.128 | <0.986 | 1.111 | 0.091 | 0.947–1.368 | 0.884–1.020 | <0.884 |
Total lumbar spine | 1.028 | 0.130 | 0.842–1.432 | 0.703–0.898 | <0.703 | 1.030 | 0.137 | 0.827–1.433 | 0.688–0.893 | <0.688 |
Pelvis | 1.316 | 0.186 | 1.040–1.939 | 0.851–1.130 | <0.851 | 1.200 | 0.110 | 1.046–1.542 | 0.925–1.090 | <0.925 |
Other race | ||||||||||
Total body | 1.187 | 0.118 | 0.953–1.362 | 0.892–1.069 | <0.892 | 1.082 | 0.092 | 0.911–1.251 | 0.852–0.990 | <0.852 |
Upper body | ||||||||||
Left arm | 0.875 | 0.100 | 0.720–1.040 | 0.625–0.775 | <0.625 | 0.699 | 0.063 | 0.616–0.866 | 0.542–0.636 | <0.542 |
Right arm | 0.911 | 0.116 | 0.736–1.154 | 0.621–0.795 | <0.621 | 0.723 | 0.077 | 0.616–0.898 | 0.531–0.646 | <0.531 |
Total thoracic spine | 0.874 | 0.098 | 0.656–1.011 | 0.629–0.776 | <0.629 | 0.818 | 0.120 | 0.628–1.155 | 0.518–0.698 | <0.518 |
Lower body | ||||||||||
Left leg | 1.297 | 0.119 | 1.096–1.549 | 1.000–1.178 | <1.000 | 1.098 | 0.090 | 0.987–1.334 | 0.873–1.008 | <0.873 |
Right leg | 1.305 | 0.160 | 1.020–1.630 | 0.905–1.145 | <0.905 | 1.110 | 0.106 | 0.992–1.391 | 0.845–1.004 | <0.845 |
Total lumbar spine | 1.073 | 0.151 | 0.849–1.386 | 0.696–0.922 | <0.696 | 1.068 | 0.117 | 0.903–1.284 | 0.776–0.951 | <0.776 |
Pelvis | 1.359 | 0.165 | 1.070–1.699 | 0.947–1.194 | <0.947 | 1.245 | 0.125 | 1.052–1.496 | 0.933–1.120 | <0.933 |
n = 2640 | Total Body | Left Arm | Right Arm | Total Thoracic Spine | ||||
---|---|---|---|---|---|---|---|---|
OR (95%CI) | p Value | OR (95%CI) | p Value | OR (95%CI) | p Value | OR (95%CI) | p Value | |
Metals(ug/L) a | ||||||||
Barium | 0.277 (0.023–3.330) | 0.312 | 0.130 (0.017–0.983) | 0.048 | 0.297 (0.025–3.559) | 0.338 | 0.459 (0.440–4.418) | 0.517 |
Cadmiu | 0.862 (0.330–2.251) | 0.761 | 0.636 (0.273–1.483) | 0.295 | 1.610 (0.538–4.815) | 0.395 | 0.973 (0.395–2.398) | 0.953 |
Manganese | 1.428 (0.904–2.254) | 0.127 | 1.610 (1.015–2.554) | 0.043 | 1.327 (0.838–2.102) | 0.227 | 1.235 (0.770–1.981) | 0.381 |
Antimony | 1.157 (0.671–1.994) | 0.6 | 0.764 (0.456–1.280) | 0.306 | 0.733 (0.441–1.216) | 0.228 | 1.064 (0.615–1.84) | 0.825 |
Tin | 0.540 (0.278–1.047) | 0.068 | 0.532 (0.275–1.03) | 0.061 | 0.707 (0.355–1.405 | 0.322 | 0.965 (0.479–1.944) | 0.922 |
Tungsten | 0.711 (0.395–1.279) | 0.255 | 0.831 (0.453–1.527) | 0.552 | 0.778 (0.432–1.401) | 0.403 | 0.886 (0.477–1.646) | 0.701 |
Chromium | 0.965 (0.599–1.554) | 0.882 | 0.980 (0.605–1.588) | 0.935 | 1.192 (0.748–1.899) | 0.459 | 0.898 (0.552–1.462) | 0.666 |
Mercury | 0.567 (0.357–0.900) | 0.016 | 0.741 (0.467–1.177) | 0.204 | 0.732 (0.463–1.157) | 0.182 | 1.114 (0.699–1.774) | 0.651 |
Arsenic(ug/L) a | ||||||||
Arsenous acid | 1.027 (0.648–1.629) | 0.91 | 1.036 (0.649–1.652) | 0.883 | 1.182 (0.748–1.868) | 0.473 | 1.050 (0.662–1.665) | 0.836 |
Arsenic acid | 0.707 (0.262–1.908) | 0.494 | 0.610 (0.210–1.771) | 0.363 | 0.513 (0.176–1.497) | 0.222 | 0.452 (0.133–1.543) | 0.205 |
Arsenobetaine | 1.171 (0.737–1.860) | 0.505 | 0.696 (0.431–1.125) | 0.139 | 0.681 (0.424–1.092) | 0.111 | 1.107 (0.694–1.766) | 0.67 |
Arsenocholine | 0.603 (0.256–1.418) | 0.246 | 0.629 (0.257–1.542) | 0.311 | 0.408 (0.155–1.071) | 0.069 | 0.729 (0.312–1.706) | 0.467 |
Dimethylarsinic acid | 0.923 (0.562–1.515) | 0.751 | 0.621 (0.383–1.009) | 0.054 | 0.686 (0.422–1.115) | 0.129 | 1.119 (0.668–1.874) | 0.669 |
Monomethylarsonic acid | 0.781 (0.496–1.231) | 0.288 | 0.916 (0.579–1.449) | 0.707 | 1.243 (0.789–1.957) | 0.348 | 0.885 (0.561–1.397) | 0.6 |
Volatile Organic Compound (VOC) Metabolites(ng/mL) a | ||||||||
2-methylhippuric acid | 0.425 (0.232–0.778) | 0.006 | 0.826 (0.430–1.584) | 0.564 | 0.661 (0.353–1.237) | 0.195 | 0.927 (0.473–1.814) | 0.824 |
3-methipurc acid and 4-methipurc acid | 0.465 (0.105–2.060) | 0.313 | 0.838 (0.163–4.316) | 0.833 | 0.910 (0.178–4.646) | 0.91 | 0.680 (0.119–3.877) | 0.664 |
2-amnothiazolne-4-carbxylic acid | 0.801 (0.424–1.514) | 0.495 | 0.579 (0.315–1.063) | 0.078 | 0.686 (0.370–1.274) | 0.233 | 1.062 (0.536–2.102) | 0.864 |
N-acetyl-S-(n-propyl)-L-cysteine | 0.891 (0.512–1.548) | 0.681 | 0.618 (0.361–1.056) | 0.078 | 0.502 (0.298–0.844) | 0.009 | 0.908 (0.512–1.612) | 0.742 |
N-acetyl-S-(2-carbxyethyl)-L-cys | 0.890 (0.166–4.779) | 0.892 | 1.818 (0.215–15.388) | 0.584 | 1.290 (0.245–6.798) | 0.764 | 1.826 (0.218–15.305) | 0.579 |
CYHA cysteine | 0.858 (0.464–1.587) | 0.625 | 1.051 (0.569–1.942) | 0.874 | 0.811 (0.430–1.529) | 0.517 | 0.925 (0.504–1.699) | 0.803 |
N-acetyl-S-(2-cyanoethyl)-L-cyst | 0.875 (0.503–1.520) | 0.635 | 0.979 (0.553–1.733) | 0.942 | 0.759 (0.444–1.299) | 0.315 | 1.441 (0.762–2.724) | 0.261 |
N-ac-S-(2-carbmo-2-hydxel)-L-cys | 1.055 (0.659–1.690) | 0.824 | 0.933 (0.579–1.503) | 0.774 | 1.005 (0.625–1.616) | 0.984 | 0.739 (0.454–1.202) | 0.223 |
N-ace-S-(2-hydroxyethyl)-L-cys | 1.004 (0.631–1.598) | 0.987 | 0.683 (0.421–1.108) | 0.122 | 0.685 (0.424–1.107) | 0.123 | 0.979 (0.611–1.570) | 0.931 |
N-ace-S-(2-hydroxypropyl)-L-cys | 0.415 (0.175–0.982) | 0.045 | 0.652 (0.274–1.554) | 0.334 | 0.770 (0.309–1.919) | 0.575 | 0.995 (0.372–2.659) | 0.992 |
N-ace-S-(3-hydroxypropyl)-L-cys | 0.101 (0.008–1.232) | 0.072 | 0.097 (0.009–1.112) | 0.061 | 0.105 (0.009–1.202) | 0.07 | 0.088 (0.007–1.025) | 0.052 |
IPM3 cysteine | 0.648 (0.368–1.138) | 0.131 | 0.961 (0.531–1.741) | 0.896 | 0.793 (0.448–1.402) | 0.425 | 0.701 (0.397–1.239) | 0.222 |
Mandelic acid | 0.292 (0.065–1.311) | 0.108 | 0.444 (0.086–2.286) | 0.332 | 0.280 (0.063–1.241) | 0.094 | 0.350 (0.064–1.904) | 0.225 |
N-A-S-(4-hydroxy-2-butenyl)-L-cys | 0.560 (0.198–1.582) | 0.274 | 0.699 (0.241–2.028) | 0.509 | 0.612 (0.223–1.683) | 0.342 | 0.690 (0.226–2.108) | 0.515 |
N-ace-S-(phenl-2-hydxyetl)-L-cys | 0.848 (0.517–1.391) | 0.514 | 0.753 (0.452–1.255) | 0.277 | 0.552 (0.324–0.939) | 0.028 | 0.870 (0.528–1.432) | 0.583 |
2-Thioxothiazolidine-4-carboxylic acid | 1.013 (0.638–1.608) | 0.955 | 0.890 (0.553–1.432) | 0.63 | 0.718 (0.443–1.164) | 0.179 | 1.165 (0.729–1.862) | 0.524 |
Metals (ug/L) a | ||||||||
Barium | 0.088 (0.009–0.864) | 0.037 | 0.093 (0.009–0.912) | 0.041 | 0.238 (0.33–1.736) | 0.157 | NA | NA |
Cadmiu | 0.975 (0.415–2.291) | 0.954 | 0.851 (0.371–1.954) | 0.704 | 1.005 (0.452–2.233) | 0.99 | 0.62 (0.261–1.47) | 0.278 |
Manganese | 1.372 (0.915–2.057) | 0.126 | 1.310 (0.869–1.974) | 0.198 | 1.367 (0.946–1.974) | 0.096 | 1.587 (1.001–2.516) | 0.05 |
Antimony | 0.767 (0.484–1.215) | 0.258 | 0.860 (0.538–1.374) | 0.528 | 0.832 (0.54–1.28) | 0.402 | 1.246 (0.704–2.205) | 0.451 |
Tin | 0.673 (0.363–1.248) | 0.209 | 0.731 (0.395–1.353) | 0.319 | 0.999 (0.543–1.837) | 0.998 | 0.667 (0.35–1.274) | 0.22 |
Tungsten | 1.222 (0.695–2.149) | 0.486 | 1.181 (0.676–2.062) | 0.558 | 0.829 (0.498–1.379) | 0.47 | 1.146 (0.605–2.168) | 0.676 |
Chromium, Urine | 0.829 (0.544–1.263) | 0.382 | 0.836 (0.547–1.278) | 0.408 | 1.048 (0.72–1.526) | 0.805 | 0.925 (0.574–1.492) | 0.75 |
Mercury | 0.514 (0.341–0.773) | 0.001 | 0.529 (0.350–0.798) | 0.002 | 1.02 (0.709–1.466) | 0.916 | 0.995 (0.627–1.581) | 0.984 |
Arsenic (ug/L) a | ||||||||
Arsenous acid | 0.893 (0.595–1.340) | 0.584 | 0.872 (0.580–1.311) | 0.51 | 1.235 (0.858–1.778) | 0.256 | 0.847 (0.533–1.347) | 0.484 |
Arsenic acid | 0.631 (0.267–1.491) | 0.294 | 0.745 (0.328–1.694) | 0.483 | 0.942 (0.424–2.093) | 0.884 | 0.252 (0.059–1.084) | 0.064 |
Arsenobetaine | 0.841 (0.559–1.264) | 0.405 | 0.705 (0.465–1.070) | 0.101 | 1.081 (0.753–1.553) | 0.672 | 1.057 (0.665–1.681) | 0.815 |
Arsenocholine | 0.924 (0.468–1.825) | 0.82 | 0.728 (0.355–1.496) | 0.388 | 1.07 (0.582–1.968) | 0.827 | 0.668 (0.286–1.559) | 0.351 |
Dimethylarsinic acid | 0.615 (0.401–0.942) | 0.025 | 0.710 (0.462–1.091) | 0.118 | 1.153 (0.755–1.759) | 0.51 | 0.858 (0.521–1.414) | 0.549 |
Monomethylarsonic acid | 0.828 (0.557–1.231) | 0.35 | 0.801 (0.538–1.192) | 0.273 | 1.451 (1.007–2.090) | 0.046 | 1.075 (0.682–1.693) | 0.756 |
Volatile Organic Compound (VOC) Metabolites (ng/mL) a | ||||||||
2-methylhippuric acid | 0.487 (0.275–0.863) | 0.014 | 0.450 (0.255–0.795) | 0.006 | 0.793 (0.456–1.381) | 0.413 | 0.686 (0.347–1.356) | 0.278 |
3-methipurc acid and 4-methipurc acid | 1.181 (0.220–6.332) | 0.846 | 1.159 (0.210–6.382) | 0.865 | 0.453 (0.106–1.934) | 0.285 | 1.526 (0.175–13.307) | 0.702 |
2-amnothiazolne-4-carbxylic acid | 0.724 (0.414–1.267) | 0.258 | 0.886 (0.499–1.575) | 0.681 | 1.231 (0.701–2.163) | 0.469 | 1.216 (0.617–2.397) | 0.573 |
N-acetyl-S-(n-propyl)-L-cysteine | 0.802 (0.491–1.307) | 0.376 | 0.781 (0.482–1.267) | 0.318 | 0.378 (0.757–2.080) | 0.378 | 0.884 (0.501–1.562) | 0.672 |
N-acetyl-S-(2-carbxyethyl)-L-cys | 2.981 (0.347–25.651) | 0.32 | 1.003 (0.189–5.323) | 0.998 | 1.733 (0.21–14.303) | 0.61 | 0.337 (0.074–1.544) | 0.161 |
CYHA cysteine | 0.56 (0.322–0.975) | 0.04 | 0.705 (0.413–1.202) | 0.199 | 0.727 (0.468–1.129) | 0.156 | 1.145 (0.647–2.027) | 0.641 |
N-acetyl-S-(2-cyanoethyl)-L-cyst | 0.690 (0.422–1.128) | 0.139 | 0.768 (0.469–1.259) | 0.295 | 1.013 (0.618–1.662) | 0.959 | 0.912 (0.502–1.657) | 0.763 |
N-ac-S-(2-carbmo-2-hydxel)-L-cys | 0.804 (0.532–1.215) | 0.3 | 0.826 (0.546–1.250) | 0.366 | 0.827 (0.572–1.196) | 0.312 | 1.133 (0.708–1.811) | 0.603 |
N-ace-S-(2-hydroxyethyl)-L-cys | 0.845 (0.560–1.275) | 0.422 | 0.810 (0.534–1.229) | 0.322 | 0.935 (0.647–1.351) | 0.72 | 1.109 (0.694–1.773) | 0.666 |
N-ace-S-(2-hydroxypropyl)-L-cys | 0.559 (0.246–1.268) | 0.164 | 0.519 (0.233–1.157) | 0.109 | 0.656 (0.296–1.456) | 0.3 | 0.77 (0.288–2.060) | 0.602 |
N-ace-S-(3-hydroxypropyl)-L-cys | 0.154 (0.014–1.748) | 0.131 | 0.157 (0.014–1.798) | 0.137 | 0.115 (0.01–1.323) | 0.083 | 0.274 (0.023–3.201) | 0.302 |
IPM3 cysteine | 0.642 (0.384–1.072) | 0.09 | 0.566 (0.337–0.949) | 0.031 | 0.802 (0.5–1.285) | 0.358 | 0.951 (0.516–1.753) | 0.873 |
Mandelic acid | 0.764 (0.147–3.966) | 0.749 | 0.709 (0.137–3.674) | 0.682 | 0.627 (0.119–3.308) | 0.582 | 0.932 (0.109–8.066) | 0.949 |
N-A-S-(4-hydroxy-2-butenyl)-L-cys | 0.735 (0.260–2.074) | 0.561 | 0.562 (0.205–1.543) | 0.263 | 0.909 (0.33–2.502) | 0.853 | 0.526 (0.173–1.597) | 0.257 |
N-ace-S-(phenl-2-hydxyetl)-L-cys | 0.725 (0.469–1.120) | 0.148 | 0.809 (0.526–1.246) | 0.337 | 0.725 (0.493–1.067) | 0.103 | 0.682 (0.413–1.128) | 0.136 |
2-Thioxothiazolidine-4-carboxylic acid | 1.094 (0.730–1.640) | 0.664 | 1.049 (0.696–1.579) | 0.821 | 0.99 (0.684–1.431) | 0.956 | 1.151 (0.725–1.826) | 0.552 |
n = 292 | No Fracture | Fracture | OR (95%CI) | p Value |
---|---|---|---|---|
Metals (ug/L) a | ||||
Cadmium | 0.489 ± 0.585 | 0.442 ± 0.436 | 1.488 (0.27–8.218) | 0.648 |
Manganese | 0.174 ± 0.217 | 0.286 ± 1.194 | 1.11 (0.611–2.015) | 0.732 |
Antimony | 0.074 ± 0.199 | 0.095 ± 0.132 | 1.163 (0.539–2.508) | 0.701 |
Tin | 1.013 ± 2.466 | 1.051 ± 1.590 | 5.016 (0.589–42.727) | 0.14 |
Tungsten | 0.191 ± 1.171 | 0.076 ± 0.055 | 2.402 (0.832–6.938) | 0.105 |
Chromium | 0.294 ± 0.436 | 0.436 ± 1.316 | 1.249 (0.692–2.253) | 0.461 |
Mercury | 0.425 ± 0.883 | 0.407 ± 0.561 | 1.348 (0.741–2.453) | 0.329 |
Arsenic (ug/L) a | ||||
Arsenous acid | 0.274 ± 0.394 | 0.304 ± 0.373 | 2.578 (1.358–4.893) | 0.004 |
Arsenic acid | 0.595 ± 0.220 | 0.612 ± 0.258 | 1.468 (0.495–4.352) | 0.488 |
Arsenobetaine | 8.736 ± 35.66 | 9.121 ± 30.560 | 1.419 (0.787–2.558) | 0.244 |
Arsenocholine | 0.147 ± 0.503 | 0.114 ± 0.127 | 2.978 (1.052–8.427) | 0.04 |
Dimethylarsinic acid | 6.278 ± 11.100 | 4.769 ± 5.409 | 2.087 (1.06–4.112) | 0.033 |
Monomethylarsonic acid | 0.505 ± 0.655 | 0.570 ± 0.624 | 2.276 (1.225–4.226) | 0.009 |
Volatile Organic Compound (VOC) Metabolites (ng/mL) a | ||||
2-methylhippuric acid | 62.82 ± 109.600 | 158.700 ± 807.300 | 3.532 (0.957–13.031) | 0.058 |
2-amnothiazolne-4-carbxylic acid | 181.900 ± 295.400 | 177.900 ± 250.900 | 0.822 (0.372–1.816) | 0.628 |
N-acetyl-S-(n-propyl)-L-cysteine | 10.450 ± 17.470 | 11.580 ± 14.390 | 1.155 (0.546–2.445) | 0.705 |
N-acetyl-S-(2-carbxyethyl)-L-cys | 171.800 ± 211.100 | 216.400 ± 234.100 | 0.713 (0.052–9.848) | 0.8 |
CYHA cysteine | 10.330 ± 26.510 | 14.990 ± 29.750 | 1.378 (0.664–2.863) | 0.389 |
N-acetyl-S-(2-cyanoethyl)-L-cyst | 51.360 ± 118.900 | 69.880 ± 137.600 | 1.933 (0.859–4.348) | 0.111 |
N-ac-S-(2-carbmo-2-hydxel)-L-cys | 12.790 ± 13.340 | 14.870 ± 14.030 | 1.678 (0.925–3.043) | 0.088 |
N-ace-S-(2-hydroxyethyl)-L-cys | 1.836 ± 4.934 | 1.630 ± 2.178 | 1.345 (0.739–2.451) | 0.332 |
N-ace-S-(2-hydroxypropyl)-L-cys | 57.68 ± 120.900 | 72.39 ± 113.3 | 2.245 (0.436–11.560) | 0.333 |
N-ace-S-(3-hydroxypropyl)-L-cys | 540.200 ± 996.600 | 763.200 ± 1111.000 | 0.592 (0.035–9.870) | 0.715 |
IPM3 cysteine | 18.400 ± 37.970 | 23.800 ± 42.800 | 1.28 (0.523–3.133) | 0.588 |
Mandelic acid | 212.300 ± 284.800 | 284.700 ± 370.900 | 0.592 (0.035–9.870) | 0.715 |
N-A-S-(4-hydroxy-2-butenyl)-L-cys | 14.140 ± 25.480 | 16.580 ± 26.190 | 1.492 (0.141–15.749) | 0.739 |
N-ace-S-(phenl-2-hydxyetl)-L-cys | 1.477 ± 2.032 | 1.938 ± 3.581 | 1.413 (0.749–2.668) | 0.286 |
2-Thioxothiazolidine-4-carboxylic acid | 40.010 ± 109.800 | 29.780 ± 46.210 | 1.804 (1.004–3.242) | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, R.; Ai, Y.; Chen, C.; Zhang, J.; Zou, Z.; Cheng, S.; Li, C.; Li, X.; Wang, B. Risk of Environmental Chemicals on Bone Fractures Is Independent of Low Bone Mass in US Adults: Insights from 2017 to 2018 NHANES. Metabolites 2023, 13, 346. https://doi.org/10.3390/metabo13030346
Ling R, Ai Y, Chen C, Zhang J, Zou Z, Cheng S, Li C, Li X, Wang B. Risk of Environmental Chemicals on Bone Fractures Is Independent of Low Bone Mass in US Adults: Insights from 2017 to 2018 NHANES. Metabolites. 2023; 13(3):346. https://doi.org/10.3390/metabo13030346
Chicago/Turabian StyleLing, Run, Yuanli Ai, Chengzhi Chen, Jun Zhang, Zhen Zou, Shuqun Cheng, Chunli Li, Xi Li, and Bin Wang. 2023. "Risk of Environmental Chemicals on Bone Fractures Is Independent of Low Bone Mass in US Adults: Insights from 2017 to 2018 NHANES" Metabolites 13, no. 3: 346. https://doi.org/10.3390/metabo13030346
APA StyleLing, R., Ai, Y., Chen, C., Zhang, J., Zou, Z., Cheng, S., Li, C., Li, X., & Wang, B. (2023). Risk of Environmental Chemicals on Bone Fractures Is Independent of Low Bone Mass in US Adults: Insights from 2017 to 2018 NHANES. Metabolites, 13(3), 346. https://doi.org/10.3390/metabo13030346