Biological Health Markers Associated with Oxidative Stress in Dairy Cows during Lactation Period
Abstract
:1. Introduction
2. Production of Free Radicals
3. Antioxidants and Oxidative Stress in Cows
4. Oxidative Stress during Lactation in Cows
5. Biological Health Markers of Cows in the Lactation Period
5.1. Serum Biochemistry and Liver Enzymes in Dairy Cows
5.2. Lipid Peroxidation and Antioxidant Enzymes in Dairy Cows
5.3. Serum Biochemical Profile in Dairy Cows
5.4. Alterations in the Antioxidant Status of Health Markers in Dairy Cows
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- O’Connor, J.P.B.; Aboagye, E.O.; Adams, J.E.; Aerts, H.J.W.L.; Barrington, S.F.; Beer, A.J.; Boellaard, R.; Bohndiek, S.E.; Brady, M.; Brown, G.; et al. Imaging Biomarker Roadmap for Cancer Studies. Nat. Rev. Clin. Oncol. 2017, 14, 169–186. [Google Scholar] [CrossRef] [PubMed]
- Gil, F.; Pla, A. Biomarkers as Biological Indicators of Xenobiotic Exposure. J. Appl. Toxicol. 2001, 21, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Tashla, T.; Žuža, M.; Kenjveš, T.; Prodanović, R.; Soleša, D.; Bursić, V.; Petrović, A.; Ljubojević Pelić, D.; Bošković, J.; Puvača, N. Fish as an Important Bio-Indicator of Environmental Pollution with Persistent Organic Pollutants and Heavy Metals. J. Agron. Technol. Eng. Manag. 2018, 1, 52–56. [Google Scholar]
- Khan, M.S.; Buzdar, S.A.; Hussain, R.; Afzal, G.; Jabeen, G.; Javid, M.A.; Iqbal, R.; Iqbal, Z.; Mudassir, K.B.; Saeed, S.; et al. Hematobiochemical, Oxidative Stress, and Histopathological Mediated Toxicity Induced by Nickel Ferrite (NiFe2O4) Nanoparticles in Rabbits. Oxid. Med. Cell. Longev. 2022, 2022, e5066167. [Google Scholar] [CrossRef] [PubMed]
- Onasanya, G.O.; Oke, F.O.; Sanni, T.M.; Muhammad, A.I. Parameters Influencing Haematological, Serum and Bio-Chemical References in Livestock Animals under Different Management Systems. Open J. Vet. Med. 2015, 5, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Herdt, T.H.; Hoff, B. The Use of Blood Analysis to Evaluate Trace Mineral Status in Ruminant Livestock. Vet. Clin. Food Anim. Pract. 2011, 27, 255–283. [Google Scholar] [CrossRef]
- Shoukat, F.; Khan, R.U.; De Marzo, D.; Mazzei, D.; Laudadio, V.; Tufarelli, V. Interaction of Blood Calcium with Luteal Activity, Energy Metabolites and Somatic Cells Count in Post-Partum Dairy Cows. Reprod. Domest. Anim. 2022, 57, 849–855. [Google Scholar] [CrossRef]
- Drackley, J.K.; Dann, H.M.; Douglas, N.; Guretzky, N.A.J.; Litherland, N.B.; Underwood, J.P.; Loor, J.J. Physiological and Pathological Adaptations in Dairy Cows That May Increase Susceptibility to Periparturient Diseases and Disorders. Ital. J. Anim. Sci. 2005, 4, 323–344. [Google Scholar] [CrossRef] [Green Version]
- Celi, P. Biomarkers of Oxidative Stress in Ruminant Medicine. Immunopharmacol. Immunotoxicol. 2011, 33, 233–240. [Google Scholar] [CrossRef]
- Maxfield, F.R.; Tabas, I. Role of Cholesterol and Lipid Organization in Disease. Nature 2005, 438, 612–621. [Google Scholar] [CrossRef]
- LaRosa, J.C. Low-Density Lipoprotein Cholesterol Reduction: The End Is More Important Than the Means. Am. J. Cardiol. 2007, 100, 240–242. [Google Scholar] [CrossRef] [PubMed]
- Kurpińska, A.K.; Jarosz, A.; Ożgo, M.; Skrzypczak, W.F. Changes in Lipid Metabolism during Last Month of Pregnancy and First Two Months of Lactation in Primiparous Cows—Analysis of Apolipoprotein Expression Pattern and Changes in Concentration of Total Cholesterol, HDL, LDL, Triglycerides. Pol. J. Vet. Sci. 2015, 18, 291–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, J.J.; Montelongo, A.; Iglesias, A.; Lasunción, M.A.; Herrera, E. Longitudinal Study on Lipoprotein Profile, High Density Lipoprotein Subclass, and Postheparin Lipases during Gestation in Women. J. Lipid Res. 1996, 37, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Obućinski, D.; Soleša, D.; Kučević, D.; Prodanović, R.; Simin, M.T.; Pelić, D.L.; Ðuragić, O.; Puvača, N. Management of Blood Lipid Profile and Oxidative Status in Holstein and Simmental Dairy Cows during Lactation. Mljekarstvo 2019, 69, 116–124. [Google Scholar] [CrossRef]
- Gowda, S.; Desai, P.B.; Hull, V.V.; Math, A.A.K.; Vernekar, S.N.; Kulkarni, S.S. A Review on Laboratory Liver Function Tests. Pan Afr. Med. J. 2009, 3, 17. [Google Scholar]
- Kathak, R.R.; Sumon, A.H.; Molla, N.H.; Hasan, M.; Miah, R.; Tuba, H.R.; Habib, A.; Ali, N. The Association between Elevated Lipid Profile and Liver Enzymes: A Study on Bangladeshi Adults. Sci. Rep. 2022, 12, 1711. [Google Scholar] [CrossRef]
- Niemelä, O.; Alatalo, P. Biomarkers of Alcohol Consumption and Related Liver Disease. Scand. J. Clin. Lab. Investig. 2010, 70, 305–312. [Google Scholar] [CrossRef]
- Klein, R.; Nagy, O.; Tóthová, C.; Chovanová, F. Clinical and Diagnostic Significance of Lactate Dehydrogenase and Its Isoenzymes in Animals. Vet. Med. Int. 2020, 2020, e5346483. [Google Scholar] [CrossRef]
- Bertoni, G.; Trevisi, E. Use of the Liver Activity Index and Other Metabolic Variables in the Assessment of Metabolic Health in Dairy Herds. Vet. Clin. Food Anim. Pract. 2013, 29, 413–431. [Google Scholar] [CrossRef]
- Könyves, T.; Zlatković, N.; Memiši, N.; Lukač, D.; Puvača, N.; Stojšin, M.; Halász, A.; Miščević, B. Relationship of Temperature-Humidity Index with Milk Production and Feed Intake of Holstein-Frisian Cows in Different Year Seasons. Thai J. Vet. Med. 2017, 47, 15–23. [Google Scholar]
- Kostadinović, L. Influence of Wormwood Seeds on Enzymatic and Non–Enzymatic Activity in Blood of Broilers with Coccidiosis. J. Agron. Technol. Eng. Manag. 2023, 6, 857–865. [Google Scholar] [CrossRef]
- Saqib, M.N.; Qureshi, M.S.; Suhail, S.M.; Khan, R.U.; Bozzo, G.; Ceci, E.; Laudadio, V.; Tufarelli, V. Association among Metabolic Status, Oxidative Stress, Milk Yield, Body Condition Score and Reproductive Cyclicity in Dairy Buffaloes. Reprod. Domest. Anim. 2022, 57, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Becskei, Z.; Savić, M.; Ćirković, D.; Rašeta, M.; Puvača, N.; Pajić, M.; Đorđević, S.; Paskaš, S. Assessment of Water Buffalo Milk and Traditional Milk Products in a Sustainable Production System. Sustainability 2020, 12, 6616. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puvača, N.; Britt, C. Welfare and Legal Aspects of Making Decisions on Medical Treatments of Pet Animals. Pravo Teor. Praksa 2020, 37, 55–64. [Google Scholar] [CrossRef]
- Karacay, Ö.; Sepici-Dincel, A.; Karcaaltincaba, D.; Sahin, D.; Yalvaç, S.; Akyol, M.; Kandemir, Ö.; Altan, N. A Quantitative Evaluation of Total Antioxidant Status and Oxidative Stress Markers in Preeclampsia and Gestational Diabetic Patients in 24–36 Weeks of Gestation. Diabetes Res. Clin. Pract. 2010, 89, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, V.; Ravichandran, A.; Thiagarajan, N.; Govindarajan, M.; Dhandayuthapani, S.; Suresh, S. Seminal Reactive Oxygen Species and Total Antioxidant Capacity: Correlations with Sperm Parameters and Impact on Male Infertility. Clin. Exp. Reprod. Med. 2018, 45, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Scandalios, J.G. Oxygen Stress and Superoxide Dismutases. Plant Physiol. 1993, 101, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Shi, J.; Zhang, J.; Wang, Z.; Zhang, S.; Li, R.; Jiang, W.; Huang, T.; Guo, J.; Shang, W. Treatment of Acute Kidney Injury Using a Dual Enzyme Embedded Zeolitic Imidazolate Frameworks Cascade That Catalyzes In Vivo Reactive Oxygen Species Scavenging. Front. Bioeng. Biotechnol. 2022, 9, 800428. [Google Scholar] [CrossRef]
- Kostadinović, L.; Lević, J.; Popović, S.T.; Čabarkapa, I.; Puvača, N.; Djuragic, O.; Kormanjoš, S. Dietary Inclusion of Artemisia Absinthium for Management of Growth Performance, Antioxidative Status and Quality of Chicken Meat. Europ. Poult. Sci. 2015, 79, 1–10. [Google Scholar] [CrossRef]
- Balmus, I.M.; Ciobica, A.; Antioch, I.; Dobrin, R.; Timofte, D. Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches. Oxid. Med. Cell. Longev. 2016, 2016, e3975101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balmus, I.M.; Ciobica, A.; Trifan, A.; Stanciu, C. The Implications of Oxidative Stress and Antioxidant Therapies in Inflammatory Bowel Disease: Clinical Aspects and Animal Models. Saudi J. Gastroenterol. 2016, 22, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Wajner, M.; Latini, A.; Wyse, A.T.S.; Dutra-Filho, C.S. The Role of Oxidative Damage in the Neuropathology of Organic Acidurias: Insights from Animal Studies. J. Inherit. Metab. Dis. 2004, 27, 427–448. [Google Scholar] [CrossRef] [PubMed]
- Navab, M.; Hama-Levy, S.; Lenten, B.J.V.; Fonarow, G.C.; Cardinez, C.J.; Castellani, L.W.; Brennan, M.L.; Lusis, A.J.; Fogelman, A.M.; Du, B.N.L. Mildly Oxidized LDL Induces an Increased Apolipoprotein J/Paraoxonase Ratio. J. Clin. Investig. 1997, 99, 2005–2019. [Google Scholar] [CrossRef] [Green Version]
- Aviram, M.; Rosenblat, M.; Bisgaier, C.L.; Newton, R.S.; Primo-Parmo, S.L.; Du, B.N.L. Paraoxonase Inhibits High-Density Lipoprotein Oxidation and Preserves Its Functions. A Possible Peroxidative Role for Paraoxonase. J. Clin. Investig. 1998, 101, 1581–1590. [Google Scholar] [CrossRef] [Green Version]
- Akalın, P.P.; Ataseven, V.S.; Fırat, D.; Ergün, Y.; Başpınar, N.; Özcan, O. Selected Biochemical and Oxidative Stress Parameters and Ceruloplasmin as Acute Phase Protein Associated with Bovine Leukaemia Virus Infection in Dairy Cows. J. Vet. Res. 2015, 59, 327–330. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, V.N.; Mylnikov, S.V.; Oparina, T.I.; Khavinson, V.K. Effect of Melatonin and Pineal Peptide Preparation Epithalamin on Life Span and Free Radical Oxidation in Drosophila Melanogaster. Mech. Ageing Dev. 1997, 97, 81–91. [Google Scholar] [CrossRef]
- Blanc, F.; Bocquier, F.; Agabriel, J.; D’hour, P.; Chilliard, Y. Adaptive Abilities of the Females and Sustainability of Ruminant Livestock Systems. A Review. Anim. Res. 2006, 55, 489–510. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and Hormonal Acclimation to Heat Stress in Domesticated Ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [Green Version]
- Schwinn, A.-C.; Knight, C.H.; Bruckmaier, R.M.; Gross, J.J. Suitability of Saliva Cortisol as a Biomarker for Hypothalamic–Pituitary–Adrenal Axis Activation Assessment, Effects of Feeding Actions, and Immunostimulatory Challenges in Dairy Cows1. J. Anim. Sci. 2016, 94, 2357–2365. [Google Scholar] [CrossRef]
- Nelis, J.L.D.; Bose, U.; Broadbent, J.A.; Hughes, J.; Sikes, A.; Anderson, A.; Caron, K.; Schmoelzl, S.; Colgrave, M.L. Biomarkers and Biosensors for the Diagnosis of Noncompliant PH, Dark Cutting Beef Predisposition, and Welfare in Cattle. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2391–2432. [Google Scholar] [CrossRef] [PubMed]
- Madreseh-Ghahfarokhi, S.; Dehghani-Samani, A.; Dehghani-Samani, A. Blood Metabolic Profile Tests at Dairy Cattle Farms as Useful Tools for Animal Health Management. BJVM 2020, 23, 1–20. [Google Scholar] [CrossRef]
- Celi, P.; Gabai, G. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation. Front. Vet. Sci. 2015, 2, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Juniper, D.T. Revisiting Oxidative Stress and the Use of Organic Selenium in Dairy Cow Nutrition. Animals 2019, 9, 462. [Google Scholar] [CrossRef] [Green Version]
- Abuelo, A.; Hernández, J.; Benedito, J.L.; Castillo, C. Redox Biology in Transition Periods of Dairy Cattle: Role in the Health of Periparturient and Neonatal Animals. Antioxidants 2019, 8, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, A.; Fernandes, E.; Lima, J.L.F.C. Fluorescence Probes Used for Detection of Reactive Oxygen Species. J. Biochem. Biophys. Methods 2005, 65, 45–80. [Google Scholar] [CrossRef] [PubMed]
- Tashla, T.; Ćosić, M.; Kurćubić, V.; Prodanović, R.; Puvača, N. Occurrence of Oxidative Stress in Sheep during Different Pregnancy Periods. Acta Agric. Serbica 2021, 26, 111–116. [Google Scholar] [CrossRef]
- Kehrer, J.P. Free Radicals as Mediators of Tissue Injury and Disease. Crit. Rev. Toxicol. 1993, 23, 21–48. [Google Scholar] [CrossRef]
- Ahmadinejad, F.; Geir Møller, S.; Hashemzadeh-Chaleshtori, M.; Bidkhori, G.; Jami, M.-S. Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress. Antioxidants 2017, 6, 51. [Google Scholar] [CrossRef]
- Indo, H.P.; Davidson, M.; Yen, H.-C.; Suenaga, S.; Tomita, K.; Nishii, T.; Higuchi, M.; Koga, Y.; Ozawa, T.; Majima, H.J. Evidence of ROS Generation by Mitochondria in Cells with Impaired Electron Transport Chain and Mitochondrial DNA Damage. Mitochondrion 2007, 7, 106–118. [Google Scholar] [CrossRef]
- Victor, V.M.; Rocha, M.; De la Fuente, M. Immune Cells: Free Radicals and Antioxidants in Sepsis. Int. Immunopharmacol. 2004, 4, 327–347. [Google Scholar] [CrossRef] [PubMed]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Ind. J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Turk, R.; Koledić, M.; Maćešić, N.; Benić, M.; Dobranić, V.; Ðuričić, D.; Cvetnić, L.C.; Samardžija, M. The Role of Oxidative Stress and Inflammatory Response in the Pathogenesis of Mastitis in Dairy Cows. Mljekarstvo 2017, 67, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Puvača, N.; Čabarkapa, I.; Bursić, V.; Petrović, A.; Aćimović, M. Antimicrobial, Antioxidant and Acaricidal Properties of Tea Tree (Melaleuca Alternifolia). J. Agron. Technol. Eng. Manag. 2018, 1, 29–38. [Google Scholar]
- Kharrazi, H.; Vaisi-Raygani, A.; Rahimi, Z.; Tavilani, H.; Aminian, M.; Pourmotabbed, T. Association between Enzymatic and Non-Enzymatic Antioxidant Defense Mechanism with Apolipoprotein E Genotypes in Alzheimer Disease. Clin. Biochem. 2008, 41, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.N.; Chand, N.; Naz, S.; Khan, R.U.; Ayaşan, T.; Laudadio, V.; Tufarelli, V. Mitigating Heat Stress in Broilers by Dietary Dried Tamarind (Tamarindus Indica L.) Pulp: Effect on Growth and Blood Traits, Oxidative Status and Immune Response. Livest. Sci. 2022, 264, 105075. [Google Scholar] [CrossRef]
- Konvičná, J.; Vargová, M.; Paulíková, I.; Kováč, G.; Kostecká, Z. Oxidative Stress and Antioxidant Status in Dairy Cows during Prepartal and Postpartal Periods. Acta Vet. Brno 2015, 84, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Mutinati, M.; Piccinno, M.; Roncetti, M.; Campanile, D.; Rizzo, A.; Sciorsci, R. Oxidative Stress During Pregnancy In The Sheep. Reprod. Domest. Anim. 2013, 48, 353–357. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, N.K.; Singh, O.P.; Pandey, V.; Verma, P.K. Oxidative Stress and Antioxidant Status during Transition Period in Dairy Cows. Asian-Australas J. Anim. Sci. 2011, 24, 479–484. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C.S. Oxidative Stress and Metabolic Disorders: Pathogenesis and Therapeutic Strategies. Life Sci. 2016, 148, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Khan, M.Z.; Ma, Y.; Alugongo, G.M.; Ma, J.; Chen, T.; Khan, A.; Cao, Z. The Antioxidant Properties of Selenium and Vitamin E; Their Role in Periparturient Dairy Cattle Health Regulation. Antioxidants 2021, 10, 1555. [Google Scholar] [CrossRef] [PubMed]
- Ingvartsen, K.L.; Moyes, K. Nutrition, Immune Function and Health of Dairy Cattle. Animal 2013, 7, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Castillo, C.; Hernandez, J.; Bravo, A.; Lopez-Alonso, M.; Pereira, V.; Benedito, J.L. Oxidative Status during Late Pregnancy and Early Lactation in Dairy Cows. Vet. J. 2005, 169, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Butler, W.R. Energy Balance Relationships with Follicular Development, Ovulation and Fertility in Postpartum Dairy Cows. Livest. Prod. Sci. 2003, 83, 211–218. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Li, R.; Wu, Y.; Zhang, D.; Xu, H.; Zhang, Y.; Qi, Z. Effect of Seasonal Thermal Stress on Oxidative Status, Immune Response and Stress Hormones of Lactating Dairy Cows. Anim. Nutr. 2021, 7, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Giannuzzi, D.; Mota, L.F.M.; Pegolo, S.; Gallo, L.; Schiavon, S.; Tagliapietra, F.; Katz, G.; Fainboym, D.; Minuti, A.; Trevisi, E.; et al. In-Line near-Infrared Analysis of Milk Coupled with Machine Learning Methods for the Daily Prediction of Blood Metabolic Profile in Dairy Cattle. Sci. Rep. 2022, 12, 8058. [Google Scholar] [CrossRef]
- Herdt, T.H. Ruminant Adaptation to Negative Energy Balance: Influences on the Etiology of Ketosis and Fatty Liver. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 215–230. [Google Scholar] [CrossRef]
- van Knegsel, A.T.M.; van den Brand, H.; Dijkstra, J.; Kemp, B. Effects of Dietary Energy Source on Energy Balance, Metabolites and Reproduction Variables in Dairy Cows in Early Lactation. Theriogenology 2007, 68, S274–S280. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Chen, H.; Lei, L.; Liu, J.; Guan, Y.; Liu, Z.; Zhang, L.; Yang, W.; Zhao, C.; et al. Non-Esterified Fatty Acids Activate the AMP-Activated Protein Kinase Signaling Pathway to Regulate Lipid Metabolism in Bovine Hepatocytes. Cell Biochem. Biophys. 2013, 67, 1157–1169. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, X.; Xiao, J.; Chen, X.H.; Zhang, X.F.; Wang, T.; Zhen, Y.G.; Qin, G.X. Prepartum Body Condition Score Affects Milk Yield, Lipid Metabolism, and Oxidation Status of Holstein Cows. Asian-Australas J. Anim. Sci. 2019, 32, 1889–1896. [Google Scholar] [CrossRef] [Green Version]
- Halil Bayrak, I.; Ipekesen, S.; Tuba Bicer, B. Determination of the Effect of Different Sowing Dates on Growth and Yield Parameters of Some Dry Bean (Phaseolus Vulgaris L.) Varieties. J. Agron. Technol. Eng. Manag. 2022, 5, 732–739. [Google Scholar] [CrossRef]
- Başoğlu, A.; Sevinç, M.; Ok, M.; Gökçen, M. Peri and Postparturient Concentrations of Lipid Lipoprotein Insulin and Glucose in Normal Dairy Cows. Turk. J. Vet. Anim. Sci. 1998, 22, 141–144. [Google Scholar]
- Hagawane, S.D.; Shinde, S.B.; Rajguru, D.N. Haematological and Blood Biochemical Profile in Lactating Buffaloes in and around Parbhani City. Vet. World 2009, 2, 467–469. [Google Scholar]
- Piccione, G.; Messina, V.; Marafioti, S.; Casella, S. Changes of Some Haematochemical Parameters in Dairy Cows during Late Gestation, Post Partum, Lactation and Dry Periods. Vet. Zootech. 2012, 58, 59–64. [Google Scholar]
- Stojević, Z.; Piršljin, J.; Milinković-Tur, S.; Zdelar-Tuk, M.; Beer Ljubić, B. Activities of AST, ALT and GGT in Clinically Healthy Dairy Cows during Lactation and in the Dry Period. Vet. Arh. 2005, 75, 67–73. [Google Scholar]
- Vásquez-Garzón, V.R.; Arellanes-Robledo, J.; García-Román, R.; Aparicio-Rautista, D.I.; Villa-Treviño, S. Inhibition of Reactive Oxygen Species and Pre-Neoplastic Lesions by Quercetin through an Antioxidant Defense Mechanism. Free Radic. Res. 2009, 43, 128–137. [Google Scholar] [CrossRef]
- Ozgur, R.; Uzilday, B.; Sekmen, A.H.; Turkan, I. Reactive Oxygen Species Regulation and Antioxidant Defence in Halophytes. Funct. Plant Biol. 2013, 40, 832–847. [Google Scholar] [CrossRef]
- Bhullar, P.; Nayyar, S.; Sangha, S.P.S. Antioxidant Status and Metabolic Profile of Buffalo during Different Growth Stages. Indian J. Anim. Sci. 2009, 79, 251–254. [Google Scholar]
- Castillo, C.; Hernández, J.; Valverde, I.; Pereira, V.; Sotillo, J.; Alonso, M.L.; Benedito, J.L. Plasma Malonaldehyde (MDA) and Total Antioxidant Status (TAS) during Lactation in Dairy Cows. Res. Vet. Sci. 2006, 80, 133–139. [Google Scholar] [CrossRef]
- Castillo, C.; Hernández, J.; López-Alonso, M.; Miranda, M.; Luís, J. Values of Plasma Lipid Hydroperoxides and Total Antioxidant Status in Healthy Dairy Cows: Preliminary Observations. Arch. Anim. Breed. 2003, 46, 227–233. [Google Scholar] [CrossRef]
- Mousa, S.A.; Galal, M.K.H. Alteration in Clinical, Hemobiochemical and Oxidative Stress Parameters in Egyptian Cattle Infected with Foot and Mouth Disease (FMD). J. Anim. Sci. Adv. 2013, 3, 485–491. [Google Scholar]
- Tomás, M.; Sentí, M.; García-Faria, F.; Vila, J.; Torrents, A.; Covas, M.; Marrugat, J. Effect of Simvastatin Therapy on Paraoxonase Activity and Related Lipoproteins in Familial Hypercholesterolemic Patients. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2113–2119. [Google Scholar] [CrossRef] [Green Version]
- Li, W.-F.; Costa, L.G.; Richter, R.J.; Hagen, T.; Shih, D.M.; Tward, A.; Lusis, A.J.; Furlong, C.E. Catalytic Efficiency Determines the In-Vivo Efficacy of PON1 for Detoxifying Organophosphorus Compounds. Pharm. Genom. 2000, 10, 767–779. [Google Scholar] [CrossRef]
- Eltramss, N.A.; El-Shafey, R.S.; Sharaf Eldin, A.; Adole, P.; Fakher, H. Role of Paraoxonase-1 Enzyme in Prediction of Severity and Outcome of Acute Organophosphorus Poisoning: A Prospective Study. Zagazig J. Forensic Med. 2023, 21, 49–72. [Google Scholar] [CrossRef]
- Hussein, H.A.; Staufenbiel, R.; Müller, A.E.; El-Sebaie, A.; Abd-El-Salam, M. Ceruloplasmin Activity in Holstein Dairy Cows: Effects of Lactation Stages and Anticoagulants. Comp. Clin. Pathol. 2012, 21, 705–710. [Google Scholar] [CrossRef]
- Guo, Z.; Gao, S.; Ouyang, J.; Ma, L.; Bu, D. Impacts of Heat Stress-Induced Oxidative Stress on the Milk Protein Biosynthesis of Dairy Cows. Animals 2021, 11, 726. [Google Scholar] [CrossRef]
- Abutarbush, S.M.; Tuppurainen, E.S.M. Serological and Clinical Evaluation of the Yugoslavian RM65 Sheep Pox Strain Vaccine Use in Cattle against Lumpy Skin Disease. Transbound. Emerg. Dis. 2018, 65, 1657–1663. [Google Scholar] [CrossRef]
- Bishop, S.C.; Morris, C.A. Genetics of Disease Resistance in Sheep and Goats. Small Rumin. Res. 2007, 70, 48–59. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Kgwatalala, P.; Ibeagha, A.E.; Zhao, X. A Critical Analysis of Disease-Associated DNA Polymorphisms in the Genes of Cattle, Goat, Sheep, and Pig. Mamm. Genome 2008, 19, 226–245. [Google Scholar] [CrossRef] [Green Version]
- Omidi, A.; Fathi, M.H.; Parker, M.O. Alterations of Antioxidant Status Markers in Dairy Cows during Lactation and in the Dry Period. J. Dairy Res. 2017, 84, 49–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez, J.; Ballinger, S.W.; Darley-Usmar, V.M.; Landar, A. Free Radicals, Mitochondria, and Oxidized Lipids. Circ. Res. 2006, 99, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Stefanatos, R.; Sanz, A. The Role of Mitochondrial ROS in the Aging Brain. FEBS Lett. 2018, 592, 743–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Y.; Hu, W.; Liao, J.; Jiang, A.; Xiu, Z.; Gaowa, S.; Guan, Y.; Yang, X.; Feng, K.; Liu, C. Effect of Atmospheric Cold Plasma Treatment on Antioxidant Activities and Reactive Oxygen Species Production in Postharvest Blueberries during Storage. J. Sci. Food Agric. 2020, 100, 5586–5595. [Google Scholar] [CrossRef]
- Gwozdzinski, K.; Pieniazek, A.; Gwozdzinski, L. Reactive Oxygen Species and Their Involvement in Red Blood Cell Damage in Chronic Kidney Disease. Oxid. Med. Cell. Longev. 2021, 2021, e6639199. [Google Scholar] [CrossRef]
- Bernabucci, U.; Ronchi, B.; Lacetera, N.; Nardone, A. Influence of Body Condition Score on Relationships Between Metabolic Status and Oxidative Stress in Periparturient Dairy Cows. J. Dairy Sci. 2005, 88, 2017–2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Guan, X. Rapid and Thiol-Specific High-Throughput Assay for Simultaneous Relative Quantification of Total Thiols, Protein Thiols, and Nonprotein Thiols in Cells. Anal. Chem. 2015, 87, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Ying, J.; Clavreul, N.; Sethuraman, M.; Adachi, T.; Cohen, R.A. Thiol Oxidation in Signaling and Response to Stress: Detection and Quantification of Physiological and Pathophysiological Thiol Modifications. Free Radic. Biol. Med. 2007, 43, 1099–1108. [Google Scholar] [CrossRef] [Green Version]
- Eryilmaz, M.A.; Kozanhan, B.; Solak, I.; Çetinkaya, Ç.D.; Neselioglu, S.; Erel, Ö. Thiol-Disulfide Homeostasis in Breast Cancer Patients. J. Cancer Res. Ther. 2019, 15, 1062. [Google Scholar] [CrossRef]
- Shamsi, A.; Bano, B. Journey of Cystatins from Being Mere Thiol Protease Inhibitors to at Heart of Many Pathological Conditions. Int. J. Biol. Macromol. 2017, 102, 674–693. [Google Scholar] [CrossRef]
- Wittrock, J.M.; Proudfoot, K.L.; Weary, D.M.; von Keyserlingk, M.A.G. Short Communication: Metritis Affects Milk Production and Cull Rate of Holstein Multiparous and Primiparous Dairy Cows Differently. J. Dairy Sci. 2011, 94, 2408–2412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adnane, M.; Kaidi, R.; Hanzen, C.; England, G. Risk Factors of Clinical and Subclinical Endometritis in Cattle: A Review. Turk. J. Vet. Anim. Sci. 2017, 41, 1–11. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tufarelli, V.; Colonna, M.A.; Losacco, C.; Puvača, N. Biological Health Markers Associated with Oxidative Stress in Dairy Cows during Lactation Period. Metabolites 2023, 13, 405. https://doi.org/10.3390/metabo13030405
Tufarelli V, Colonna MA, Losacco C, Puvača N. Biological Health Markers Associated with Oxidative Stress in Dairy Cows during Lactation Period. Metabolites. 2023; 13(3):405. https://doi.org/10.3390/metabo13030405
Chicago/Turabian StyleTufarelli, Vincenzo, Maria Antonietta Colonna, Caterina Losacco, and Nikola Puvača. 2023. "Biological Health Markers Associated with Oxidative Stress in Dairy Cows during Lactation Period" Metabolites 13, no. 3: 405. https://doi.org/10.3390/metabo13030405
APA StyleTufarelli, V., Colonna, M. A., Losacco, C., & Puvača, N. (2023). Biological Health Markers Associated with Oxidative Stress in Dairy Cows during Lactation Period. Metabolites, 13(3), 405. https://doi.org/10.3390/metabo13030405