Molecular, Metabolic, and Nutritional Changes after Metabolic Surgery in Obese Diabetic Patients (MoMen): A Protocol for a Multicenter Prospective Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
- (a)
- To study the effects of metabolic surgery on body mass index (BMI), body composition, and phase angle by comparing them pre- and post-metabolic surgery;
- (b)
- To measure glycated hemoglobin (HbA1c), hormones, adipokines, and inflammatory cytokines, both pre- and post-metabolic surgery;
- (c)
- To assess the level of miRNA, both pre- and post-metabolic surgery;
- (d)
- To compare the gene expressions of visceral adipose tissue involved in inflammation, glucose, and lipid metabolism among different obese diabetes statuses;
- (e)
- To determine the relationship between lifestyle and dietary practices, clinical outcomes, and the 1HNMR metabolic fingerprint.
2.2. Study Setting
2.3. Study Population
2.3.1. Sample Size and Recruitment
2.3.2. Patient and Healthy Individual Inclusion and Exclusion Criteria
Inclusion Criteria
Exclusion Criteria
2.4. Outcome Measures
2.5. Anthropometric Measurements, Clinical Assessment, and Laboratory Analysis
2.6. Biochemical Profile
2.7. miRNA Analysis
2.8. Adipose Tissue Gene Expressions
2.9. Dietary Patterns
2.10. Metabolomic Profile
3. Statistical Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanipah, Z.N.; Schauer, P.R. Bariatric Surgery as a Long-Term Treatment for Type 2 Diabetes/Metabolic Syndrome. Annu. Rev. Med. 2020, 71, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute for Public Health. National Health and Morbidity Survey (NHMS) 2019: Non-Communicable Diseases, Healthcare Demand, and Health Literacy—Key Findings; Institute for Public Health: Oakland, CA, USA, 2020. [Google Scholar]
- Chong, C.T.; Lai, W.K.; Zainuddin, A.A.; Pardi, M.; Mohd Sallehuddin, S.; Ganapathy, S.S. Prevalence of Obesity and Its Associated Factors Among Malaysian Adults: Finding From the National Health and Morbidity Survey 2019. Asia Pac. J. Public Health 2022, 34, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Sarma, S.; Sockalingam, S.; Dash, S. Obesity as a Multisystem Disease: Trends in Obesity Rates and Obesity-Related Complications. Diabetes Obes. Metab. 2021, 23 (Suppl. 1), 3–16. [Google Scholar] [CrossRef] [PubMed]
- Goyal, R.; Jialal, I. Diabetes Mellitus Type 2. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Alqunai, M.S.; Alrashid, F.F. Bariatric Surgery for the Management of Type 2 Diabetes Mellitus-Current Trends and Challenges: A Review Article. Am. J. Transl. Res. 2022, 14, 1160–1171. [Google Scholar]
- Albaugh, V.L.; He, Y.; Münzberg, H.; Morrison, C.D.; Yu, S.; Berthoud, H.-R. Regulation of Body Weight: Lessons Learned from Bariatric Surgery. Mol. Metab. 2022, 68, 101517. [Google Scholar] [CrossRef]
- Yoon, K.-H.; Lee, J.-H.; Kim, J.-W.; Cho, J.H.; Choi, Y.-H.; Ko, S.-H.; Zimmet, P.; Son, H.-Y. Epidemic Obesity and Type 2 Diabetes in Asia. Lancet 2006, 368, 1681–1688. [Google Scholar] [CrossRef]
- Oh, T.J.; Lee, H.-J.; Cho, Y.M. East Asian Perspectives in Metabolic and Bariatric Surgery. J. Diabetes Investig. 2022, 13, 756–761. [Google Scholar] [CrossRef]
- Pucci, A.; Batterham, R.L. Mechanisms Underlying the Weight Loss Effects of RYGB and SG: Similar, yet Different. J. Endocrinol. Investig. 2019, 42, 117–128. [Google Scholar] [CrossRef]
- Landecho, M.F.; Tuero, C.; Valentí, V.; Bilbao, I.; de la Higuera, M.; Frühbeck, G. Relevance of Leptin and Other Adipokines in Obesity-Associated Cardiovascular Risk. Nutrients 2019, 11, 2664. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira Dos Santos, A.R.; de Oliveira Zanuso, B.; Miola, V.F.B.; Barbalho, S.M.; Santos Bueno, P.C.; Flato, U.A.P.; Detregiachi, C.R.P.; Buchaim, D.V.; Buchaim, R.L.; Tofano, R.J.; et al. Adipokines, Myokines, and Hepatokines: Crosstalk and Metabolic Repercussions. Int. J. Mol. Sci. 2021, 22, 2639. [Google Scholar] [CrossRef]
- Doyon, L.; Das, S.; Sullivan, T.; Rieger-Christ, K.; Sherman, J.; Roque, S.; Nepomnayshy, D. Can Genetics Help Predict Efficacy of Bariatric Surgery? An Analysis of MicroRNA Profiles. Surg. Obes. Relat. Dis. 2020, 16, 1802–1807. [Google Scholar] [CrossRef]
- Catanzaro, G.; Filardi, T.; Sabato, C.; Vacca, A.; Migliaccio, S.; Morano, S.; Ferretti, E. Tissue and Circulating MicroRNAs as Biomarkers of Response to Obesity Treatment Strategies. J. Endocrinol. Investig. 2021, 44, 1159–1174. [Google Scholar] [CrossRef]
- Brandao, B.B.; Lino, M.; Kahn, C.R. Extracellular miRNAs as Mediators of Obesity-Associated Disease. J. Physiol. 2022, 600, 1155–1169. [Google Scholar] [CrossRef]
- Yeh, J.-K.; Chen, C.-C.; Liu, K.-H.; Peng, C.-C.; Lin, T.-A.; Chang, Y.-S.; Wen, M.-S.; Yeh, T.-S.; Wang, C.-Y. Serum MicroRNA Panels Predict Bariatric Surgery Outcomes. Obesity 2022, 30, 389–399. [Google Scholar] [CrossRef]
- Gerken, A.L.H.; Rohr-Kräutle, K.-K.; Weiss, C.; Seyfried, S.; Reissfelder, C.; Vassilev, G.; Otto, M. Handgrip Strength and Phase Angle Predict Outcome After Bariatric Surgery. Obes. Surg. 2021, 31, 200–206. [Google Scholar] [CrossRef]
- Lukaski, H.C.; Vega Diaz, N.; Talluri, A.; Nescolarde, L. Classification of Hydration in Clinical Conditions: Indirect and Direct Approaches Using Bioimpedance. Nutrients 2019, 11, 809. [Google Scholar] [CrossRef] [Green Version]
- Streb, A.R.; Hansen, F.; Gabiatti, M.P.; Tozetto, W.R.; Del Duca, G.F. Phase Angle Associated with Different Indicators of Health-Related Physical Fitness in Adults with Obesity. Physiol. Behav. 2020, 225, 113104. [Google Scholar] [CrossRef]
- Ministry of Health Malaysia. Clinical Practice Guideline—Management of Type 2 Diabetes Mellitus, 6th ed.; Ministry of Health Malaysia: Putrajaya, Malaysia, 2020.
- World Health Organization; Regional Office for the Western Pacific. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; Health Communications Australia: Sydney, Australia, 2000; ISBN 978-0-9577082-1-1. [Google Scholar]
- Institute for Public Health Malaysia. National Health and Morbidity Survey 2014: Malaysian Adult; Ministry of Health Malaysia: Putrajaya, Malaysia, 2016; Volume II, ISBN 978-983-2387-16-9.
- Norimah, A.K.; Safiah, M.; Jamal, K.; Haslinda, S.; Zuhaida, H.; Rohida, S.; Fatimah, S.; Norazlin, S.; Poh, B.K.; Kandiah, M.; et al. Food Consumption Patterns: Findings from the Malaysian Adult Nutrition Survey (MANS). Malays. J. Nutr. 2008, 14, 25–39. [Google Scholar]
- Manaf, Z.A. The Atlas of Food Exchange and Portion Sizesatlas Makanan: Saiz Pertukaran & Porsi, 3rd ed.; MDC Publishers Sdn Bhd: Kuala Lumpur, Malaysia, 2015; ISBN 9679677014587. [Google Scholar]
- Hasbullah, F.Y.; Yusof, B.-N.M.; Ghani, R.A.; Daud, Z.; Azuan, M.; Appannah, G.; Abas, F.; Shafie, N.H.; Khir, H.I.M.; Murphy, H.R. Dietary Patterns, Metabolomic Profile, and Nutritype Signatures Associated with Type 2 Diabetes in Women with Postgestational Diabetes Mellitus: MyNutritype Study Protocol. Metabolites 2022, 12, 843. [Google Scholar] [CrossRef]
- Peré-Trepat, E.; Ross, A.B.; Martin, F.-P.; Rezzi, S.; Kochhar, S.; Hasselbalch, A.L.; Kyvik, K.O.; Sørensen, T.I.A. Chemometric Strategies to Assess Metabonomic Imprinting of Food Habits in Epidemiological Studies. Chemom. Intell. Lab. Syst. 2010, 104, 95–100. [Google Scholar] [CrossRef]
- Playdon, M.C.; Sampson, J.N.; Cross, A.J.; Sinha, R.; Guertin, K.A.; Moy, K.A.; Rothman, N.; Irwin, M.L.; Mayne, S.T.; Stolzenberg-Solomon, R.; et al. Comparing Metabolite Profiles of Habitual Diet in Serum and Urine. Am. J. Clin. Nutr. 2016, 104, 776–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic Profiling, Metabolomic and Metabonomic Procedures for NMR Spectroscopy of Urine, Plasma, Serum and Tissue Extracts. Nat. Protoc. 2007, 2, 2692–2703. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Perez, I.; Posma, J.M.; Serrano-Contreras, J.I.; Boulangé, C.L.; Chan, Q.; Frost, G.; Stamler, J.; Elliott, P.; Lindon, J.C.; Holmes, E.; et al. Identifying Unknown Metabolites Using NMR-Based Metabolic Profiling Techniques. Nat. Protoc. 2020, 15, 2538–2567. [Google Scholar] [CrossRef] [PubMed]
- Geamanu, A.; Gupta, S.V.; Bauerfeld, C.; Samavati, L. Metabolomics Connects Aberrant Bioenergetic, Transmethylation, and Gut Microbiota in Sarcoidosis. Metab. Off. J. Metab. Soc. 2016, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Gregory, J.F.; Park, Y.; Lamers, Y.; Bandyopadhyay, N.; Chi, Y.-Y.; Lee, K.; Kim, S.; da Silva, V.; Hove, N.; Ranka, S.; et al. Metabolomic Analysis Reveals Extended Metabolic Consequences of Marginal Vitamin B-6 Deficiency in Healthy Human Subjects. PLoS ONE 2013, 8, e63544. [Google Scholar] [CrossRef] [Green Version]
- Le Guennec, A.; Tayyari, F.; Edison, A.S. Alternatives to Nuclear Overhauser Enhancement Spectroscopy Presat and Carr-Purcell-Meiboom-Gill Presat for NMR-Based Metabolomics. Anal. Chem. 2017, 89, 8582–8588. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cebrián, N.; Domingo-Ortí, I.; Poveda, J.L.; Vicent, M.J.; Puchades-Carrasco, L.; Pineda-Lucena, A. Multi-Omic Approaches to Breast Cancer Metabolic Phenotyping: Applications in Diagnosis, Prognosis, and the Development of Novel Treatments. Cancers 2021, 13, 4544. [Google Scholar] [CrossRef]
- Amin, A.; Ghouri, N.; Ali, S.; Ahmed, M.; Saleem, M.; Qazi, J. Identification of New Spectral Signatures Associated with Dengue Virus Infected Sera. J. Raman Spectrosc. 2017, 48, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Pauzi, F.A.; Sahathevan, S.; Khor, B.-H.; Narayanan, S.S.; Zakaria, N.F.; Abas, F.; Karupaiah, T.; Daud, Z.A.M. Exploring Metabolic Signature of Protein Energy Wasting in Hemodialysis Patients. Metabolites 2020, 10, 291. [Google Scholar] [CrossRef]
- Akhtar, N.; Idrees, M.; Rehman, F.U.; Ilyas, M.; Abbas, Q.; Luqman, M. Shape and Texture Based Classification of Citrus Using Principal Component Analysis. Int. J. Agric. Ext. 2021, 9, 229–238. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [Green Version]
- Andries, J.P.M.; Vander Heyden, Y. Improved Multi-Class Discrimination by Common-Subset-of-Independent-Variables Partial-Least-Squares Discriminant Analysis. Talanta 2021, 234, 122595. [Google Scholar] [CrossRef]
- Aslam, M.; Arif, O.H. Test of Association in the Presence of Complex Environment. Complexity 2020, 2020, e2935435. [Google Scholar] [CrossRef]
- Altermann, E.; Klaenhammer, T.R. PathwayVoyager: Pathway Mapping Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Database. BMC Genom. 2005, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Wieder, C.; Frainay, C.; Poupin, N.; Rodríguez-Mier, P.; Vinson, F.; Cooke, J.; Lai, R.P.; Bundy, J.G.; Jourdan, F.; Ebbels, T. Pathway Analysis in Metabolomics: Recommendations for the Use of over-Representation Analysis. PLoS Comput. Biol. 2021, 17, e1009105. [Google Scholar] [CrossRef]
- Sinclair, P.; Brennan, D.J.; le Roux, C.W. Gut Adaptation after Metabolic Surgery and Its Influences on the Brain, Liver and Cancer. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 606–624. [Google Scholar] [CrossRef]
- van Olst, N.; Meiring, S.; de Brauw, M.; Bergman, J.J.G.H.M.; Nieuwdorp, M.; van der Peet, D.L.; Gerdes, V.E.A. Small Intestinal Physiology Relevant to Bariatric and Metabolic Endoscopic Therapies: Incretins, Bile Acid Signaling, and Gut Microbiome. Tech. Innov. Gastrointest. Endosc. 2020, 22, 109–119. [Google Scholar] [CrossRef]
- AbdAlla Salman, M.; Rabiee, A.; Salman, A.; Elewa, A.; Tourky, M.; Mahmoud, A.A.; Moustafa, A.; El-Din Shaaban, H.; Ismail, A.A.; Noureldin, K.; et al. Predictors of Type-2 Diabetes Remission Following Bariatric Surgery after a Two-Year Follow Up. Asian J. Surg. 2022, 45, 2645–2650. [Google Scholar] [CrossRef]
- Wazir, N.; Arshad, M.F.; Finney, J.; Kirk, K.; Dewan, S. Two Years Remission of Type 2 Diabetes Mellitus after Bariatric Surgery. J. Coll. Physicians Surg. Pak. 2019, 29, 967–971. [Google Scholar] [CrossRef]
- Courcoulas, A.P.; Gallagher, J.W.; Neiberg, R.H.; Eagleton, E.B.; DeLany, J.P.; Lang, W.; Punchai, S.; Gourash, W.; Jakicic, J.M. Bariatric Surgery vs Lifestyle Intervention for Diabetes Treatment: 5-Year Outcomes From a Randomized Trial. J. Clin. Endocrinol. Metab. 2020, 105, dgaa006. [Google Scholar] [CrossRef]
- Lautenbach, A.; Stoll, F.; Mann, O.; Busch, P.; Huber, T.B.; Kielstein, H.; Bähr, I.; Aberle, J. Long-Term Improvement of Chronic Low-Grade Inflammation After Bariatric Surgery. Obes. Surg. 2021, 31, 2913–2920. [Google Scholar] [CrossRef] [PubMed]
- Affinati, A.H.; Esfandiari, N.H.; Oral, E.A.; Kraftson, A.T. Bariatric Surgery in the Treatment of Type 2 Diabetes. Curr. Diabetes Rep. 2019, 19, 156. [Google Scholar] [CrossRef] [PubMed]
- Russel, S.M.; Valle, V.; Spagni, G.; Hamilton, S.; Patel, T.; Abdukadyrov, N.; Dong, Y.; Gangemi, A. Physiologic Mechanisms of Type II Diabetes Mellitus Remission Following Bariatric Surgery: A Meta-Analysis and Clinical Implications. J. Gastrointest. Surg. 2020, 24, 728–741. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Adderley, N.J.; Hazlehurst, J.; Price, M.; Tahrani, A.A.; Nirantharakumar, K.; Bellary, S. Prognostic Models for Predicting Remission of Diabetes Following Bariatric Surgery: A Systematic Review and Meta-Analysis. Diabetes Care 2021, 44, 2626–2641. [Google Scholar] [CrossRef]
- Hunt, S.C.; Davidson, L.E.; Adams, T.D.; Ranson, L.; McKinlay, R.D.; Simper, S.C.; Litwin, S.E. Associations of Visceral, Subcutaneous, Epicardial, and Liver Fat with Metabolic Disorders up to 14 Years After Weight Loss Surgery. Metab. Syndr. Relat. Disord. 2021, 19, 83–92. [Google Scholar] [CrossRef]
- Moonen, H.P.F.X.; Bos, A.E.; Hermans, A.J.H.; Stikkelman, E.; van Zanten, F.J.L.; van Zanten, A.R.H. Bioelectric Impedance Body Composition and Phase Angle in Relation to 90-Day Adverse Outcome in Hospitalized COVID-19 Ward and ICU Patients: The Prospective BIAC-19 Study. Clin. Nutr. ESPEN 2021, 46, 185–192. [Google Scholar] [CrossRef]
- Moonen, H.P.F.X.; Van Zanten, A.R.H. Bioelectric Impedance Analysis for Body Composition Measurement and Other Potential Clinical Applications in Critical Illness. Curr. Opin. Crit. Care 2021, 27, 344–353. [Google Scholar] [CrossRef]
- Bae, E.; Lee, T.W.; Bae, W.; Kim, S.; Choi, J.; Jang, H.N.; Chang, S.-H.; Park, D.J. Impact of Phase Angle and Sarcopenia Estimated by Bioimpedance Analysis on Clinical Prognosis in Patients Undergoing Hemodialysis: A Retrospective Study. Medicine 2022, 101, e29375. [Google Scholar] [CrossRef]
- Yamada, Y.; Yoshida, T.; Murakami, H.; Kawakami, R.; Gando, Y.; Ohno, H.; Tanisawa, K.; Konishi, K.; Julien, T.; Kondo, E.; et al. Phase Angle Obtained via Bioelectrical Impedance Analysis and Objectively Measured Physical Activity or Exercise Habits. Sci. Rep. 2022, 12, 17274. [Google Scholar] [CrossRef]
- Vassilev, G.; Hasenberg, T.; Krammer, J.; Kienle, P.; Ronellenfitsch, U.; Otto, M. The Phase Angle of the Bioelectrical Impedance Analysis as Predictor of Post-Bariatric Weight Loss Outcome. Obes. Surg. 2017, 27, 665–669. [Google Scholar] [CrossRef]
- Catalanotto, C.; Cogoni, C.; Zardo, G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int. J. Mol. Sci. 2016, 17, 1712. [Google Scholar] [CrossRef] [Green Version]
- Vasu, S.; Kumano, K.; Darden, C.M.; Rahman, I.; Lawrence, M.C.; Naziruddin, B. MicroRNA Signatures as Future Biomarkers for Diagnosis of Diabetes States. Cells 2019, 8, 1533. [Google Scholar] [CrossRef] [Green Version]
- Beltrami, C.; Angelini, T.G.; Emanueli, C. Noncoding RNAs in Diabetes Vascular Complications. J. Mol. Cell. Cardiol. 2015, 89, 42–50. [Google Scholar] [CrossRef]
- de Planell-Saguer, M.; Rodicio, M.C. Detection Methods for MicroRNAs in Clinic Practice. Clin. Biochem. 2013, 46, 869–878. [Google Scholar] [CrossRef]
- Liao, C.-H.; Wang, C.-Y.; Liu, K.-H.; Liu, Y.-Y.; Wen, M.-S.; Yeh, T.-S. MiR-122 Marks the Differences between Subcutaneous and Visceral Adipose Tissues and Associates with the Outcome of Bariatric Surgery. Obes. Res. Clin. Pract. 2018, 12, 570–577. [Google Scholar] [CrossRef]
- Wojciechowska, G.; Szczerbinski, L.; Kretowski, M.; Niemira, M.; Hady, H.R.; Kretowski, A. Exploring MicroRNAs as Predictive Biomarkers for Type 2 Diabetes Mellitus Remission after Sleeve Gastrectomy: A Pilot Study. Obesity 2022, 30, 435–446. [Google Scholar] [CrossRef]
- Lopes, T.I.B.; Geloneze, B.; Pareja, J.C.; Calixto, A.R.; Ferreira, M.M.C.; Marsaioli, A.J. “Omics” Prospective Monitoring of Bariatric Surgery: Roux-En-Y Gastric Bypass Outcomes Using Mixed-Meal Tolerance Test and Time-Resolved (1)H NMR-Based Metabolomics. OMICS 2016, 20, 415–423. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhang, J.; Zhou, Z. Changes in Fasting Bile Acid Profiles after Roux-En-Y Gastric Bypass and Sleeve Gastrectomy. Medicine 2021, 100, e23939. [Google Scholar] [CrossRef]
- Lei, Z.; Huhman, D.V.; Sumner, L.W. Mass Spectrometry Strategies in Metabolomics. J. Biol. Chem. 2011, 286, 25435–25442. [Google Scholar] [CrossRef] [Green Version]
Item | T0 | T1 | T2 | T3 | Outcomes |
---|---|---|---|---|---|
Medical history and anthropometric measurements | X | X | X | Age, gender, ethnicity, weight, and height. | |
Bioimpedance analysis | X | X | X | Percentage body fat, visceral fat area, skeletal muscle mass, body water content, and phase angle. | |
Blood collection | X | X | X | Glycated hemoglobin (HbA1c), lipid, renal, and liver profiles. Hormones and adipokines, miRNA (serum), and metabolomics (plasma). | |
Adipose tissue biopsy | X | RNA for gene expression study. | |||
Diet record | X | X | X | Dietary patterns |
Category | HbA1c (%) |
---|---|
Normal | <5.7 |
Prediabetes | 5.7–<6.3 |
Type 2 diabetes (T2D) | ≥6.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazliana, M.; Nor Hanipah, Z.; Mohd Yusof, B.N.; Zainal Abidin, N.A.; Tan, Y.Z.; Mohkiar, F.H.; Liyana, A.Z.; Mohd Naeem, M.N.; Mohmad Misnan, N.; Ahmad, H.; et al. Molecular, Metabolic, and Nutritional Changes after Metabolic Surgery in Obese Diabetic Patients (MoMen): A Protocol for a Multicenter Prospective Cohort Study. Metabolites 2023, 13, 413. https://doi.org/10.3390/metabo13030413
Fazliana M, Nor Hanipah Z, Mohd Yusof BN, Zainal Abidin NA, Tan YZ, Mohkiar FH, Liyana AZ, Mohd Naeem MN, Mohmad Misnan N, Ahmad H, et al. Molecular, Metabolic, and Nutritional Changes after Metabolic Surgery in Obese Diabetic Patients (MoMen): A Protocol for a Multicenter Prospective Cohort Study. Metabolites. 2023; 13(3):413. https://doi.org/10.3390/metabo13030413
Chicago/Turabian StyleFazliana, Mansor, Zubaidah Nor Hanipah, Barakatun Nisak Mohd Yusof, Nur Azlin Zainal Abidin, You Zhuan Tan, Farah Huda Mohkiar, Ahmad Zamri Liyana, Mohd Nawi Mohd Naeem, Norazlan Mohmad Misnan, Haron Ahmad, and et al. 2023. "Molecular, Metabolic, and Nutritional Changes after Metabolic Surgery in Obese Diabetic Patients (MoMen): A Protocol for a Multicenter Prospective Cohort Study" Metabolites 13, no. 3: 413. https://doi.org/10.3390/metabo13030413
APA StyleFazliana, M., Nor Hanipah, Z., Mohd Yusof, B. N., Zainal Abidin, N. A., Tan, Y. Z., Mohkiar, F. H., Liyana, A. Z., Mohd Naeem, M. N., Mohmad Misnan, N., Ahmad, H., Draman, M. S., Tsen, P. Y., Lim, S. Y., & Gee, T. (2023). Molecular, Metabolic, and Nutritional Changes after Metabolic Surgery in Obese Diabetic Patients (MoMen): A Protocol for a Multicenter Prospective Cohort Study. Metabolites, 13(3), 413. https://doi.org/10.3390/metabo13030413