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Abstract: In their environment, plants interact with a multitude of living organisms and have
to cope with a large variety of aggressions of biotic or abiotic origin. What has been known for
several decades is that the extraordinary variety of chemical compounds the plants are capable
of synthesizing may be estimated in the range of hundreds of thousands, but only a fraction has
been fully characterized to be implicated in defense responses. Despite the vast importance of
these metabolites for plants and also for human health, our knowledge about their biosynthetic
pathways and functions is still fragmentary. Recent progress has been made particularly for the
phenylpropanoids and oxylipids metabolism, which is more emphasized in this review. With an
increasing interest in monitoring plant metabolic reprogramming, the development of advanced
analysis methods should now follow. This review capitalizes on the advanced technologies used
in metabolome mapping in planta, including different metabolomics approaches, imaging, flux
analysis, and interpretation using bioinformatics tools. Advantages and limitations with regards to
the application of each technique towards monitoring which metabolite class or type are highlighted,
with special emphasis on the necessary future developments to better mirror such intricate metabolic
interactions in planta.

Keywords: biotic stressors; defense response; mass spectrometry; metabolic reprogramming;
metabolomics; plants

1. Introduction

As important part of our ecosystem, plants represent one of the two major living king-
doms. Plants satisfy basic human needs such as food, clothing, shelter, and medicine. Plants
produce thousands of specialized metabolites to attract pollinators and to protect from a
plethora of environmental stresses [1]. Plant metabolites are considered an indispensable
source of staple food as well as a natural source for the pharmaceutical industry [2,3]. Plant
metabolites have been shown to manage several human diseases from pain to malaria and
cancer [4]. Plants are continuously subjected to diverse stresses such as biotic and abiotic
stresses in their life [5,6]. Thus, the proper integration of these inputs is indispensable for
optimal growth and fitness [7]. The abiotic stresses includes salinity, drought, radiation,
floods, heavy metals and temperature, while biotic stresses include attacks by pathogens
such as bacteria, fungi, oomycetes, nematodes and herbivores [8]. As sessile organisms,
plants have evolved complex molecular networks to adapt to the diverse stimuli [9]. Al-
though such networks would be beneficial for plant survival by enhancing, for example,
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resistance against stimuli, they come with reduced growth or yield, a phenomenon known
as the ‘growth–immunity tradeoff’ [10]. The complex network of plant hormones regulates
these tradeoffs [11].

Pathogen-induced plant diseases, commonly known as phyto-pathogenesis, seriously
affect food security and threaten human health [12]. Constant attacks by pathogens, par-
ticularly for crops, lead to severe pre- and postharvest losses in yield and cause economic
problems. For instance, the fungus Colletotrichum graminicola Ces. Wils., the causal agent
of maize anthracnose disease, is responsible for annual losses in billions of dollars in the
United States [13]. In addition, the devastating disease Fusarium head blight (FHB), caused
by the necrotrophic pathogens, affects the quality and yield of several monocotyledonous
plants such as wheat, maize, and barley, constituting an economic crisis in many coun-
tries [14]. Therefore, the proper understating of molecular mechanisms of plant defense
under pathogen attacks is crucial for developing sustainable plant protection programs [15].

Plant pathogens can be divided into two main classes depending on their lifestyle [16].
Some pathogens are biotrophs, where they feed on the infected plant without killing it [17].
Examples include Magnaporthe grisea, the causal agent of rice blast disease, and Pseudomonas
syringae, which causes severe losses in tomato and beans. Necrotrophic pathogens such as
Septoria tritici and Erwinia carotovora secrete effector proteins, toxins, or degrading enzymes,
leading to the death of the host plant [18]. Other pathogens are hemibiotrophic, and
they initially infect their host as biotrophic before turning necrotrophic, resulting in plant
death [19]. Mycosphaerella graminicola, Bipolaris sorokiniana, and Zymoseptoria tritici are
hemibiotrophic pathogens that infect wheat [20].

Plants have evolved an intricate defense system for protection against pathogen
attacks; however, some pathogens have the ability to parasitize particular plant species [21].
The primary chemical defense mechanisms of plants against most biotic stresses consist
of metabolic adaptations [22]. Hence, plant metabolites are involved in resistance and
response to pathogen attacks. Thus, the simultaneous evaluation of the metabolome
dynamics is essential to deciphering the role of metabolites upon pathogen attacks. The
development of genomics, transcriptomics, and proteomics approaches contributed to
our understanding of plant–pathogen interactions. In the last decade, the applications
of metabolomics greatly improved our understanding of plant responses to pathogens
in plant pathology research [23]. Metabolomics applications provide also a snapshot of
the plant metabolites in response to pathogens attacks [24,25]. Since metabolites are the
end products of biological processes coordinated by genes, transcripts, or proteins, thus,
integration of metabolomics with other ‘omics’ approaches is essential for untangling the
mechanisms of pathogens attacks. The utilization of model plants such as Arabidopsis
thaliana, Solanum lycopersicum, and Zea mays greatly improved our understanding of many
plant diseases [26].

In addition, advances in analytical techniques allowed the comprehensive metabolic
profiling of plants during pathogen attacks. The marker metabolites for pathogen infection
can (1) allow the discovery of novel defense compounds, (2) provide information about
plants’ defensive state, and (3) serve as the base for agronomic applications such as crop
protection [22].

In this review, the defensive role of specialized metabolites in response to pathogen attacks
is elucidated. We do not aim to completely cover every single aspect of pathogens and genes
involved in defense mechanisms, as these items have been recently covered [27–33]. Instead,
we focus on the recent advances in the analytical methods for metabolite profiling and data
analysis, presenting a comprehensive critical overview on the current tools available for
the application of metabolomics, highlighting the potential of each technique in the context
of plant–pathogen interactions for the first time in the literature.

2. Plant Innate Immunity and Plant–Pathogen Interaction

Plant pathogens infect their hosts though diverse ways. For instance, pathogenic
bacteria get an access to the plant cell by entering though stomata or wounds, while aphids
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and nematodes use their stylets to directly reach the plant cell [34]. Fungi can infect a plant
though direct penetration of epidermal cells. To ensure their microbial fitness, pathogens
deliver effectors such as virulence factors into the plant cell. Unlike mammals, plants lack
mobile immune cells and an adaptive immune system. Instead, plants have an innate
immune system that is based on the presence of specific receptors that detect pathogens.
During pathogen infection, plants trigger pattern-triggered immunity (PTI) and effector-
triggered immunity (ETI) [35] (Figure 1). Pattern recognition receptors (PRRs) within the cell
membrane detect pathogen-associated molecular patterns (PAMPs) and during infection,
wall-associated kinases (WAKs) detect damage-associated molecular patterns (DAMPs)
resulting from cellular damage [31,36]. Receptors with nucleotide-binding domains and
leucine-rich repeats (NLRs) detect pathogen effectors [31].
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Figure 1. A schematic overview of molecular reprogramming in response to plant–pathogen interac-
tion. Pathogen-associated molecular patterns (PAMPs) are detected by pattern-recognition receptors
(PRRs) located in the plasma membrane, inducing pattern-triggered immunity (PTI). Some pathogens
produce effectors. Pathogens use their effectors to induce effector-triggered susceptibility (ETS). To
stop pathogenesis, plants have evolved resistance (R) genes triggering effector-triggered immunity
(ETI) to produce resistance-related (RR) metabolites. Several secondary messengers such as calcium
ions (Ca2+), reactive oxygen species (ROS), phtyohormone (PHR)-mediated defense pathways as well
as several kinase cascades are activated to induce a hypersensitive response or reduce susceptibility.

Plants have evolved resistance (R) proteins to recognize pathogen effector and defend
through effector-triggered immunity (ETI) [11]. PRRs, WAKs, and NLRs initiate many
signaling cascades such as activation of calcium-dependent protein kinases, mitogen-
activated protein kinases (MAPKs), transcription factors (TFs), G-proteins, ubiquitin, and
hormones [7,34,36]. This leads to various responses such as hypersensitive response (HR),
cell wall modification, closure of stomata, production of reactive oxygen species (ROS),
production of specific proteins (e.g., defensins, chitinases, protease inhibitors) or production
of specific metabolites (e.g., phytoalexins) to protect against further infection [31].
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2.1. Defense Metabolites Aid Plants to Cope with a Plethora of Stressful Pathogens

Plants produce primary and secondary metabolites [37]. Although they are not essen-
tial for growth and development, secondary metabolites are indispensable for the survival
of plants, as they help plants to cope with their ecosystems [38]. As sessile organisms,
plants cannot escape a plethora of pathogen stresses. Therefore, plants have evolved
species-specific diverse secondary metabolites, whose precursors are derived from the
primary metabolism [39]. This results in a shift from biosynthesizing essential metabolites
for growth to secondary metabolites for defense (Figure 2).
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The chemical defense arsenal of plants against pathogens can be represented by
three major groups of secondary metabolites, namely, alkaloids, isoprenoids, and phenyl-
propanoids (Figure 3) [9,39]. Alkaloids are nitrogenous compounds that are mainly synthe-
sized via the citrate cycle or shikimate pathway [40]. In particular, pyrrolizidine alkaloids
(PAs) such as lasiocarpine, usaramine, europine, monocrotaline, heliotridineand azido-
retronecine play indispensable roles primarily in defense against herbivoral attack and
microbial infection [41,42].
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Isoprenoids are mainly synthesized via methyl erythritol phosphate or the acetate-
mevalonate pathway [43]. Monoterpenes (C10) exert potential toxicity against many insects.
For example, the monoterpenes esters, pyrethroids, produced by the leaves and flowers
of Chrysanthemum species, show strong insecticidal activity against wasps, moths, and
beetles [44]. Volatile monoterpenes such as α-pinene, β-pinene, limonene, and myrecene
accumulate in resin ducts of several conifers (Gymnosperms) to combat against serious
pathogens. A number of sesquiterpenes (C15) such as the lactone derivatives costunolides
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were reported as antiherbivore agents produced by several plants of the family Asteraceae.
Diterpene resin acids (C20) such as abietic acid and its derivatives have been shown to
confer resistance against herbivory and pathogen attacks [45]. Among trierpenes (C30),
limonoids possess strong insecticidal, nematicidal, and antifungal activities [46]. Emerging
evidence demonstrates that plant volatile emissions (e.g., volatile organic compounds)
constitute a major fraction of plant defense metabolites. Volatile methyl esters of anthranilic
acid have been associated with defense against insect herbivores [47]. In addition to their
role as antimicrobial compounds, plants can also produce herbivore-induced volatiles
for the recruiting of natural predators of herbivorous insects [48]. For instance, maize
leaves produce terpenoid and indole compounds in response to infection by caterpillars for
attracting wasps that feed on caterpillars [31]. Plants can also protect themselves from insect
attacks via production of sticky metabolites such as latex or resins that trap insects [49].

Phenylpropanoids, phenylalanine derivatives with a basic C6-C3 skeleton, are de-
rived from the plastidic shikimate pathway [50]. Phenylalanine, which is synthesized
from the shikimate pathway, can be converted through the phenylpropanoid biosynthesis
pathway into aromatic compounds, including flavonoids, hydroxycinnamates, coumarins,
benzenoids, and lignin [51]. These compounds are involved in plants’ defense system
against pathogenic infection [52]. For instance, chlorogenic and sinapic acids have been
proven to have an efficient defense against a wide range of insect herbivores [53]. Lignin,
which is biosynthesized via the phenylpropanoid biosynthesis pathway, is composed of
phenolic heteropolymers resulting from the oxidative coupling of p-coumaryl, coniferyl,
and sinapyl alcohols. The cross-coupling reaction of these monolignols forms phydrox-
yphenyl, guaiacyl, and syringyl lignins [54]. Interestingly, lignans, which serve as a storage
pool of monolignols, also play functional roles against pathogen via inhibiting pathogenic
degrading enzymes such as cellulases, glucosidases, and polygalacturonases [55]. Lignins
and lignans prevent pathogen spreading by enforcing the secondary cell walls [56].

Several miscellaneous metabolites have also been reported to combat against pathogens.
Phytosterols such as stigmasterol and β-sitosterol play key roles in defense against many
pathogens [57]. Callose, which is a β-1,3-glucan polymer, is deposited around the hyphae
of several biotrophs leading to resistance against the infected pathogen. This resistance
has been reported against the powdery mildew fungus Blumeria graminis in barley and
wheat [58]. Some plant hormones are among the key plant defense metabolites involved in
plant–pathogen interaction to ensure the resilience and tunability of plant immunity [7].
Long-distance signaling modulated by hormones enables plants to acquire long-term adap-
tation to diverse biotic stresses [59]. In particular, jasmonates (JAs), salicylates (SAs), and
ethylene (ET) have been considered the primary defense hormones against pathogens [60].
Biotrophic pathogens and sap feeders generally induce the SA pathway, while insect
chewing induces the JA pathway [61]. Necrotrophic pathogens trigger both ET and JA
pathways [62]. Allantoin, a purine metabolite that activates JA signaling, has been shown
to be induced upon pathogens attack, particularly by the fungus Trichoderma harzianum [61].
Most phospholipids, such as phosphatidic acid, phosphoinositides, lysophospholipids,
sphingolipids as well as oxylipins, can be rapidly activated upon pathogens attack [63].

2.2. Phytoanticipins, the Constitutive Chemical Barriers

Beside the physical barriers such as cell walls, plants have effective pre-formed chemi-
cal defense secondary metabolites termed phytoanticipins, representing the first layer of
defense upon pathogen attacks [64]. Among the diverse phytoanticipins, cyanogenic glyco-
side, saponins, and glucosinolates represent the major classes of defense metabolites [31].

Structurally, cyanogenic glycosides are characterized by presence of the α-hydroxynitrile
(cyanohydrin) group that is stabilized by glucosylation [65]. Cyanogenic glycosides are not
toxic on their own. When the plant cell structures are disrupted by herbivores, cyanogenic
glycoside is subjected to hydrolysis by the corresponding β-glucosidase, releasing the toxic
hydrogen cyanide (HCN) [65]. Saponins are glycosylated compounds that are widely dis-
tributed in some plant families. According to aglycone nature, steroidal and triterpenoidal
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saponins exist. The genus Avena, particularly oats, contains the steroidal avenacosides
accumulated in leaves and triterpenoid avenacins accumulated in roots [66]. The resistance
of oats to fungal infections such as those induced by Gaeumannomyces graminis is attributed
to avenacins contents [64]. Another saponin in tomato, α-tomatine, is correlated with the
resistance to Fusarium oxysporum, Verticillium albo-atrum, and Cladosporium fulvum [67].

Glucosinolates (S-glucopyranosyl thiohydroximates) are sulfur-containing glycosides
that are commonly distributed among plants of the family Brassicaceae [68]. Structurally,
glucosinolates have β-thioglucose moiety, sulfonated oxime moiety, and aglycone side chain.
According to their side chain, glucosinolates may be derived from aliphatic (methionine),
indolyl (tryptophan), or aralkyl (phenylalanine) α-amino acids [68]. Like cyanogenic
glycosides, glucosinolates are spatially compartmentalized from the enzymes that degrades
them [69]. The resistance of Brassica to the fungus Leptosphaeria maculans and the oomycete
Peronospora parasitica has been attributed to glucosinolates content [70]. Additionally,
cabbage and cauliflower leaves resist the attacks by Mycosphaerella brassicae through their
glucosinolates contents [71].

2.3. Phytoalexins, the Inducible Antimicrobial Metabolites

In addition to the pre-formed defense metabolites, plants also possess chemical de-
fenses, known as phytoalexins, which are only induced upon pathogens attacks or synthe-
sized ex novo [72]. Pathogens trigger the activation to enzymes involved in the phytoalexin
biosynthetic pathways, leading to an unspecific inhibitory effect against a wide range of
pathogens [73,74]. Activation of plant defense response induces transient metabolic repro-
gramming to the direction of de novo synthesis of phytoalexins from primary metabolites
amino acids, coenzyme A derivatives, and mevalonic acid [39].

A classical phytoalexin produced by the model plant Arabidopsis thaliana in response to
many pathogens is camalexin (3-thiazol-2’-yl-indole)[75]. The production of this compound
is regulated by mitogen-activated protein kinase (MAPK) and WRKY transcription factors
(TFs) [76,77]. Among pathogens that induce camalexin production are fungi such as
Alternaria brassicicola and Botrytis cinerea as well as bacteria such as Pseudomonas syringae.
Viruses and oomycetes were also reported to induce camalexin production [78].

Isoflavonoids from the Leguminoseae family have been shown to have a defensive
role as antibacterial phytoalexins against a wide range of pathogenic microorganisms [79].
Phaseolus vulgaris has been shown to produce phytoalexins such as phaseollin and kievitone
in response to pathogen attack by the hemibiotrophic fungus Colletotrichum lindemuthi-
anum, the causal of the bean anthracnose [80]. Additionally, the isoflavonoids medicarpin
from Medicago sativa and pisatin from Pisum sativum represent similar examples from the
Leguminoseae family.

Other plant families such as the Vitaceae produce phytoalexins with a stilbene-derived
skeleton in response to fungal attacks. For instance, the glucosides derivatives of trans-
Resveratrol (3,5,4′-trihydroxystilbene) known as piceids as well as the dimethylated deriva-
tives (pterostilbenes) and oligomers derivatives (viniferins) were also reported [78]. Scopo-
letin (6-methoxy-7-hydroxycoumarin) is the major phytoalexin that is produced by tobacco
leaves in response to pathogen attacks, particularly by Alternaria alternate [81]. Additionally,
Sakuranetin (derivative of the flavonoid naringenin) and the diterpenoid momilactone
have been shown to protect rice from pathogenic attacks by the fungus Pyricularia oryzae,
the causal agent of rice blast, which can causes severe yield losses [64].

2.4. Pathogenesis-Related Omics Data Provide New Findings to Study Plant Defense Responses

Since pathogens impair plant growth and reproduction, fundamental studies on
the plant immune system play an indispensable role in improving our knowledge of
plant resistance to pathogens. Pathogen stresses trigger a wide range of plant responses
such as alteration in gene expression, translation, and cellular metabolism, and there-
fore, analysis of such alterations is essential to understanding plant–pathogen interactions.
High-throughput omics technologies have been widely used to study the metabolic repro-
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gramming during the process of plant defense response to pathogens [82]. Several studies
have been devoted to studying transcriptional reprogramming in response to pathogen
attacks [83]. Transcriptome data provide great opportunities to investigate the molecular
mechanisms of plant immunity in response to pathogen infections [84,85]. Gene differential
co-expression analysis remains the most commonly used method to generate transcriptome
data related to plant defense responses. The effective way to analyze these data is to trace
the differentially expressed genes (DEGs) as candidates for plant immunity responses.
These candidates include cell type-specific and organ-specific genes [36]. Therefore, spatial
and temporal resolutions facilitated our understanding of plant–pathogen interactions. The
main repositories of high-throughput gene expression data include GEO, ArrayExpress,
Expression Atlas, and GEM2Net. Particularly, PathoPlant, ExPath, and PlaD are specific
to transcriptome databases related to plant immune response. The analysis of plant pro-
teomes depends on the existence of complete genome sequence databases for the species
of interest [86]. Using proteomics approaches, defense-related proteins expressed during
phytopathogenic interactions have been identified and extensively reviewed [87,88].

2.5. Metabolomics as Better Tools for Decoding Pathogen–Plant Interactions

Metabolomics, the comprehensive, nonbiased, high throughput analysis of the whole
set of metabolites within a biological system, originated from the metabolite profiling
approach introduced by the pioneering work of the Horning group from the Baylor College
of Pharmacy [89]. With the advent and rapid development of mass spectrometry-based
analytical techniques, the concept of the ‘metabolome’ was introduced by Oliver et al. in
1998 [90]. Thereafter, the concept of metabonomics, which represents tracing metabolic
changes in response to pathological stimuli or genetic modification, was proposed in
1999 [91]. Later, Fiehn proposed the first more detailed definition of metabolomics and
its applications in plant biology research [92]. Acting as a bridge between genotypes and
phenotypes, a lot of research has been conducted in the area of applying metabolomics in
plant biology research for metabolic engineering, crop improvement, food assessment, as
well as in clinical research for disease diagnosis, drug screening, and treatment [93,94].

Metabolomics has emerged as a functional genomics tool for understanding complex
interaction within a biological system. Since metabolites are the end products of the cellular
metabolism, and their levels can be seen as an ultimate response of the biological system to
external stimuli [92]. Thus, metabolomic studies directly reflect the phenotypic changes
of a particular system compared with genomics or proteomics that do not always have a
direct correlation to biochemical phenotypes [95]. The changes in the genome, transcript,
or proteome of a particular cell will surely produce changes in the metabolome [96]. Since
it reflects both transcriptional and post-transcriptional regulation, metabolomics can be
considered the ultimate level of post-genomic analyses. Unlike transcripts and proteins,
metabolites are diverse in their chemistry, and hence, their determination relies on sophisti-
cated instrumentation such as mass spectrometry (MS) and nuclear magnetic resonance
spectroscopy (NMR) [93,97].

The common strategies in metabolomics studies include untargeted and targeted
approaches [93]. The goal of untargeted metabolomics is to detect as many metabolites as
possible from analyzed samples. This approach is hypothesis-generating and well suited
for unknown discovery. On the contrary, targeted metabolomics is a biased and hypothesis-
driven approach which targets the quantification of a previously determined set of specific
metabolites or a certain class of metabolites.

Steps for metabolomics analysis typically include experimental design, sample prepa-
ration, data acquisition, data processing, and biological interpretation (Figure 4). In order
to obtain meaningful results, experimental design should be carefully considered. To
statistically reflect the validity of the experimental data, factors such as time of harvesting,
type of tissue, number of groups, as well as the number of replicates per condition have to
be carefully determined [82]. Appropriate sample harvesting, rapid quenching, and direct
extraction are highly necessary to avoid metabolite degradation. Extraction of metabolites
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is an important step in sample preparation that will also dictate which analytes are de-
tected later on based on solvent type and should be carefully considered in a metabolomics
investigation. The choice of extraction solvent and method greatly influences the resulted
metabolite matrix. Since the diversity of metabolites leads to different solubility, it is
difficult to extract all metabolites from a sample within a single extraction method [93].
Therefore, it is necessary to choose the extraction method according to the purpose of the
experiment and the range of metabolites to be covered. The universal solvent, water, can
efficiently extract primary metabolites such as amino acids, sugars and organic acids. For
secondary metabolites, single solvents such as methanol or mixtures of immiscible organic
solvents can be used [98]. In the next sections, we focus on the advances in analytical
techniques and data analysis.
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3. Current Analytical Tools for Studying the Metabolomics Reprogramming in
Pathogen—Plant Interactions
3.1. NMR Based Metabolomics Analysis

NMR is a powerful high-throughput analytical technique that is highly reproducible,
non-destructive, and universal with minimal sample preparation steps [93]. Hence, NMR-
based methods have been widely used to decode the metabolome that might be implicated
in the plant defense against pathogen attacks (Figure 5). Most applications have used the
1H over other spin-active nuclei such as 13C or 15N due to the omnipresence of hydrogen
atoms in organic molecules, higher detection level allowing the detection of the abundant
primary metabolites, vis., amino acids, organic acids, and sugars. For example, 1H-NMR
metabolomics analysis identified 11 primary metabolites involved in the chemical defense
mechanisms of tomato to bacterial wilt disease caused by R. solanacearum, a pathogen that
can cause wilting, chlorosis, and death of tomato plants [99]. Of all these metabolites,
valine and leucine had a significant difference between resistant and susceptible cultivars.
1H-NMR metabolomics analysis also revealed the upregulation of γ-aminobutyric acid and
trigonelline in different genotypes of tomato after exposition to T. absoluta infection [100].
Such infection can cause up to 80–100% yield losses in tomato crops.
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Considering the complexity of NMR signal overlap especially in the aliphatic region,
2D NMR experiments are considered to aid in identification and resolving signals along
the carbon dimension, as explained in the next paragraph [101].

A main advantage of NMR is also its capability to detect plants’ secondary metabolites,
being especially more related to stress response, [102] alongside primary metabolites at
equal response. Although this approach is not feasible via the one-dimensional 1H-NMR
due to the crowding and overlap of the signals, various two-dimensional techniques (2D-
NMR) have been developed to tackle this problem through spreading the crowded signals
in a second frequency domain via magnetization transfer [103]. Such a transfer could
be between same type nuclei as in H–H correlated spectroscopy (COSY) and H–H total
correlated spectroscopy (TOCSY) or different types of nuclei such as heteronuclear multi-
ple bond correlation (HMBC) and heteronuclear single quantum coherence spectroscopy
(HSQC) experiments. For example, 2D-NMR analysis improved the resolution of 1H-NMR
spectra, allowing the characterization of some phenylpropanoids such as chlorogenic acid,
3-O-caffeoyl quinic acid, and feruloyl quinic acid, posing their role as a resistance fac-
tor for thrips in chrysanthemum [104]. The joint analysis of 1D/2D NMR also revealed
several metabolites responsible for resistance of Annona muricata roots to the nematode
Meloidogyne javanica including dopamine, xanthine, and aromatic compounds [105]. NMR-
based metabolomic profiling of potato leaves also revealed the upregulation of malic acid,
methanol, and rutin and downregulation of sucrose in the resistant cultivars to late blight
disease more than in the susceptible ones [106]. NMR Metabolomics analysis was also
useful for understanding plant–pathogen interactions in citrus canker, a disease caused
by Xanthomonas axonopodis bacteria. By utilizing transgenic sarcotoxin-expressing sweet
orange, this study proved the protective activity of sarcotoxin against infection [107]. These
cases demonstrate the potential of NMR-based metabolomics analysis for marker-assisted
screening of new cultivars with durable resistance to various infections.

Another major advantage of NMR is that the signal intensities are directly proportional
to the corresponding real molar levels of the detected metabolites, which makes NMR an
absolute quantitative method without any need for calibration curves of individual analytes
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as typical and needed in LCMS- and GCMS-based approaches [108]. Quantitative NMR
(qNMR) metabolomics analysis allowed the detection of potential metabolic markers in
wheat subtypes following Fusarium graminearum infection [109]. qNMR also has provided a
novel insight for studying the kinetic variations of metabolites of tomato xylem sap infected
with the bacterial wilt disease. Glutamine and asparagine were identified as primary
resources consumed during the colonization phase and putrescine during the bacterial
growth phase of this disease [110].

Nevertheless, the lack of sensitivity is one of the major disadvantages of NMR com-
pared to MS (several orders or magnitude lower than that of MS) especially if monitoring
phytohormones that are typically present at all levels in planta [111]. Although this problem
can be partially improved via the use of cryogenic and/or micro probes in addition to the
developments in the superconducting magnets, mass spectrometry-based metabolomics
are still dominating, particularly in metabolomics studies involved in the revealing of
plant–pathogens interactions.

3.2. GC-MS Based Metabolomics Analysis of VOCs and Primary Metabolites

Volatile organic compounds (VOCs) have been identified as signaling metabolites
involved in both intra- and inter-plant communication, especially in responding to various
biotic and abiotic stresses [112]. Of all metabolomics analysis approaches used for scrutiniz-
ing the VOCs, gas chromatography hyphenated to mass spectrometry (GC-MS) is the de
facto analytical technique employed for such profiling (Figure 5). The principle of GC-MS
is driven by three fundamental features, including samples’ volatility, peak capacity, and
selectivity. Hence, GC-MS-based metabolomics approaches have been extensively em-
ployed in volatile profiling of plant–pathogen interactions posing their role in plant defense
mechanisms. GC-MS have been applied to differentially analyze the volatiles emitted in
the immune response of the Rio Grande tomato leaves after infection with virulent and
avirulent strains of Pseudomonas syringae [113]. Seventy-three VOCs have been identified,
of which esters of (Z)-3-hexenol and several hydroxylated monoterpenes such as linalool,
α-terpineol were upregulated in the infected samples with avirulent strains. Contrarily,
infected samples with the virulent strain of Pseudomonas syringae produced a different VOCs
profile characterized by salicylic acid (SA) derivatives and monoterpenes. GC-MS also has
been used to assess the volatiles profile of C. camphora callus in comparison to its leaves and
in response to methyl jasmonate (MeJA) elicitation with upregulation of different ionone
derivatives in the elicited samples, and these compounds were unreported and novel in
that genus [114]. Similarly, GC–MS metabolomics analysis of MeJA-elicited P. minus leaves
identified time-course changes in VOCs that occurred after elicitation with activation in the
biosynthetic pathways for aldehydes and terpenes [115]. In addition, GC-MS analysis has
been also employed for monitoring and early detection of stored-grain insect infestation
via detection of VOCs emitted by insects such as Tribolium castaneum (Herbst), Rhyzopertha
dominica (Fabricius), and Sitophilus granarius (Linnaeus) [116].

Besides, primary metabolites can be also analyzed by GC-MS post chemical derivatiza-
tion with silylation reagents such as N-methyl-N-trimethylsilyltrifluoroacetamid (MSTFA)
to increase their thermal stability and volatility. Such an approach has been applied for
analyzing primary metabolites involved in the metabolic reprogramming of rice in response
to infection by the biotrophic pathogen Magnaporthe grisea such as the amino acids proline,
tryptophan, histidine, and cysteine along with the glucose, fructose, and sucrose [117].
Moreover, GC-MS has been employed for analyzing the primary metabolites responsible
for the resistance of soybean to the cyst nematode Heterodera schachtii. Results suggested
that the infection was associated with induction of various nematicidal metabolites, in-
cluding 4-vinylphenol, methionine, piperine, and palmitic acid, which are involved in
lignin production and thus, cell wall reinforcement against pathogen penetration [118].
GC-MS-based metabolomics analysis of soybeans (Glycine max) in response to infection
by the oomycete pathogen Phytophthora sojae revealed that several sugars, organic acids,
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amino acid derivatives as well as secondary metabolites such as daidzein and hypoxanthine
participate in defense response [119].

Comprehensive two-dimensional gas chromatography (GC×GC) is another emerging
technology used for VOCs profiling [120]. The setup of GC × GC is based on placing two
columns in series using a transfer device called a modulator. Those columns are usually
packed with stationary phases of substantially different selectivity to the sample’s compo-
nents, thus warranting better separation, higher peak capacity, and enhanced sensitivity
of the system. The main mass analyzer hyphenated with GC × GC setup is the time-of-
flight (TOF) mass spectrometer which can acquire 50 or more full mass spectra per 100 ms
peaks, an acquisition rate which is more than enough to reconstruct the second-dimension
chromatograms. Since all ions are collected, virtually, at the same time points during
the full MS acquisitions, the ion ratios remain the same across the GC peaks, resulting
in non-skewed chromatograms. Besides, this spectral continuity warrants deconvolution
of overlapping GC peaks based on the difference of the fragmentation patterns of the
coeluting compounds [121]. Furthermore, TOF MS technology can acquire high mass
resolution (5–10 ppm) spectra but with a significant limitation on the acquisition speed.
The hyphenation of GC × GC with TOF MS results in high separation power based on the
combined use of chromatographic and mass spectral resolutions. Such an instrument is well
suited to resolve complex mixtures of analytes such as VOCs since these compounds, most
likely, will not have identical retentions times in both GC dimensions (different stationary
phases) and identical mass spectra as well. GC × GC-TOFMS has been employed for the
metabolic profiling of plant–fungus interaction in Aquilaria malaccensis detecting various
phytoalexins as a defense system of the host plant in addition to revealing the detoxification
mechanisms by the fungus to overcome the plant defense signals [122]. In addition, the
interaction between wounded Nicotiana attenuata leaves and Manduca sexta oral secretions
has been also investigated using a GC × GC-TOFMS metabolomics-based approach [123].
Approximately 400 analytes were detected, of which several primary metabolites such as
fatty acid and amino acid conjugates were found to play a central role in the plant defense
against the pathogen attack.

However, one of the major challenges in analyzing VOCs using GC-MS and GC x GC-
MS is the capturing, concentration, and clean-up of these volatiles. Certainly, solid phase
microextraction (SPME) is the dominant sample preparation technique for volatile profiling,
since its invention in 1990 [124], attributing to several advantages including simplicity,
reusability, reproducibility, and potential incorporation into GC auto-samplers. SPME uses
a fiber-based substrate coated by a thin sorbent layer that is exposed to the sample matrix
either via direct immersion (DI) or headspace (HS). Analytes pre-concentration is achieved
based on their diffusion from the sample matrix into the coating material according to their
distribution coefficient. Afterwards, the fiber and its coat is pulled into a protecting needle,
and to expose it inside the heated injection port of GC instruments for analytes desorption.
Nevertheless, SPME stationary phase type can affect volatiles type adsorption affecting
detected volatiles later on using GCMS warranting for the use of more than one coating
to ensure comprehensive coverage of the aroma of the targeted plant [125]. Additionally,
HS-SPME might now allow for the in situ real time monitoring of VOCs release with
biotic interactions as the plant part is typically cut and placed inside the vial for VOCs
collection. HS-SPME coupled to GC-MS was used to highlight the interactions between
healthy and Xylella fastidiosa-infected olive trees based on their VOCs profiles identifying
different methyl esters compounds as infection biomarkers and putative diffusible signal
factors [126]. In contrast, dynamic headspace (DHS) sampling, also called “purge and trap”,
is another sampling technique that can better allow for the in situ monitoring of VOCs
release in which the analytes are extracted by purging the sample with a flow of carrier gas
into a trap with high retention power either by cryofocusing or on sorbent material [14].
The trapped analytes are then heated or washed with organic solvent later on to release
VOCs and released into the chromatographic system with much better detectability than
static head space approaches. Such a set up has been coupled with GC-MS for untargeted
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screening of volatiles emitted by lavender grown under open-field conditions in response
to the yellow decline disease [127].

3.3. LC-MS Based Metabolomics for Decoding Secondary Metabolites Reprogramming

Liquid chromatography coupled to mass spectrometry (LC–MS) is the most-important
method for plant metabolomics, being especially suited to profile secondary metabolites
more involved in plant pathogens interaction (Figure 5). Compared to GC-MS, it is more
suitable to analyze polar and non-volatile metabolites belonging to secondary metabolites
more likely to function as phytoalexins or phytoanticipins, and moreover, the derivatization
step is not necessary in LC-MS analysis [128,129]. Moreover, the high selectivity and
sensitivity benefit the profiling of phytoalexins and phytoanticipins with low abundance,
which may play a chief role in metabolic reprogramming [130,131]. This poses LC-MS as an
indispensable analytical tool in monitoring plant metabolic reprogramming in pathogen–
plant interactions, and surely other stress responses.

There are a large number of secondary metabolites belonging to various classes such
as alkaloids, flavonoids, terpenoids, etc. [52,132], with various molecular weight, polarities,
and stabilities, involved in plant metabolic reprogramming. Therefore, an efficient separa-
tion of metabolites from complex mixtures can significantly benefit the determination of
them. Column technology is a basic choice in LC systems to increase separation capability.
The majority of LC–MS applications use C18 reversed-phase (RP) separation, and secondary
metabolites determination, especially, typically employ this strategy. C18-based RP separa-
tion can separate different types of metabolites (with diverse mass weight and polarity) well
in a simple run, convenient for the metabolomic analysis. The influence of the soil biotic
legacy to the diversity of secondary metabolites that a plant produced has been revealed by
the work of Ristok et al. [133]. Results revealed that quinic acid/quinic acid derivatives,
chlorogenic acid derivatives, flavonoid glycosides, verbascosides and iridoid glycosides in
C. jacea and P. lanceolata played an important role in plant–herbivore interactions. Lee et al.
analyzed the primary and secondary metabolites of Schisandra chinensis by GC/MS and
LC/MS, respectively [131]. In this study, 31 secondary metabolites were detected using
LC/MS and the differences of these secondary metabolites showed significant relation with
their origins. Zhang et al. also described a multi-omics and UHPLC-MS determination of
the difference in terpenoids metabolite content during the development of C. cathayensis
seeds [134]. Besides the C18 stationary phase, examples using other stationary phases
such as high strength silica (HSS) T3 in RP mode can also be found. The variation of
specialized secondary metabolites triggered by lipopolysaccharides in Arabidopsis thaliana
was determined using HSS T3 for separation, including phytohormones salicylic acid,
jasmonic acid, and the associated methyl esters and sugar conjugates [135]. The defensive
state induced the increase of a series of metabolites involved in dynamic reprogramming
of metabolic pathways, such as indole and indole derivatives, glucosinolates, camalexin
as well as cinnamates and other phenylpropanoids. Other separation modes including
hydrophilic interaction chromatography (HILIC) and pentafluorophenyl (PFP) columns
are also used for secondary metabolites determination as an alternative stationary phase
to RP liquid chromatography. A HILIC system can achieve proper retention for highly
polar compounds, such as phenolic acids, flavonoids, and terpenoids, exhibiting very
poor retention in RP chromatography and achieving a better separation of them [136]. In
addition, PFP is suitable for the separation of broad range phenolic compounds and has a
better separation efficiency than C18 columns [137].

However, there is a wide variety of metabolites that are involved in plant defense.
Some metabolites are difficult for achieving suitable retention in the LC system or with
poor ionization efficiency, preventing the detection of such metabolites. Therefore, other
strategies are employed in the LC-MS system for better separation and determination of
these metabolites, such as ion pairing, chemical isotope labeling, and derivatization. Ion
pairing techniques add ion pairing reagents in the mobile phase to reduce the coeluted
ion charged compounds and improve chromatographic performance [138]. In this case,
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ion-pair chromatography is used for many polar metabolites’ detection in plants, such as
alkaloids, polyamines, etc. [139–141]. For instance, polyamines played an important role in
plant–pathogen interaction [140]. Nevertheless, polyamines are minor compounds, and in-
terferences from complex matrices prevent their accurate determination in planta. With the
addition of ion-pairing reagent heptafluorobutyric acid (HFBA), the variation of Put, Spd,
Spn, and 1,3-diaminopropane in Arabidopsis thaliana samples was determined [140]. More-
over, the better separation performance also aids in the identification of novel metabolites
of potential defensive action. With the separation using ion-pair forming HFBA, three new
acylated betacyanins were newly reported from the Amaranthaceae family, first detected in
I. lindenii leaves [141].

The derivatization technique is another technique to improve separation performance
or ionization effect. Derivatization reagents are used to change metabolites polarity or
introduce readily ionizable groups to reduce difficulties in their ionization (Figure 6). For in-
stance, brassinosteroids (BRs) is a class of steroid plant hormones which undergo profound
changes during plant–pathogen interactions and may take part in metabolite reprogram-
ming [142]. However, the determination of BRs is difficult due to the lack of electrosensitive
or easy ionizable groups. Consequently, Wang et al. established an online derivatization
system, using 2-methyl-4-phenylaminomethylphenylboronic acid (2-methyl-4-PAMBA)
as an immobilized derivatization reagent to extract BRs containing cis-diol and produce
2-methyl-4-PAMBA derivatives [143]. Using this strategy, six endogenous BRs were quanti-
fied in Oryza sativa L. cv., Phaseolus vulgaris L., Vigna unguiculata, and Arabidopsis thaliana
flower. Carboxylic acid-metabolites (CCMs) are a large class metabolites that take part
in the metabolite reprogramming in response to pathogen attacks [144]. However, their
detection is rather challenging, attributed to the marked polarity differences, structural
diversity, high structural similarity, and poor ionization efficiency in mass spectrome-
try [145]. Derivatization using 5-(diisopropylamino)-amylamine (DIAAA) also improved
the detection of CCMs in Pu-er tea [146].
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Acquisition in different ion modes negative, positive electrospray ionization (ESI), or
atmospheric chemical ionization (APCI) can also overcome the limited ionization of certain
metabolite classes and provide comprehensive metabolome coverage of the envisaged
samples [147]. ESI is a commonly used ionization method in plant metabolomics profiling
due to its “soft ionization” capability and the permission of direct analysis of biomolecules
from the liquid phase, which is convenient for LC coupling [128]. APCI is in contrast a
soft ionization method inducing little or no in-source fragmentation, which is suitable
for LC-MS-based plant metabolomics. Besides, APCI is relatively tolerant to high buffer
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concentrations. ESI and APCI showed complementarity to each other, while ESI tend to
ionize polar metabolites with a large molecular more efficient and APCI more suitable for
non-polar and weakly polar metabolites ionization [148]. The comparison of ESI and APCI
ionization in grape berry metabolites investigation showed that ESI was suitable for a wide
range of metabolites including the weakly polar molecules such as flavanols, flavones, and
acylated and glycosylated anthocyanins [149]. On the other hand, APCI showed better
determination to polar metabolites, including sugars and organic acids. These results
showed that more comprehensive profiling of plant metabolites could be achieved using
ESI and APCI ionization modes in parallel.

The selection of mass detectors is according to the specific requirement of each study,
in which high-resolution MS systems are required in untargeted metabolomics, while low-
resolution MS systems are the workhorse for targeted metabolomics. For untargeted profile
of phytoalexins and phytoanticipins, secondary orthogonal data are necessary for precise
metabolite annotations [129]. In this case, tandem-in-time instruments, such as the Orbitrap
and the Fourier-transform ion cyclotron resonance mass spectrometers (FT–ICR–MS), and
tandem-in-space instruments including quadrupole time-of-flight instruments (qTOF), are
usually used for untargeted plant–pathogen interaction metabolomics. The high resolving
power, accurate detection of mass, and capability of MS/MS spectral generation enable the
identification of a large number of metabolites associated with pathogen invasion (Table 1).
In addition, triple quadrupoles (QqQ) and quadrupole linear ion trap (QTrap) are commonly
used in targeted analysis of metabolites involved in plant metabolic reprogramming after
pathogen exposure. Although these low-resolution detectors only provide nominal mass
measurements, they enable the absolute quantification of metabolites. The acquisition types
of neutral loss scan and precursor ion scan ensure the identification and quantification
of metabolites [150], especially if targeting a certain class with a known fragmentation
pattern or loss. With the optimization of multiple reaction monitoring (MRM) parameters
using relative standards, highly selective and sensitive quantification of metabolites can be
achieved. Targeted metabolomics analysis is widely used in plant metabolite responses
to different stimuli induced by plant–pathogen interaction (Table 1). For example, the
quantification of non-O-methyl and O-methylflavonoids in maize leaf elicited by Bipolaris
maydis was analyzed by the Qtrap system, and a significant accumulation of non-O-methyl
and O-methylflavonoids in infected middle leaf segments over the noninfected upper and
lower leaf segments was observed, suggestive that these flavonoids are phytoalexins in
maize [151]. However, the standards of some phytoalexins and phytoanticipins for MRM
method establishment are difficult to obtain. Moreover, the internal standard used for peak
intensities correction in absolute quantification, which is usually the heavy isotopes of the
analysts, is expensive and not available for all metabolites.

It should be noted that the plant sample must be adequately dissolved in the mobile
phase and centrifuged at a very high speed (>15,000 rpm) before injection, in case of
clogging of the chromatographic column. In addition, the low abundance of metabolites in
the complex plant matrix is still the most challenging problem in LC-MS, which require
optimized chromatographic separation to avoid the ion suppression effect induced by
co-eluting interfering compounds.



Metabolites 2023, 13, 424 16 of 30

Table 1. The commonly used mass detectors applied in plant–pathogen studies.

Mass Spectrometer
Technique Approach Altered Metabolites References

qTOF Untargeted Oxylipins, phenolic lipids,
diacylglycerol, phosphatidic acid [152]

Untargeted
Phytohormones salicylic acid,
jasmonic acid, indole derivatives,
phenylpropanoids

[135]

Untargeted

Phenolic amino acids,
phenylpropanoids, hydroxycinnamic
acid amides, fatty acids,
lysophospholipids,
glycoglycerolipids, and phospholipids

[153]

Untargeted Oxylipin, amino acids [154]

Untargeted
L-Glutamate, DIBOA-glucoside, fatty
acids, phospholipids, flavonoids,
carotenoids, and alkaloids

[155]

Ion-trap Untargeted Polyphenolics [156]

Untargeted Terpenoids, phenylpropanoids,
flavonoids [157]

Untargeted Arabidopsides [158]
Untargeted Polyphenolics [159]

Orbitrap Untargeted Aldehydes, alkaloids, carboxylic acids,
flavonoids, phenolics [160]

Untargeted Carboxylic acids, flavonoids [161]

Untargeted Carboxylic acids, flavonoids, amino
acids, sugars [162]

Untargeted Amino acids, fatty acids,
phenylpropanoids [163]

Untargeted Amino acids, carbohydrates,
phenylpropanoids, terpenoids [164]

FT–ICR–MS Untargeted Phenolics, alkaloids, carboxylic acids [165]
Untargeted Flavonoids, carboxylic acids [166]

QqQ Targeted Oxylipins [167]
Targeted Polyamines [140]
Targeted Isoquinoline alkaloids [139]

Targeted

phenylpropanoids, benzoic acids,
glycoalkaloids, flavonoids, amino
acids, organic acids, oxygenated fatty
acids

[168]

Qtrap Targeted Terpenoids [169]
Targeted Flavonoids [170]
Targeted Flavonoids [151]

3.4. MS Imaging to Decode Spatial Changes in Plants Response to Stressors

Defensive compounds in response to stressors are of high specialization and are
known to distribute in single- or few-cell structures [171,172]. However, in the chemical
analysis of bulk tissue, the details of such distributions are lost during the extraction
process, or require the cumbersome and multi-processed isolation of a given tissue for
location [173]. MS imaging allows one to visualize the spatial distribution of thousands of
primary and secondary metabolites on the sample surface (Figure 5). It can provide more
comprehensive profiling including the spatial changes of plant defense and is increasingly
reported nowadays in plant metabolomics studies [174].

There are several MS imaging techniques divided according to the way ions are
generated. Secondary Ion Mass Spectrometry (SIMS) ionizes samples by ion bombardment
while Matrix Assisted Laser Desorption Ionization (MALDI) uses laser illumination to
generate ions with the use of a matrix, and Desorption Electrospray Ionization (DESI) uses
an electrospray of charged solvent droplets to produce secondary ions [175].
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SIMS was the first presented MS imaging technique. It is a hard ionization and is
suitable for studying low molecular weight metabolites. Besides, the inherent fragmentation
of large polymers into smaller units caused by hard ionization makes SIMS-based imaging
able to determine stem and wood tissue for the distributions of saccharides and lignin
units [176]. However, SIMS techniques can only detect the outer-most analytes of the
sample and require the samples to be stable under a vacuum, which limits the application
in plants.

MALDI is one of the most utilized methodologies for plant metabolites imaging owing
for its flexibility, ease of use, speed, and well-documented sample preparation techniques.
It is a soft ionization technique with little ion fragmentation [177]. This imaging technique
has a non-targeting advantage for visual localization and to provide information on the
production of phytoalexins and production action mechanism. For example, Abe et al.
used the MALDI system to visually investigate the dynamic production of glyceollin
phytoalexins in germinating soybeans inoculated with Aspergillus oryzae [178]. Results
revealed that glyceollins were produced only inside th seed coat and germinated root of
the soybeans, whereas their precursor, isoflavone, was distributed throughout the soybean.
Therefore, it could be indicated that glyceollin phytoalexins are only produced in regions
that are in contact with the fungus body. In addition, Seneviratne et al. used MALDI-
MS for identifying metabolites involved in non-host disease resistance response [179].
Imaging data showed that pisatin and pinoresinol monoglucoside are accumulated and
located in the endocarp tissue involved in the non-host resistance response upon exposure
to Fusarium solani f. sp. phaseoli spores. This indicated that these metabolites played
a role as phytoalexins during pathogen attack which also aided in understanding the
function of DRR206, a protein that is involved in (+)-pinoresinol production. The location
of phytoalexins makes sense for further understanding their function, biosynthesis, and
possible transport within the plant.

However, self-ionization of the organic matrix used in MALDI-MS occasionally in-
terferes with ionizations of small molecules (<500 m/z), which limits its application in
many plant phytoalexins measurement, including most plant hormones. To overcome
such an obstacle, other techniques are developed, such as nanoparticle-assisted laser
desorption/ionization (nano-PALDI). Nano-PALDI uses nanoparticles as an ionization
matrix to avoid self-ionizing interference, which allows for the analysis of small molecules
(m/z < 500) [180]. Seven common plant hormones and two associated compounds were
used to compare the MALDI-MS and Nano-PALDI-MS detection efficiency [181]. Three
of these compounds (auxin, brassinosteroid, D6- abscisic acid) failed to be ionized using
MALDI-MS, whereas nano-PALDI-MS ionized all 9 chemicals in roots of rice (Oryza sativa).
The ability of multiple major plant hormones visualization in plant tissues indicates the
potential of nano-PALDI-MS in investigating the roles of hormonal signaling in stress
responses. Besides, other MS imaging techniques are also utilized in plant–pathogen in-
teraction. DESI is a technique that provides ionization under ambient conditions, which
simplify sample pretreatment and obtain the high quality of needed information. Tata et al.
used imprint imaging DESI-MS to monitor the dynamic of glycoalkaloids accumulation as
phytoalexins in sprouted potatoes infected by Pythium ultimum [182]. In total, 10 potato
glycoalkaloids were determined, two of which (α-solanine, α-chaconine) showed decrease
after 8 d infection, while others showed an increase suggestive of different roles inside
tubers. With disease progression, all glycoalkaloid metabolites showed a decrease trend.
These results proved that DESI-MS could efficiently decode for metabolic changes after
a pathogen attack in plants, which could be a powerful technique for plant–pathogen
interaction studies in the future yet to be more capitalized upon.

4. Metabolomics Data Analysis and Visualization

NMR- and MS-based strategies typically generate a large amount of data which makes
data analysis a great challenge in untargeted analysis for the visualization and further
markers identification. Although there is no standard protocol for data analysis, generally



Metabolites 2023, 13, 424 18 of 30

data analysis can be divided into several steps: data processing, metabolite annotation,
quantification, and statistical analysis (Figure 7).
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The purpose of data processing is to extract spectra and make data clearer, which fur-
ther aids in metabolites annotation and mapping to specific pathways. It usually includes
several steps. However, for MS data, the conversion of original proprietary formats into
open data formats (mzXML, mzData, mzML, netCDF, et al. [183,184]) is necessary prior
to their analysis. These formats are readable in most standard statistical environments
and are convenient for further analysis. Feature detection is the first step; the low-intensity
metabolites can be separated from noise-by-noise filter algorithms, and the co-eluting metabo-
lites can be unraveled during the deconvolution step. After the operating peak alignment
algorithm, the metabolite features between different chromatographic runs can be compared
and normalization methods lay the fundamental for quantitative metabolomics analysis. Up
to now, many platforms can provide reliable data preprocessing of plant metabolomics, in-
cluding Met-IDEA [185], OpenMS [186], MS-DIAL [187], and MZmine3 [188,189]. In addition,
Metaboanalyst 5.0 [190,191], web tool-integrated and untargeted LC–MS spectra processing,
functional analysis, and functional meta-analysis for multi-omics analysis, can not only pro-
cess raw data but also carry out statistical analysis, which are effective tools in metabolic
analysis involved in plant–pathogen interactions [192,193].

Identification of metabolites is the vital part for data analysis [194]. The annotation is
always based on MS1 and MS2 data with the combination of databases including pathway-
centric databases and compound-centric databases [128]. METLIN and MassBank are
comprehensive databases that are available for plant metabolomics analysis [195]. Other
databases, such as GMD, KNApSAcK, LipidBank, LIPID MAPS, KEGG, and PlantCyc, are
also utilized for metabolites annotation though still generalized and not specific per plant
genotypes. Major challenges in secondary metabolites annotation in plant taxa lie in the
huge diversity in strictures and metabolite classes as compared with human or animal
databases and which is still the major bottleneck in all plant metabolomics projects. Plant
databases which are more specific to serve for plant metabolite analysis are necessary for
plant metabolomics studies. For example, the Dictionary of Natural Products, AntiBase,
and MarinLit are commonly used for the identification of known compounds in plants.
Besides, other new plant-specific databases also showed their powerful potential in plant
metabolomic metabolomics analysis. ReSpect (RIKEN tandem mass spectral database)
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represents another potential plant specific MS/MS-based database, established based on
published data and standard compounds [196]. A plant natural product tandem mass
spectral library was constructed by Lei et al., in which most focused on plant phenolics such
as flavonoids, isoflavonoids, and phenylpropanoids [197]. Global Natural Products Social
Molecular Networking (GNPS) is a natural product and metabolomics analysis database,
which can analyze a dataset and compare it to all publicly available data [198]. The net-
working approach can also aid in identifying unknown structures based on their clustering
with known ones [199]. Moreover, some more specific databases focusing on model plants
are also increasingly developed. For instance, mass spectrometry databases for Arabidopsis
developmental (AtMetExpress) [200], ecotype [201], and mutants (PlantMetabolomics [202],
MeKO [203]) were developed and available for metabolites annotation and metabolomics
dynamic analysis. Application of plant-specific databases in plant microbe interaction is
less explored in the literature and has the potential to aid in identification of markers for
infected plant organs, etc., based on visual inspection of pie chart areas for the different
samples, i.e., control versus infected ones. In addition, with the development of plant–
pathogen interaction investigation, some databases constructed by metabolites involving
in plants’ response to stressors should be established. Researchers can update their data in
the public data repository, such as GNPS/MassIVE [204], Metabolomics Workbench [205],
and MetaboLights [206]. A broad range of experimental methods and conditions in public
open data can support effective metabolomic profiling. Therefore, data depositions from
metabolomics researchers across the world are essential for metabolic studies and should
be mandated at some point upon publishing, especially for metabolomics reprogramming
in plants, the field of which still requires a richer set of data types. The broadening of public
datasets may also facilitate the sharing of worldwide data and foster collaborations for
metabolomics reprogramming studies in the future, especially to compare field studies
from different regions worldwide. It should be noted that the identification procedure of
metabolites should reference the metabolomics standards initiative to prevent the risk of
poor-quality control and deceptive data interpretation mostly in the metabolites identifi-
cation part [207]. The standards facilitate the data obtained by different analysis methods
and from different biological systems to be available to others for evaluation, extension,
or sharing in a public repository [208]. In addition, there are several types of in silico frag-
mentation software for compound identification according to mass databases, including
MetFrag and SIRIUS 5. MetFrag implements compound identification based on compound
database searching and fragmentation prediction [209], while SIRIUS 5 provides coherent
assessment of molecular structures according to the combination of isotope pattern analysis
and fragmentation trees [210]. These tools have shown their efficiency in many metabolic
analyses of plants invaded by pathogen and significantly benefited the untargeted profiling
approach [211–213].

Moreover, there are many new metabolites involved in metabolites reprogramming
that have yet to be discovered mostly due to the lack of standard MS/MS spectra. The
annotation of these metabolites is also urgent. Instead of comparing them with the refer-
ence spectra, strategies that annotate metabolites according to co-occurring fragments and
losses were established to address this problem [214]. GNPS allows one to build a molec-
ular network based on the similarity of mass spectra (generated by structurally related
metabolites), and to annotate the unknowns based on the molecular [198]. According to
feature-based molecular networking (an integrated tool in GNPS) and the characteristic
ion of ascorbic acid, Zhang et al. identified 17 ascorbic acid derivatives in the fruit of Rosa
roxburghii Tratt [136]. These derivatives showed the interaction between ascorbyl acid and
organic acids, flavonoids, and glucuronic acid. Similarly, MetDNA also utilizes a recursive
algorithm for annotating unknown metabolites. Metabolites are identified based on their
similarity of MS/MS spectra and possible metabolic relations. It has been proven that
this strategy could annotate nearly 2000 metabolites based on three spectral databases of
metabolites [215]. Although metabolites annotation is convenient with the development of
databases and computational tools, identification of isomers and the influence brought by
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in-source degradation products are still challenging [216]. Expertise in data extraction steps
prior to modelling can also overcome problems such as in-source degradation products
aided by tools such as Mzmine [217] that can avoid their inclusion in the dataset to be
modelled.

Furthermore, multivariate analyses are used to visualize datasets in a general un-
targeted manner and to aid in reducing the dimensionality of the data. Multivariate
analysis methods account for potential trends in complex data sets, which aid to interpret
pathogens-induced metabolomic perturbations and reprogramming seen in the system
under study. Unsupervised methods, such as Principal component analysis (PCA) and
hierarchical clustering analysis (HCA), supervised discriminant techniques, such as partial
least squares discriminant analysis (PLS-DA), and orthogonal to partial least squares dis-
criminant analysis (OPLS-DA), are usually preferred for multivariate analysis, which can
determine class-based differences between experimental groups. However, the overfitting
of the model is a main question for poor quality and predictive performance of the models
developed [218]. In this case, researchers are usually utilizing a combination of statistical
approaches to select representative changes in metabolome and find biomarkers related to
pathogen–plant interaction. For example, Finnegan et al. used OPLS-DA combined with
VIP (variable importance in projection) plot analysis to identify biomarkers that contributed
to metabolomic reprogramming induced by LPS [135]. In this study, a total of 106 biomark-
ers (64 of them in negative mode acquisition, 42 of them in positive mode acquisition) were
identified.

The data analysis of NMR data is similar to that of MS data, including data processing,
spectra annotation, quantification, and statistical analysis, though with still some differ-
ences in processing. In data processing, alignment, baseline correction, bucketing (binning),
normalization, and scaling are involved. Alignment using internal standard or computa-
tional approaches removes the interference leading by pH, temperature, salt concentration,
and inhomogeneous magnetic fields. Baseline correction shields the noise and selects
signals only from the metabolites. Bucketing allows for moderate shift averaging at the
expense of resolution and provides a matrix for further processing [219]. Normalization
aids for removing systematic errors, whereas scaling helps for low abundance metabolite
analysis, though scaling is less problematic in the case of NMR as it has an inherent equal
metabolite response compared to MS detection. Metabolites annotation is also an impor-
tant part in NMR data analysis. The lack of comprehensive NMR spectroscopy databases
that focus on plant metabolites makes the interpretation of NMR data require the prior
study of possible structure of metabolites and tedious work [101]. Many databases such
as Chenomx NMR Suite, Bayesil, and COLMARm are used for metabolites references to
reduce the complicated annotation procedure and avoid the dereplication of identification
of known metabolites. In addition, some plant-specific NMR databases are also developed,
including MeRy-B [220] and MetIDB [221]. Especially, MetIDB is a reference database
specific for flavonoids. It contains 6000 1H NMR spectra of flavonoids, which may facili-
tate flavonoids profiling involved in metabolomics reprogramming after pathogen attack.
Moreover, one of the most important advantages of NMR spectra is the highly accurate and
reproducible quantification ability. For metabolites quantification, internal standards with
unique and simple structure, such as sodium trimethylsilylpropanesulfonate (DSS), sodium
trimethylsilylpropionate (TSP), etc., are added at a known concentration for comparing the
NMR peak heights with target metabolites. For example, the TSP-d4 standard was used to
assess metabolites dynamic of xylem after explosion of Ralstonia solanacearum [110]. The
quantification revealed that glutamine (and asparagine) are primary resources for Ralstonia
solanacearum during its colonization phase.

The overall process above tends to interpret ultimate biological results or end products,
with less emphasis on decoding metabolic reprogramming in plant innate immunity, and
the elucidation is quite necessary and aids in identifying changes in intermediates more
difficult to be detected [222]. To pinpoint altered metabolic pathways, many platforms are
available; KEGG is the most popular database for metabolome mapping on biosynthetic
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pathways. For instance, Zhu et el. investigated metabolic changes in hypocotyls of two
soybean lines after Phytophthora sojae infection [119]. With the help of the KEGG database,
altered metabolites belonged mostly to sugar, organic acids, amino acid derivatives, and
other secondary metabolites participated in the metabolic-level defense response of soybean
to P. sojae. Except for the KEGG platform, some plant-specific database platforms are
emerging to support plant metabolomics systematic analysis, including PlantCyc, TritiCyc,
Arabidopsis Reactome, and Plant Reactome [223].

5. Conclusions and Future Perspectives

Better understanding of plant–pathogen interaction is one of the pivotal tools needed
to deal with agricultural sustainability as well as food security. In this review, we presented
an overview of the major plant responses to biotic stresses at the metabolite level. The
defensive role of these specialized metabolites, i.e., phytoalexins in response to pathogen at-
tack has been described. In addition, the current analytical technologies used for decoding
metabolic reprogramming in pathogen–plant interactions, viz., NMR, GC-MS, LC-MS, and
imaging mass spectrometry were reviewed with comparison among techniques, clarifying
for each technique its applications, detection towards which metabolite classes, advantages,
and any limitations. Both 1H and 2D NMR spectroscopy have been widely employed
to decode metabolome that might be implicated in plant defense against pathogen at-
tacks considering NMR universal detection, though less sensitive compared to MS-based
metabolomics. Cryogenic NMR probes allow a drastic enhancement of the sensitivity in
NMR experiments leading to either an essential reduction of experiment times or a reduc-
tion of the required sample amount. Additionally, other NMR cutting edge techniques
such as high-resolution solid-state magic angle spinning (HR-MAS) NMR could also be
beneficial for analysis of semi-solid samples such as fresh plant leaves or intact tissues
under biotic stresses. On-line hyphenation of separation techniques and NMR spectroscopy
such as HPLC-NMR and more recently, LC-SPE-MS-NMR represent another potential
technology that can be applied for the de novo identification of metabolites in response to
pathogen attacks, especially considering the stronger structural elucidation power of NMR
compared with MS technology. Regarding sampling and analysis of VOCs, use of ionic
liquids as sample preparation technique shows excellent capturing performance in the face
of VOCs and can be employed in sampling of these metabolites following pathogen attacks
less reported in the literature. Another cutting-edge technology employed for the online
capturing and analysis of VOCs include proton transfer reaction mass spectrometry (PTR-
MS) and laser-induced breakdown spectroscopy (LIBS). Unlike GC-MS, such technologies
can aid in monitoring and detection of VOCs following pathogen attacks with real-time
monitoring capabilities and moreover, at a high sensitivity level.

LC-MS is a powerful technique for metabolomics analysis, especially for secondary
metabolites (alkaloids, flavonoids, terpenoids, etc.) determination, which is quite difficult
to be analyzed in NMR and GC-MS investigation. The efficient separation facilitates the
identification of low-abundance secondary metabolites. Different column technologies
pose LC-MS to analyze metabolites with different polarities. For metabolites with poor
retention in the LC system and/or poor ionization efficiency, strategies such as ion-pairing
and derivatization can improve their detection. Different acquisition modes and ion sources
can also achieve better ionization of specific metabolites and provide a global metabolomics
profile of the envisaged plant sample. In addition, the spatial distribution of metabolites
involved in stress response observed by MS imagining is also necessary for metabolomics
reprogramming investigation. Asides from the commonly used MALDI technique, some
newly developed techniques, such as Nano-PALDI and DESI, were employed to avoid the
interference of self-ionization and simplify sample preparation. Data analysis and visual-
ization is challenging due to the large amount of datasets acquired by NMR and MS based
analysis. Metabolites annotation is a vital step among data analysis, with many databases
being continuously developed to meet such a goal and assist metabolites identification, as
exemplified by some plant-specific databases, including the Dictionary of Natural Products,
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ReSpect, and GNPS. For NMR data annotation, some plant-specific databases are also
emerging, such as MeRy-B and MetIDB. For those unknown metabolite annotations, a
feature networking strategy and recursive algorithm have been developed to aid in their
identification, being the major bottleneck in plant metabolomics studies and more specif-
ically, in plant microbe interactions. Furthermore, multivariate analyses help to identify
representative biomarkers in metabolomics dynamics induced by pathogen attacks, which
provide evidence to account for the mechanism of plants’ stress response towards immunity
or in overcoming disease progression. Pathogens can perturb plants’ physiological pro-
cesses though the secretion of effector molecules that inhibit plant defense mechanisms or
the availability of nutrients. Effectors are mostly proteins, but other non-protein metabolites
like coronatine, which is secreted by Pseudomonas syringae, provoke metabolic perturbations
in infected plants, facilitating the pathogen entrance to host tissues. Metabolomics can
contribute to understanding pathogen-associated molecular changes in the infected plants
caused by effector molecules. Intriguingly, the recent analytical developments such as mass
spectrometry imaging (MSI), matrix-assisted laser desorption ionization (MALDI), and
live single-cell mass spectrometry (LSCMS) can allow the discrimination of plant-specific
metabolites from those produced by pathogens, thus enabling the pathogenesis control
which is crucial in developing sustainable crops in the future.

Author Contributions: A.S., M.A.S., S.G., J.-L.W. and M.A.F. conceived, structured, and finalized
the manuscript. All authors contributed to the literature search and reviewing and finalizing the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the funds of the Science and Technology Development
Fund, Macau SAR (grant number FDCT 0025/2021/A1).

Conflicts of Interest: No conflict of interest declared.

References
1. Wang, S.; Alseekh, S.; Fernie, A.R.; Luo, J. The Structure and Function of Major Plant Metabolite Modifications. Mol. Plant 2019,

12, 899–919. [CrossRef] [PubMed]
2. Isah, T.; Umar, S.; Mujib, A.; Sharma, M.P.; Rajasekharan, P.E.; Zafar, N.; Frukh, A. Secondary metabolism of pharmaceuticals in

the plant in vitro cultures: Strategies, approaches, and limitations to achieving higher yield. Plant Cell Tissue Organ Cult. (PCTOC)
2018, 132, 239–265. [CrossRef]

3. Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.;
Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv.
2015, 33, 1582–1614. [CrossRef] [PubMed]

4. Leicach, S.R.; Chludil, H.D. Chapter 9—Plant Secondary Metabolites: Structure–Activity Relationships in Human Health
Prevention and Treatment of Common Diseases. In Studies in Natural Products Chemistry; Atta ur, R., Ed.; Elsevier: Amsterdam,
The Netherlands, 2014; Volume 42, pp. 267–304.

5. Pandey, P.; Irulappan, V.; Bagavathiannan, M.V.; Senthil-Kumar, M. Impact of Combined Abiotic and Biotic Stresses on Plant
Growth and Avenues for Crop Improvement by Exploiting Physio-morphological Traits. Front. Plant Sci. 2017, 8, 537. [CrossRef]
[PubMed]

6. Dresselhaus, T.; Hückelhoven, R. Biotic and Abiotic Stress Responses in Crop Plants. Agronomy 2018, 8, 267. [CrossRef]
7. Nobori, T.; Tsuda, K. The plant immune system in heterogeneous environments. Curr. Opin. Plant Biol. 2019, 50, 58–66. [CrossRef]
8. Atkinson, N.J.; Urwin, P.E. The interaction of plant biotic and abiotic stresses: From genes to the field. J. Exp. Bot. 2012, 63,

3523–3543. [CrossRef]
9. Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019, 52, 39. [CrossRef]
10. Karasov, T.L.; Chae, E.; Herman, J.J.; Bergelson, J. Mechanisms to Mitigate the Trade-Off between Growth and Defense. Plant Cell

2017, 29, 666. [CrossRef]
11. Teixeira, P.J.P.L.; Colaianni, N.R.; Fitzpatrick, C.R.; Dangl, J.L. Beyond pathogens: Microbiota interactions with the plant immune

system. Curr. Opin. Microbiol. 2019, 49, 7–17. [CrossRef]
12. Fisher, M.C.; Gurr, S.J.; Cuomo, C.A.; Blehert, D.S.; Jin, H.; Stukenbrock, E.H.; Stajich, J.E.; Kahmann, R.; Boone, C.; Denning,

D.W.; et al. Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. mBio 2020, 11, e00449-20. [CrossRef]
13. Frey, T.J.; Weldekidan, T.; Colbert, T.; Wolters, P.J.C.C.; Hawk, J.A. Fitness Evaluation of Rcg1, a Locus that Confers Resistance to

Colletotrichum graminicola (Ces.) G.W. Wils. Using Near-Isogenic Maize Hybrids. Crop Sci. 2011, 51, 1551–1563. [CrossRef]
14. Mielniczuk, E.; Skwaryło-Bednarz, B. Fusarium Head Blight, Mycotoxins and Strategies for Their Reduction. Agronomy 2020, 10,

509. [CrossRef]

http://doi.org/10.1016/j.molp.2019.06.001
http://www.ncbi.nlm.nih.gov/pubmed/31200079
http://doi.org/10.1007/s11240-017-1332-2
http://doi.org/10.1016/j.biotechadv.2015.08.001
http://www.ncbi.nlm.nih.gov/pubmed/26281720
http://doi.org/10.3389/fpls.2017.00537
http://www.ncbi.nlm.nih.gov/pubmed/28458674
http://doi.org/10.3390/agronomy8110267
http://doi.org/10.1016/j.pbi.2019.02.003
http://doi.org/10.1093/jxb/ers100
http://doi.org/10.1186/s40659-019-0246-3
http://doi.org/10.1105/tpc.16.00931
http://doi.org/10.1016/j.mib.2019.08.003
http://doi.org/10.1128/mBio.00449-20
http://doi.org/10.2135/cropsci2010.10.0613
http://doi.org/10.3390/agronomy10040509


Metabolites 2023, 13, 424 23 of 30

15. Mitchell, C.; Brennan, R.M.; Graham, J.; Karley, A.J. Plant Defense against Herbivorous Pests: Exploiting Resistance and Tolerance
Traits for Sustainable Crop Protection. Front. Plant Sci. 2016, 7, 1132. [CrossRef] [PubMed]

16. Andolfo, G.; Ercolano, M.R. Plant Innate Immunity Multicomponent Model. Front. Plant Sci. 2015, 6, 987. [CrossRef]
17. Koeck, M.; Hardham, A.R.; Dodds, P.N. The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cell Microbiol.

2011, 13, 1849–1857. [CrossRef]
18. Mengiste, T. Plant immunity to necrotrophs. Annu. Rev. Phytopathol. 2012, 50, 267–294. [CrossRef]
19. Lee, S.-J.; Rose, J.K.C. Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted

effector proteins. Plant Signal. Behav. 2010, 5, 769–772. [CrossRef]
20. Duba, A.; Goriewa-Duba, K.; Wachowska, U. A Review of the Interactions between Wheat and Wheat Pathogens: Zymoseptoria

tritici, Fusarium spp. and Parastagonospora nodorum . Int. J. Mol. Sci. 2018, 19, 1138. [CrossRef]
21. Nishad, R.; Ahmed, T.; Rahman, V.J.; Kareem, A. Modulation of Plant Defense System in Response to Microbial Interactions.

Front. Microbiol. 2020, 11, 1298. [CrossRef]
22. Balmer, D.; Flors, V.; Glauser, G.; Mauch-Mani, B. Metabolomics of cereals under biotic stress: Current knowledge and techniques.

Front. Plant Sci. 2013, 4, 82. [CrossRef] [PubMed]
23. Castro-Moretti, F.R.; Gentzel, I.N.; Mackey, D.; Alonso, A.P. Metabolomics as an Emerging Tool for the Study of Plant-Pathogen

Interactions. Metabolites 2020, 10, 52. [CrossRef]
24. Allwood, J.W.; Clarke, A.; Goodacre, R.; Mur, L.A. Dual metabolomics: A novel approach to understanding plant-pathogen

interactions. Phytochemistry 2010, 71, 590–597. [CrossRef] [PubMed]
25. Du Fall, L.A.; Solomon, P.S. Role of cereal secondary metabolites involved in mediating the outcome of plant-pathogen interactions.

Metabolites 2011, 1, 64–78. [CrossRef] [PubMed]
26. Chang, C.; Bowman, J.L.; Meyerowitz, E.M. Field Guide to Plant Model Systems. Cell 2016, 167, 325–339. [CrossRef] [PubMed]
27. Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance

Beyond Efficacy. Front. Plant 2019, 10, 845. [CrossRef]
28. Morris, C.E.; Moury, B. Revisiting the Concept of Host Range of Plant Pathogens. Annu. Rev. Phytopathol. 2019, 57, 63–90.

[CrossRef]
29. Pagán, I.; García-Arenal, F. Tolerance to Plant Pathogens: Theory and Experimental Evidence. Int. J. Mol. Sci. 2018, 19, 810.

[CrossRef]
30. Möller, M.; Stukenbrock, E.H. Evolution and genome architecture in fungal plant pathogens. Nat. Rev. Microbiol. 2017, 15, 756–771.

[CrossRef]
31. Andersen, E.J.; Ali, S.; Byamukama, E.; Yen, Y.; Nepal, M.P. Disease Resistance Mechanisms in Plants. Genes 2018, 9, 339.

[CrossRef]
32. Xu, J.; Wang, N. Where are we going with genomics in plant pathogenic bacteria? Genomics 2019, 111, 729–736. [CrossRef]
33. Dong, O.X.; Ronald, P.C. Genetic Engineering for Disease Resistance in Plants: Recent Progress and Future Perspectives. Plant

Physiol. 2019, 180, 26. [CrossRef]
34. Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [CrossRef]
35. Bigeard, J.; Colcombet, J.; Hirt, H. Signaling Mechanisms in Pattern-Triggered Immunity (PTI). Mol. Plant 2015, 8, 521–539.

[CrossRef]
36. Asai, S.; Shirasu, K. Plant cells under siege: Plant immune system versus pathogen effectors. Curr. Opin. Plant Biol. 2015, 28, 1–8.

[CrossRef]
37. Pott, D.M.; Osorio, S.; Vallarino, J.G. From Central to Specialized Metabolism: An Overview of Some Secondary Compounds

Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit. Front.
Plant Sci. 2019, 10, 835. [CrossRef]

38. Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors.
Molecules 2018, 23, 762. [CrossRef]

39. Iriti, M.; Faoro, F. Chemical diversity and defence metabolism: How plants cope with pathogens and ozone pollution. Int. J. Mol.
Sci. 2009, 10, 3371–3399. [CrossRef]

40. Averesch, N.J.H.; Krömer, J.O. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived
Compounds-Present and Future Strain Construction Strategies. Front. Bioeng. Biotechnol. 2018, 6, 32. [CrossRef]

41. Joosten, L.; van Veen, J.A. Defensive properties of pyrrolizidine alkaloids against microorganisms. Phytochem. Rev. 2011, 10,
127–136. [CrossRef]

42. Moreira, R.; Pereira, D.M.; Valentão, P.; Andrade, P.B. Pyrrolizidine Alkaloids: Chemistry, Pharmacology, Toxicology and Food
Safety. Int. J. Mol. Sci. 2018, 19, 1668. [CrossRef]

43. Kuzuyama, T.; Seto, H. Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. Proc. Jpn. Acad. Ser.
B Phys. Biol. Sci. 2012, 88, 41–52. [CrossRef]

44. Matsuo, N. Discovery and development of pyrethroid insecticides. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2019, 95, 378–400.
[CrossRef]

45. Toyomasu, T.; Sassa, T. 1.17—Diterpenes. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds.; Elsevier: Oxford, UK,
2010; pp. 643–672.

46. Ntalli, N.G.; Caboni, P. Botanical Nematicides: A Review. J. Agric. Food Chem. 2012, 60, 9929–9940. [CrossRef]

http://doi.org/10.3389/fpls.2016.01132
http://www.ncbi.nlm.nih.gov/pubmed/27524994
http://doi.org/10.3389/fpls.2015.00987
http://doi.org/10.1111/j.1462-5822.2011.01665.x
http://doi.org/10.1146/annurev-phyto-081211-172955
http://doi.org/10.4161/psb.5.6.11778
http://doi.org/10.3390/ijms19041138
http://doi.org/10.3389/fmicb.2020.01298
http://doi.org/10.3389/fpls.2013.00082
http://www.ncbi.nlm.nih.gov/pubmed/23630531
http://doi.org/10.3390/metabo10020052
http://doi.org/10.1016/j.phytochem.2010.01.006
http://www.ncbi.nlm.nih.gov/pubmed/20138320
http://doi.org/10.3390/metabo1010064
http://www.ncbi.nlm.nih.gov/pubmed/24957244
http://doi.org/10.1016/j.cell.2016.08.031
http://www.ncbi.nlm.nih.gov/pubmed/27716506
http://doi.org/10.3389/fpls.2019.00845
http://doi.org/10.1146/annurev-phyto-082718-100034
http://doi.org/10.3390/ijms19030810
http://doi.org/10.1038/nrmicro.2017.76
http://doi.org/10.3390/genes9070339
http://doi.org/10.1016/j.ygeno.2018.04.011
http://doi.org/10.1104/pp.18.01224
http://doi.org/10.1038/nature05286
http://doi.org/10.1016/j.molp.2014.12.022
http://doi.org/10.1016/j.pbi.2015.08.008
http://doi.org/10.3389/fpls.2019.00835
http://doi.org/10.3390/molecules23040762
http://doi.org/10.3390/ijms10083371
http://doi.org/10.3389/fbioe.2018.00032
http://doi.org/10.1007/s11101-010-9204-y
http://doi.org/10.3390/ijms19061668
http://doi.org/10.2183/pjab.88.41
http://doi.org/10.2183/pjab.95.027
http://doi.org/10.1021/jf303107j


Metabolites 2023, 13, 424 24 of 30

47. Köllner, T.G.; Lenk, C.; Zhao, N.; Seidl-Adams, I.; Gershenzon, J.; Chen, F.; Degenhardt, J. Herbivore-induced SABATH
methyltransferases of maize that methylate anthranilic acid using s-adenosyl-L-methionine. Plant Physiol. 2010, 153, 1795–1807.
[CrossRef]

48. Grunseich, J.M.; Thompson, M.N.; Aguirre, N.M.; Helms, A.M. The Role of Plant-Associated Microbes in Mediating Host-Plant
Selection by Insect Herbivores. Plants 2019, 9, 6. [CrossRef]

49. Konno, K. Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained
therein. Phytochemistry 2011, 72, 1510–1530. [CrossRef]

50. Tohge, T.; Fernie, A.R. An Overview of Compounds Derived from the Shikimate and Phenylpropanoid Pathways and Their
Medicinal Importance. Mini Rev. Med. Chem. 2017, 17, 1013–1027. [CrossRef]

51. Vogt, T. Phenylpropanoid Biosynthesis. Mol. Plant 2010, 3, 2–20. [CrossRef]
52. Zaynab, M.; Fatima, M.; Abbas, S.; Sharif, Y.; Umair, M.; Zafar, M.H.; Bahadar, K. Role of secondary metabolites in plant defense

against pathogens. Microb. Pathog. 2018, 124, 198–202. [CrossRef]
53. Kundu, A.; Vadassery, J. Chlorogenic acid-mediated chemical defence of plants against insect herbivores. Plant Biol. 2019, 21,

185–189. [CrossRef] [PubMed]
54. Vanholme, R.; Demedts, B.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin biosynthesis and structure. Plant Physiol. 2010, 153, 895–905.

[CrossRef] [PubMed]
55. Paniagua, C.; Bilkova, A.; Jackson, P.; Dabravolski, S.; Riber, W.; Didi, V.; Houser, J.; Gigli-Bisceglia, N.; Wimmerova, M.; Budínská,

E.; et al. Dirigent proteins in plants: Modulating cell wall metabolism during abiotic and biotic stress exposure. J. Exp. Bot. 2017,
68, 3287–3301. [CrossRef] [PubMed]

56. Miedes, E.; Vanholme, R.; Boerjan, W.; Molina, A. The role of the secondary cell wall in plant resistance to pathogens. Front. Plant
Sci. 2014, 5, 358. [CrossRef] [PubMed]

57. Wang, K.; Senthil-Kumar, M.; Ryu, C.-M.; Kang, L.; Mysore, K.S. Phytosterols play a key role in plant innate immunity against
bacterial pathogens by regulating nutrient efflux into the apoplast. Plant Physiol. 2012, 158, 1789–1802. [CrossRef]

58. Kushalappa, A.C.; Yogendra, K.N.; Karre, S. Plant Innate Immune Response: Qualitative and Quantitative Resistance. Crit. Rev.
Plant Sci. 2016, 35, 38–55. [CrossRef]

59. Liu, H.; Brettell, L.E.; Qiu, Z.; Singh, B.K. Microbiome-Mediated Stress Resistance in Plants. Trends Plant Sci. 2020, 25, 733–743.
[CrossRef]

60. Kazan, K.; Lyons, R. Intervention of Phytohormone Pathways by Pathogen Effectors. Plant Cell 2014, 26, 2285–2309. [CrossRef]
61. Coppola, M.; Diretto, G.; Digilio, M.C.; Woo, S.L.; Giuliano, G.; Molisso, D.; Pennacchio, F.; Lorito, M.; Rao, R. Transcriptome and

Metabolome Reprogramming in Tomato Plants by Trichoderma harzianum strain T22 Primes and Enhances Defense Responses
Against Aphids. Front. Physiol. 2019, 10, 745. [CrossRef]

62. Zhang, L.; Zhang, F.; Melotto, M.; Yao, J.; He, S.Y. Jasmonate signaling and manipulation by pathogens and insects. J. Exp. Bot.
2017, 68, 1371–1385. [CrossRef]

63. Okazaki, Y.; Saito, K. Roles of lipids as signaling molecules and mitigators during stress response in plants. Plant J. 2014, 79,
584–596. [CrossRef]

64. González-Lamothe, R.; Mitchell, G.; Gattuso, M.; Diarra, M.S.; Malouin, F.; Bouarab, K. Plant antimicrobial agents and their effects
on plant and human pathogens. Int. J. Mol. Sci. 2009, 10, 3400–3419. [CrossRef] [PubMed]

65. Gleadow, R.M.; Møller, B.L. Cyanogenic glycosides: Synthesis, physiology, and phenotypic plasticity. Annu. Rev. Plant Biol. 2014,
65, 155–185. [CrossRef] [PubMed]

66. Moses, T.; Papadopoulou, K.K.; Osbourn, A. Metabolic and functional diversity of saponins, biosynthetic intermediates and
semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 439–462. [CrossRef]

67. Ökmen, B.; Etalo, D.W.; Joosten, M.H.A.J.; Bouwmeester, H.J.; de Vos, R.C.H.; Collemare, J.; de Wit, P.J.G.M. Detoxification of
α-tomatine by Cladosporium fulvum is required for full virulence on tomato. New Phytol. 2013, 198, 1203–1214. [CrossRef]

68. Ishida, M.; Hara, M.; Fukino, N.; Kakizaki, T.; Morimitsu, Y. Glucosinolate metabolism, functionality and breeding for the
improvement of Brassicaceae vegetables. Breed Sci. 2014, 64, 48–59. [CrossRef]

69. Chhajed, S.; Misra, B.B.; Tello, N.; Chen, S. Chemodiversity of the Glucosinolate-Myrosinase System at the Single Cell Type
Resolution. Front. Plant Sci. 2019, 10, 618. [CrossRef]

70. Lv, H.; Fang, Z.; Yang, L.; Zhang, Y.; Wang, Y. An update on the arsenal: Mining resistance genes for disease management of
Brassica crops in the genomic era. Hortic. Res. 2020, 7, 34. [CrossRef]

71. Yi, G.E.; Robin, A.H.; Yang, K.; Park, J.I.; Kang, J.G.; Yang, T.J.; Nou, I.S. Identification and expression analysis of glucosinolate
biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies. Molecules 2015, 20,
13089–13111. [CrossRef] [PubMed]

72. Ahuja, I.; Kissen, R.; Bones, A.M. Phytoalexins in defense against pathogens. Trends Plant Sci. 2012, 17, 73–90. [CrossRef]
73. Thakur, M.; Sohal, B.S. Role of Elicitors in Inducing Resistance in Plants against Pathogen Infection: A Review. ISRN Biochem.

2013, 2013, 762412. [CrossRef]
74. Großkinsky, D.K.; van der Graaff, E.; Roitsch, T. Phytoalexin transgenics in crop protection—Fairy tale with a happy end? Plant

Sci. 2012, 195, 54–70. [CrossRef]
75. Kettles, G.J.; Drurey, C.; Schoonbeek, H.J.; Maule, A.J.; Hogenhout, S.A. Resistance of Arabidopsis thaliana to the green peach

aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. New Phytol. 2013, 198, 1178–1190. [CrossRef]

http://doi.org/10.1104/pp.110.158360
http://doi.org/10.3390/plants9010006
http://doi.org/10.1016/j.phytochem.2011.02.016
http://doi.org/10.2174/1389557516666160624123425
http://doi.org/10.1093/mp/ssp106
http://doi.org/10.1016/j.micpath.2018.08.034
http://doi.org/10.1111/plb.12947
http://www.ncbi.nlm.nih.gov/pubmed/30521134
http://doi.org/10.1104/pp.110.155119
http://www.ncbi.nlm.nih.gov/pubmed/20472751
http://doi.org/10.1093/jxb/erx141
http://www.ncbi.nlm.nih.gov/pubmed/28472349
http://doi.org/10.3389/fpls.2014.00358
http://www.ncbi.nlm.nih.gov/pubmed/25161657
http://doi.org/10.1104/pp.111.189217
http://doi.org/10.1080/07352689.2016.1148980
http://doi.org/10.1016/j.tplants.2020.03.014
http://doi.org/10.1105/tpc.114.125419
http://doi.org/10.3389/fphys.2019.00745
http://doi.org/10.1093/jxb/erw478
http://doi.org/10.1111/tpj.12556
http://doi.org/10.3390/ijms10083400
http://www.ncbi.nlm.nih.gov/pubmed/20111686
http://doi.org/10.1146/annurev-arplant-050213-040027
http://www.ncbi.nlm.nih.gov/pubmed/24579992
http://doi.org/10.3109/10409238.2014.953628
http://doi.org/10.1111/nph.12208
http://doi.org/10.1270/jsbbs.64.48
http://doi.org/10.3389/fpls.2019.00618
http://doi.org/10.1038/s41438-020-0257-9
http://doi.org/10.3390/molecules200713089
http://www.ncbi.nlm.nih.gov/pubmed/26205053
http://doi.org/10.1016/j.tplants.2011.11.002
http://doi.org/10.1155/2013/762412
http://doi.org/10.1016/j.plantsci.2012.06.008
http://doi.org/10.1111/nph.12218


Metabolites 2023, 13, 424 25 of 30

76. Xu, J.; Li, Y.; Wang, Y.; Liu, H.; Lei, L.; Yang, H.; Liu, G.; Ren, D. Activation of MAPK kinase 9 induces ethylene and camalexin
biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J. Biol. Chem. 2008, 283, 26996–27006. [CrossRef]

77. Pandey, S.P.; Roccaro, M.; Schön, M.; Logemann, E.; Somssich, I.E. Transcriptional reprogramming regulated by WRKY18 and
WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J. 2010, 64, 912–923. [CrossRef] [PubMed]

78. Jeandet, P.; Hébrard, C.; Deville, M.-A.; Cordelier, S.; Dorey, S.; Aziz, A.; Crouzet, J. Deciphering the Role of Phytoalexins in
Plant-Microorganism Interactions and Human Health. Molecules 2014, 19, 18033–18056. [CrossRef] [PubMed]

79. Veitch, N.C. Isoflavonoids of the Leguminosae. Nat. Prod. Rep. 2013, 30, 988–1027. [CrossRef] [PubMed]
80. SOLINO, A.J.D.S.; Schwan-Estrada, K.R.F.; Oliveira, J.S.B.; Ribeiro, L.; Saab, M.F. Accumulation of phytoalexins in beans, soybeans

and sorghum by fungal filtrates. Rev. Caatinga 2017, 30, 1073–1078. [CrossRef]
81. Sun, H.; Wang, L.; Zhang, B.; Ma, J.; Hettenhausen, C.; Cao, G.; Sun, G.; Wu, J.; Wu, J. Scopoletin is a phytoalexin against

Alternaria alternata in wild tobacco dependent on jasmonate signalling. J. Exp. Bot. 2014, 65, 4305–4315. [CrossRef]
82. Chen, F.; Ma, R.; Chen, X.-L. Advances of Metabolomics in Fungal Pathogen–Plant Interactions. Metabolites 2019, 9, 169. [CrossRef]
83. Tsuda, K.; Somssich, I.E. Transcriptional networks in plant immunity. New Phytol. 2015, 206, 932–947. [CrossRef]
84. Dong, X.; Jiang, Z.; Peng, Y.-L.; Zhang, Z. Revealing Shared and Distinct Gene Network Organization in Arabidopsis Immune

Responses by Integrative Analysis. Plant Physiol. 2015, 167, 1186. [CrossRef] [PubMed]
85. Jiang, Z.; Dong, X.; Zhang, Z. Network-Based Comparative Analysis of Arabidopsis Immune Responses to Golovinomyces orontii

and Botrytis cinerea Infections. Sci. Rep. 2016, 6, 19149. [CrossRef] [PubMed]
86. Quirino, B.F.; Candido, E.S.; Campos, P.F.; Franco, O.L.; Krüger, R.H. Proteomic approaches to study plant–pathogen interactions.

Phytochemistry 2010, 71, 351–362. [CrossRef]
87. Mehta, A.; Brasileiro, A.C.M.; Souza, D.S.L.; Romano, E.; Campos, M.A.; Grossi-de-Sá, M.F.; Silva, M.S.; Franco, O.L.; Fragoso,

R.R.; Bevitori, R.; et al. Plant–pathogen interactions: What is proteomics telling us? FEBS J. 2008, 275, 3731–3746. [CrossRef]
[PubMed]

88. Liu, Y.; Lu, S.; Liu, K.; Wang, S.; Huang, L.; Guo, L. Proteomics: A powerful tool to study plant responses to biotic stress. Plant
Methods 2019, 15, 135. [CrossRef] [PubMed]

89. Horning, E.C.; Horning, M.G. Metabolic profiles: Chromatographic methods for isolation and characterization of a variety of
metabolites in man. Methods Med. Res. 1970, 12, 369–371.

90. Oliver, S.G.; Winson, M.K.; Kell, D.B.; Baganz, F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998, 16,
373–378. [CrossRef]

91. Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: Understanding the metabolic responses of living systems to patho-
physiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189.
[CrossRef]

92. Fiehn, O. Metabolomics—The link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [CrossRef]
93. Salem, M.A.; Perez de Souza, L.; Serag, A.; Fernie, A.R.; Farag, M.A.; Ezzat, S.M.; Alseekh, S. Metabolomics in the Context of

Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites 2020, 10, 37. [CrossRef] [PubMed]
94. Pang, H.; Jia, W.; Hu, Z. Emerging Applications of Metabolomics in Clinical Pharmacology. Clin. Pharmacol. Ther. 2019, 106,

544–556. [CrossRef] [PubMed]
95. Feussner, I.; Polle, A. What the transcriptome does not tell—Proteomics and metabolomics are closer to the plants’ patho-

phenotype. Curr. Opin. Plant Biol. 2015, 26, 26–31. [CrossRef]
96. Gomez-Casati, D.F.; Zanor, M.I.; Busi, M.V. Metabolomics in plants and humans: Applications in the prevention and diagnosis of

diseases. Biomed. Res. Int. 2013, 2013, 792527. [CrossRef] [PubMed]
97. Broeckling, C.D.; Huhman, D.V.; Farag, M.A.; Smith, J.T.; May, G.D.; Mendes, P.; Dixon, R.A.; Sumner, L.W. Metabolic profiling of

Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J. Exp. Bot. 2004, 56, 323–336.
[CrossRef]

98. Salem, M.A.; Juppner, J.; Bajdzienko, K.; Giavalisco, P. Protocol: A fast, comprehensive and reproducible one-step extraction
method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single
sample. Plant Methods 2016, 12, 45. [CrossRef]

99. Murti, R.H.; Afifah, E.N.; Nuringtyas, T.R. Metabolomic Response of Tomatoes (Solanum lycopersicum L.) against Bacterial Wilt
(Ralstonia solanacearum) Using 1H-NMR Spectroscopy. Plants 2021, 10, 1143. [CrossRef]

100. de Falco, B.; Manzo, D.; Incerti, G.; Garonna, A.P.; Ercolano, M.; Lanzotti, V. Metabolomics approach based on NMR spectroscopy
and multivariate data analysis to explore the interaction between the leafminer Tuta absoluta and tomato (Solanum lycopersicum).
Phytochem. Anal. 2019, 30, 556–563. [CrossRef]

101. Mahrous, E.A.; Farag, M.A. Two dimensional NMR spectroscopic approaches for exploring plant metabolome: A review. J. Adv.
Res. 2015, 6, 3–15. [CrossRef]

102. Leiss, K.A.; Choi, Y.H.; Verpoorte, R.; Klinkhamer, P.G. An overview of NMR-based metabolomics to identify secondary plant
compounds involved in host plant resistance. Phytochem. Rev. 2011, 10, 205–216. [CrossRef]

103. Breton, R.C.; Reynolds, W.F. Using NMR to identify and characterize natural products. Nat. Prod. Rep. 2013, 30, 501–524.
[CrossRef] [PubMed]

104. Leiss, K.A.; Maltese, F.; Choi, Y.H.; Verpoorte, R.; Klinkhamer, P.G.L. Identification of chlorogenic acid as a resistance factor for
thrips in chrysanthemum. Plant Physiol. 2009, 150, 1567–1575. [CrossRef]

http://doi.org/10.1074/jbc.M801392200
http://doi.org/10.1111/j.1365-313X.2010.04387.x
http://www.ncbi.nlm.nih.gov/pubmed/21143673
http://doi.org/10.3390/molecules191118033
http://www.ncbi.nlm.nih.gov/pubmed/25379642
http://doi.org/10.1039/c3np70024k
http://www.ncbi.nlm.nih.gov/pubmed/23736284
http://doi.org/10.1590/1983-21252017v30n429rc
http://doi.org/10.1093/jxb/eru203
http://doi.org/10.3390/metabo9080169
http://doi.org/10.1111/nph.13286
http://doi.org/10.1104/pp.114.254292
http://www.ncbi.nlm.nih.gov/pubmed/25614062
http://doi.org/10.1038/srep19149
http://www.ncbi.nlm.nih.gov/pubmed/26750561
http://doi.org/10.1016/j.phytochem.2009.11.005
http://doi.org/10.1111/j.1742-4658.2008.06528.x
http://www.ncbi.nlm.nih.gov/pubmed/18616468
http://doi.org/10.1186/s13007-019-0515-8
http://www.ncbi.nlm.nih.gov/pubmed/31832077
http://doi.org/10.1016/S0167-7799(98)01214-1
http://doi.org/10.1080/004982599238047
http://doi.org/10.1023/A:1013713905833
http://doi.org/10.3390/metabo10010037
http://www.ncbi.nlm.nih.gov/pubmed/31952212
http://doi.org/10.1002/cpt.1538
http://www.ncbi.nlm.nih.gov/pubmed/31173340
http://doi.org/10.1016/j.pbi.2015.05.023
http://doi.org/10.1155/2013/792527
http://www.ncbi.nlm.nih.gov/pubmed/23986911
http://doi.org/10.1093/jxb/eri058
http://doi.org/10.1186/s13007-016-0146-2
http://doi.org/10.3390/plants10061143
http://doi.org/10.1002/pca.2850
http://doi.org/10.1016/j.jare.2014.10.003
http://doi.org/10.1007/s11101-010-9175-z
http://doi.org/10.1039/c2np20104f
http://www.ncbi.nlm.nih.gov/pubmed/23291908
http://doi.org/10.1104/pp.109.138131


Metabolites 2023, 13, 424 26 of 30

105. Machado, A.R.; Medeiros, F.S.; Souza Filho, J.D.d.; Sena, M.M.; Terra, W.C.; Pimenta, L.P. NMR-Based Metabolomic Screening for
Metabolites Associated with Resistance to Meloidogyne javanica in Annona muricata Roots. J. Braz. Chem. Soc. 2019, 30, 1276–1283.
[CrossRef]

106. Tomita, S.; Ikeda, S.; Tsuda, S.; Someya, N.; Asano, K.; Kikuchi, J.; Chikayama, E.; Ono, H.; Sekiyama, Y. A survey of metabolic
changes in potato leaves by NMR-based metabolic profiling in relation to resistance to late blight disease under field conditions.
Magn. Reson. Chem. 2017, 55, 120–127. [CrossRef]

107. do Prado Apparecido, R.; Carlos, E.F.; Lião, L.M.; Vieira, L.G.E.; Alcantara, G.B. NMR-based metabolomics of transgenic and
non-transgenic sweet orange reveals different responses in primary metabolism during citrus canker development. Metabolomics
2017, 13, 20. [CrossRef]

108. Hashiguchi, T.; Hashiguchi, M.; Tanaka, H.; Fukushima, K.; Gondo, T.; Akashi, R. Quantitative analysis of seven plant hormones
in Lotus japonicus using standard addition method. PLoS ONE 2021, 16, e0247276. [CrossRef]

109. Cuperlovic-Culf, M.; Wang, L.; Forseille, L.; Boyle, K.; Merkley, N.; Burton, I.; Fobert, P.R. Metabolic Biomarker Panels of Response
to Fusarium Head Blight Infection in Different Wheat Varieties. PLoS ONE 2016, 11, e0153642. [CrossRef] [PubMed]

110. Gerlin, L.; Escourrou, A.; Cassan, C.; Maviane Macia, F.; Peeters, N.; Genin, S.; Baroukh, C. Unravelling physiological signatures
of tomato bacterial wilt and xylem metabolites exploited by Ralstonia solanacearum. Environ. Microbiol. 2021, 23, 5962–5978.
[CrossRef]

111. Farag, M.A.; Fokar, M.; Abd, H.; Zhang, H.; Allen, R.D.; Paré, P.W. (Z)-3-Hexenol induces defense genes and downstream
metabolites in maize. Planta 2005, 220, 900–909. [CrossRef] [PubMed]

112. Midzi, J.; Jeffery, D.W.; Baumann, U.; Rogiers, S.; Tyerman, S.D.; Pagay, V. Stress-Induced Volatile Emissions and Signalling in
Inter-Plant Communication. Plants 2022, 11, 2566. [CrossRef]

113. López-Gresa, M.P.; Lisón, P.; Campos, L.; Rodrigo, I.; Rambla, J.L.; Granell, A.; Conejero, V.; Bellés, J.M. A Non-targeted
Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae.
Front Plant Sci 2017, 8, 1188. [CrossRef]

114. Abd El-Kader, E.M.; Serag, A.; Aref, M.S.; Ewais, E.E.A.; Farag, M.A. Metabolomics reveals ionones upregulation in MeJA elicited
Cinnamomum camphora (camphor tree) cell culture. Plant Cell Tissue Organ Cult. (PCTOC) 2019, 137, 309–318. [CrossRef]

115. Rahnamaie-Tajadod, R.; Goh, H.-H.; Mohd Noor, N. Methyl jasmonate-induced compositional changes of volatile organic
compounds in Polygonum minus leaves. J. Plant Physiol. 2019, 240, 152994. [CrossRef]

116. Cai, L.; Macfadyen, S.; Hua, B.; Zhang, H.; Xu, W.; Ren, Y. Identification of Biomarker Volatile Organic Compounds Released by
Three Stored-Grain Insect Pests in Wheat. Molecules 2022, 27, 1963. [CrossRef]

117. Jones, O.A.H.; Maguire, M.L.; Griffin, J.L.; Jung, Y.-H.; Shibato, J.; Rakwal, R.; Agrawal, G.K.; Jwa, N.-S. Using metabolic profiling
to assess plant-pathogen interactions: An example using rice (Oryza sativa) and the blast pathogen Magnaporthe grisea . Eur. J.
Plant Pathol. 2011, 129, 539–554. [CrossRef]

118. Kang, W.; Zhu, X.; Wang, Y.; Chen, L.; Duan, Y. Transcriptomic and metabolomic analyses reveal that bacteria promote plant
defense during infection of soybean cyst nematode in soybean. BMC Plant Biol. 2018, 18, 86. [CrossRef]

119. Zhu, L.; Zhou, Y.; Li, X.; Zhao, J.; Guo, N.; Xing, H. Metabolomics Analysis of Soybean Hypocotyls in Response to Phytophthora
sojae Infection. Front. Plant Sci. 2018, 9, 1530. [CrossRef]

120. Rasheed, D.M.; Serag, A.; Abdel Shakour, Z.T.; Farag, M. Novel trends and applications of multidimensional chromatography in
the analysis of food, cosmetics and medicine bearing essential oils. Talanta 2021, 223, 121710. [CrossRef]

121. Cochran, J.W. Fast Gas Chromatography-Time-of-Flight Mass Spectrometry of Polychlorinated Biphenyls and Other Environmen-
tal Contaminants. J. Chromatogr. Sci. 2002, 40, 254–268. [CrossRef]

122. Wong, Y.F.; Chin, S.-T.; Perlmutter, P.; Marriott, P.J. Evaluation of comprehensive two-dimensional gas chromatography with
accurate mass time-of-flight mass spectrometry for the metabolic profiling of plant–fungus interaction in Aquilaria malaccensis . J.
Chromatogr. A 2015, 1387, 104–115. [CrossRef]

123. Gaquerel, E.; Weinhold, A.; Baldwin, I.T. Molecular Interactions between the Specialist Herbivore Manduca sexta (Lepidoptera,
Sphigidae) and Its Natural Host Nicotiana attenuata. VIII. An Unbiased GCxGC-ToFMS Analysis of the Plant’s Elicited Volatile
Emissions. Plant Physiol. 2009, 149, 1408–1423. [CrossRef]

124. Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990,
62, 2145–2148. [CrossRef]

125. Serag, A.; Zayed, A.; Mediani, A.; Farag, M.A. Integrated comparative metabolite profiling via NMR and GC–MS analyses for
tongkat ali (Eurycoma longifolia) fingerprinting and quality control analysis. Sci. Rep. 2023, 13, 2533. [CrossRef]

126. Mentana, A.; Camele, I.; Mang, S.M.; De Benedetto, G.E.; Frisullo, S.; Centonze, D. Volatolomics approach by HS-SPME-GC-MS
and multivariate analysis to discriminate olive tree varieties infected by Xylella fastidiosa . Phytochem. Anal. 2019, 30, 623–634.
[CrossRef]

127. Stierlin, É.; Nicolè, F.; Costes, T.; Fernandez, X.; Michel, T. Metabolomic study of volatile compounds emitted by lavender grown
under open-field conditions: A potential approach to investigate the yellow decline disease. Metabolomics 2020, 16, 31. [CrossRef]

128. Jorge, T.F.; Rodrigues, J.A.; Caldana, C.; Schmidt, R.; van Dongen, J.T.; Thomas-Oates, J.; Antonio, C. Mass spectrometry-based
plant metabolomics: Metabolite responses to abiotic stress. Mass Spectrom. Rev. 2016, 35, 620–649. [CrossRef]

129. Waris, M.; Koçak, E.; Gonulalan, E.M.; Demirezer, L.O.; Kır, S.; Nemutlu, E. Metabolomics analysis insight into medicinal plant
science. TrAC Trends Anal. Chem. 2022, 157, 116795. [CrossRef]

http://doi.org/10.21577/0103-5053.20190022
http://doi.org/10.1002/mrc.4506
http://doi.org/10.1007/s11306-017-1163-5
http://doi.org/10.1371/journal.pone.0247276
http://doi.org/10.1371/journal.pone.0153642
http://www.ncbi.nlm.nih.gov/pubmed/27101152
http://doi.org/10.1111/1462-2920.15535
http://doi.org/10.1007/s00425-004-1404-5
http://www.ncbi.nlm.nih.gov/pubmed/15599762
http://doi.org/10.3390/plants11192566
http://doi.org/10.3389/fpls.2017.01188
http://doi.org/10.1007/s11240-019-01572-z
http://doi.org/10.1016/j.jplph.2019.152994
http://doi.org/10.3390/molecules27061963
http://doi.org/10.1007/s10658-010-9718-6
http://doi.org/10.1186/s12870-018-1302-9
http://doi.org/10.3389/fpls.2018.01530
http://doi.org/10.1016/j.talanta.2020.121710
http://doi.org/10.1093/chromsci/40.5.254
http://doi.org/10.1016/j.chroma.2015.01.096
http://doi.org/10.1104/pp.108.130799
http://doi.org/10.1021/ac00218a019
http://doi.org/10.1038/s41598-023-28551-x
http://doi.org/10.1002/pca.2835
http://doi.org/10.1007/s11306-020-01654-6
http://doi.org/10.1002/mas.21449
http://doi.org/10.1016/j.trac.2022.116795


Metabolites 2023, 13, 424 27 of 30

130. Marr, S.; Hageman, J.A.; Wehrens, R.; van Dam, N.M.; Bruelheide, H.; Neumann, S. LC-MS based plant metabolic profiles of
thirteen grassland species grown in diverse neighbourhoods. Sci. Data 2021, 8, 52. [CrossRef]

131. Lee, D.K.; Yoon, M.H.; Kang, Y.P.; Yu, J.; Park, J.H.; Lee, J.; Kwon, S.W. Comparison of primary and secondary metabolites for
suitability to discriminate the origins of Schisandra chinensis by GC/MS and LC/MS. Food Chem. 2013, 141, 3931–3937. [CrossRef]

132. Ahanger, M.A.; Bhat, J.A.; Siddiqui, M.H.; Rinklebe, J.; Ahmad, P. Integration of silicon and secondary metabolites in plants: A
significant association in stress tolerance. J. Exp. Bot. 2020, 71, 6758–6774. [CrossRef]

133. Ristok, C.; Poeschl, Y.; Dudenhöffer, J.H.; Ebeling, A.; Eisenhauer, N.; Vergara, F.; Wagg, C.; van Dam, N.M.; Weinhold, A.;
Chapman, S. Plant species richness elicits changes in the metabolome of grassland species via soil biotic legacy. J. Ecol. 2019, 107,
2240–2254. [CrossRef]

134. Zhang, Y.Y.; Elam, E.; Ni, Z.J.; Zhang, F.; Thakur, K.; Wang, S.; Zhang, J.G.; Wei, Z.J. LC-MS/MS targeting analysis of terpenoid
metabolism in Carya cathayensis at different developmental stages. Food Chem. 2022, 366, 130583. [CrossRef]

135. Finnegan, T.; Steenkamp, P.A.; Piater, L.A.; Dubery, I.A. The Lipopolysaccharide-Induced Metabolome Signature in Arabidopsis
thaliana Reveals Dynamic Reprogramming of Phytoalexin and Phytoanticipin Pathways. PLoS ONE 2016, 11, e0163572. [CrossRef]

136. Zhang, Y.; Bian, X.; Yan, G.; Sun, B.; Miao, W.; Huang, M.; Li, N.; Wu, J.L. Discovery of novel ascorbic acid derivatives and other
metabolites in fruit of Rosa roxburghii Tratt through untargeted metabolomics and feature-based molecular networking. Food
Chem. 2023, 405, 134807. [CrossRef]

137. Lucci, P.; Saurina, J.; Núñez, O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. TrAC
Trends Anal. Chem. 2017, 88, 1–24. [CrossRef]

138. Patti, G.J. Separation strategies for untargeted metabolomics. J. Sep. Sci. 2011, 34, 3460–3469. [CrossRef]
139. Fabre, N.; Claparols, C.; Richelme, S.; Angelin, M.L.; Fouraste, I.; Moulis, C. Direct characterization of isoquinoline alkaloids

in a crude plant extract by ion-pair liquid chromatography-electrospray ionization tandem mass spectrometry: Example of
Eschscholtzia californica. J. Chromatogr. A 2000, 904, 35–46. [CrossRef]

140. Sanchez-Lopez, J.; Camanes, G.; Flors, V.; Vicent, C.; Pastor, V.; Vicedo, B.; Cerezo, M.; Garcia-Agustin, P. Underivatized polyamine
analysis in plant samples by ion pair LC coupled with electrospray tandem mass spectrometry. Plant Physiol. Biochem. 2009, 47,
592–598. [CrossRef]

141. Jerz, G.; Gebers, N.; Szot, D.; Szaleniec, M.; Winterhalter, P.; Wybraniec, S. Separation of amaranthine-type betacyanins by ion-pair
high-speed countercurrent chromatography. J. Chromatogr. A 2014, 1344, 42–50. [CrossRef]

142. Bajguz, A.; Hayat, S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 2009, 47,
1–8. [CrossRef]

143. Wang, X.-Y.; Xiong, C.-F.; Ye, T.-T.; Ding, J.; Feng, Y.-Q. Online polymer monolith microextraction with in-situ derivatization for
sensitive detection of endogenous brassinosteroids by LC-MS. Microchem. J. 2020, 158, 105061. [CrossRef]

144. Maksym, R.P.; Ghirardo, A.; Zhang, W.; von Saint Paul, V.; Lange, B.; Geist, B.; Hajirezaei, M.R.; Schnitzler, J.P.; Schaffner, A.R.
The Defense-Related Isoleucic Acid Differentially Accumulates in Arabidopsis Among Branched-Chain Amino Acid-Related
2-Hydroxy Carboxylic Acids. Front. Plant Sci. 2018, 9, 766. [CrossRef] [PubMed]

145. Zhang, L.; Li, N.; Chen, S.; Bian, X.; Farag, M.A.; Ge, Y.; Xiao, J.; Wu, J.-L. Carboxyl-containing compounds in food: Category,
functions, and analysis with chemical derivatization-based LC-MS. TrAC Trends Anal. Chem. 2022, 157, 116818. [CrossRef]

146. Ge, Y.; Li, N.; Fu, Y.; Yu, X.; Xiao, Y.; Tang, Z.; Xiao, J.; Wu, J.L.; Jiang, Z.H. Deciphering superior quality of Pu-erh tea from
thousands of years’ old trees based on the chemical profile. Food Chem. 2021, 358, 129602. [CrossRef]

147. Sakna, S.T.; Mocan, A.; Sultani, H.N.; El-Fiky, N.M.; Wessjohann, L.A.; Farag, M.A. Metabolites profiling of Ziziphus leaf taxa via
UHPLC/PDA/ESI-MS in relation to their biological activities. Food Chem. 2019, 293, 233–246. [CrossRef]

148. Zhou, B.; Xiao, J.F.; Tuli, L.; Ressom, H.W. LC-MS-based metabolomics. Mol. Biosyst. 2012, 8, 470–481. [CrossRef]
149. Commisso, M.; Anesi, A.; Dal Santo, S.; Guzzo, F. Performance comparison of electrospray ionization and atmospheric pressure

chemical ionization in untargeted and targeted liquid chromatography/mass spectrometry based metabolomics analysis of
grapeberry metabolites. Rapid. Commun. Mass Spectrom. 2017, 31, 292–300. [CrossRef]

150. Mattoli, L.; Gianni, M.; Burico, M. Mass spectrometry-based metabolomic analysis as a tool for quality control of natural complex
products. Mass Spectrom. Rev. 2022, e21773. [CrossRef]

151. Forster, C.; Handrick, V.; Ding, Y.; Nakamura, Y.; Paetz, C.; Schneider, B.; Castro-Falcon, G.; Hughes, C.C.; Luck, K.; Poosapati, S.;
et al. Biosynthesis and antifungal activity of fungus-induced O-methylated flavonoids in maize. Plant Physiol. 2022, 188, 167–190.
[CrossRef]

152. Rubert, J.; Righetti, L.; Stranska-Zachariasova, M.; Dzuman, Z.; Chrpova, J.; Dall’Asta, C.; Hajslova, J. Untargeted metabolomics
based on ultra-high-performance liquid chromatography-high-resolution mass spectrometry merged with chemometrics: A new
predictable tool for an early detection of mycotoxins. Food Chem. 2017, 224, 423–431. [CrossRef]

153. Cho, K.; Kim, Y.; Wi, S.J.; Seo, J.B.; Kwon, J.; Chung, J.H.; Park, K.Y.; Nam, M.H. Nontargeted metabolite profiling in compatible
pathogen-inoculated tobacco (Nicotiana tabacum L. cv. Wisconsin 38) using UPLC-Q-TOF/MS. J. Agric. Food Chem. 2012, 60,
11015–11028. [CrossRef] [PubMed]

154. Oh, M.; Park, S.; Kim, H.; Choi, G.J.; Kim, S.H. Application of UPLC-QTOF-MS Based Untargeted Metabolomics in Identification
of Metabolites Induced in Pathogen-Infected Rice. Plants 2021, 10, 213. [CrossRef] [PubMed]

155. Hu, W.; Pan, X.; Li, F.; Dong, W. UPLC-QTOF-MS metabolomics analysis revealed the contributions of metabolites to the
pathogenesis of Rhizoctonia solani strain AG-1-IA. PLoS ONE 2018, 13, e0192486. [CrossRef] [PubMed]

http://doi.org/10.1038/s41597-021-00836-8
http://doi.org/10.1016/j.foodchem.2013.06.064
http://doi.org/10.1093/jxb/eraa291
http://doi.org/10.1111/1365-2745.13185
http://doi.org/10.1016/j.foodchem.2021.130583
http://doi.org/10.1371/journal.pone.0163572
http://doi.org/10.1016/j.foodchem.2022.134807
http://doi.org/10.1016/j.trac.2016.12.006
http://doi.org/10.1002/jssc.201100532
http://doi.org/10.1016/S0021-9673(00)00919-5
http://doi.org/10.1016/j.plaphy.2009.02.006
http://doi.org/10.1016/j.chroma.2014.03.085
http://doi.org/10.1016/j.plaphy.2008.10.002
http://doi.org/10.1016/j.microc.2020.105061
http://doi.org/10.3389/fpls.2018.00766
http://www.ncbi.nlm.nih.gov/pubmed/29937770
http://doi.org/10.1016/j.trac.2022.116818
http://doi.org/10.1016/j.foodchem.2021.129602
http://doi.org/10.1016/j.foodchem.2019.04.097
http://doi.org/10.1039/C1MB05350G
http://doi.org/10.1002/rcm.7789
http://doi.org/10.1002/mas.21773
http://doi.org/10.1093/plphys/kiab496
http://doi.org/10.1016/j.foodchem.2016.11.132
http://doi.org/10.1021/jf303702j
http://www.ncbi.nlm.nih.gov/pubmed/23072474
http://doi.org/10.3390/plants10020213
http://www.ncbi.nlm.nih.gov/pubmed/33499273
http://doi.org/10.1371/journal.pone.0192486
http://www.ncbi.nlm.nih.gov/pubmed/29408919


Metabolites 2023, 13, 424 28 of 30

156. Wu, Z.; Song, L.; Huang, D. Food grade fungal stress on germinating peanut seeds induced phytoalexins and enhanced
polyphenolic antioxidants. J. Agric. Food Chem. 2011, 59, 5993–6003. [CrossRef]

157. Di, T.; Zhao, L.; Chen, H.; Qian, W.; Wang, P.; Zhang, X.; Xia, T. Transcriptomic and Metabolic Insights into the Distinctive Effects
of Exogenous Melatonin and Gibberellin on Terpenoid Synthesis and Plant Hormone Signal Transduction Pathway in Camellia
sinensis . J. Agric. Food Chem. 2019, 67, 4689–4699. [CrossRef]

158. Genva, M.; Andersson, M.X.; Fauconnier, M.L. Simple liquid chromatography-electrospray ionization ion trap mass spectrometry
method for the quantification of galacto-oxylipin arabidopsides in plant samples. Sci. Rep. 2020, 10, 11957. [CrossRef]

159. Zhang, M.; Wang, J.; Luo, Q.; Yang, C.; Yang, H.; Cheng, Y. CsMYB96 enhances citrus fruit resistance against fungal pathogen
by activating salicylic acid biosynthesis and facilitating defense metabolite accumulation. J. Plant Physiol. 2021, 264, 153472.
[CrossRef]

160. Aliferis, K.A.; Faubert, D.; Jabaji, S. A metabolic profiling strategy for the dissection of plant defense against fungal pathogens.
PLoS ONE 2014, 9, e111930. [CrossRef]

161. Cooper, B.; Campbell, K.B.; Garrett, W.M. Salicylic Acid and Phytoalexin Induction by a Bacterium that Causes Halo Blight in
Beans. Phytopathology 2022, 112, 1766–1775. [CrossRef]

162. Saiz-Fernandez, I.; Milenkovic, I.; Berka, M.; Cerny, M.; Tomsovsky, M.; Brzobohaty, B.; Kerchev, P. Integrated Proteomic
and Metabolomic Profiling of Phytophthora cinnamomi Attack on Sweet Chestnut (Castanea sativa) Reveals Distinct Molecular
Reprogramming Proximal to the Infection Site and Away from It. Int. J. Mol. Sci. 2020, 21, 8525. [CrossRef]

163. Bollina, V.; Kumaraswamy, G.K.; Kushalappa, A.C.; Choo, T.M.; Dion, Y.; Rioux, S.; Faubert, D.; Hamzehzarghani, H. Mass
spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium
head blight. Mol. Plant Pathol. 2010, 11, 769–782. [CrossRef] [PubMed]

164. Gunnaiah, R.; Kushalappa, A.C. Metabolomics deciphers the host resistance mechanisms in wheat cultivar Sumai-3, against
trichothecene producing and non-producing isolates of Fusarium graminearum . Plant Physiol. Biochem. 2014, 83, 40–50. [CrossRef]
[PubMed]

165. Aliferis, K.A.; Jabaji, S. FT-ICR/MS and GC-EI/MS metabolomics networking unravels global potato sprout’s responses to
Rhizoctonia solani infection. PLoS ONE 2012, 7, e42576. [CrossRef]

166. Maia, M.; Ferreira, A.E.N.; Nascimento, R.; Monteiro, F.; Traquete, F.; Marques, A.P.; Cunha, J.; Eiras-Dias, J.E.; Cordeiro, C.;
Figueiredo, A.; et al. Integrating metabolomics and targeted gene expression to uncover potential biomarkers of fungal/oomycetes-
associated disease susceptibility in grapevine. Sci. Rep. 2020, 10, 15688. [CrossRef]

167. Ludovici, M.; Ialongo, C.; Reverberi, M.; Beccaccioli, M.; Scarpari, M.; Scala, V. Quantitative profiling of oxylipins through
comprehensive LC-MS/MS analysis of Fusarium verticillioides and maize kernels. Food Addit. Contam. Part A Chem. Anal. Control
Expo Risk Assess 2014, 31, 2026–2033. [CrossRef]

168. Mhlongo, M.I.; Piater, L.A.; Steenkamp, P.A.; Labuschagne, N.; Dubery, I.A. Metabolomic Evaluation of Tissue-Specific Defense
Responses in Tomato Plants Modulated by PGPR-Priming against Phytophthora capsici Infection. Plants 2021, 10, 1530. [CrossRef]

169. Horie, K.; Inoue, Y.; Sakai, M.; Yao, Q.; Tanimoto, Y.; Koga, J.; Toshima, H.; Hasegawa, M. Identification of UV-Induced Diterpenes
Including a New Diterpene Phytoalexin, Phytocassane F, from Rice Leaves by Complementary GC/MS and LC/MS Approaches.
J. Agric. Food Chem. 2015, 63, 4050–4059. [CrossRef] [PubMed]

170. Yan, Z.; Lin, G.; Ye, Y.; Wang, Y.; Yan, R. A generic multiple reaction monitoring based approach for plant flavonoids profiling
using a triple quadrupole linear ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2014, 25, 955–965. [CrossRef] [PubMed]

171. Weid, M.; Ziegler, J.; Kutchan, T.M. The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy,
Papaver somniferum . Proc. Natl. Acad. Sci. USA 2004, 101, 13957–13962. [CrossRef]

172. Goodger, J.Q.; Heskes, A.M.; Mitchell, M.C.; King, D.J.; Neilson, E.H.; Woodrow, I.E. Isolation of intact sub-dermal secretory
cavities from Eucalyptus. Plant Methods 2010, 6, 20. [CrossRef]

173. Bjarnholt, N.; Li, B.; D’Alvise, J.; Janfelt, C. Mass spectrometry imaging of plant metabolites—principles and possibilities. Nat.
Prod. Rep. 2014, 31, 818–837. [CrossRef] [PubMed]

174. Dong, Y.; Li, B.; Aharoni, A. More than Pictures: When MS Imaging Meets Histology. Trends Plant Sci. 2016, 21, 686–698. [CrossRef]
[PubMed]

175. Boughton, B.A.; Thinagaran, D.; Sarabia, D.; Bacic, A.; Roessner, U. Mass spectrometry imaging for plant biology: A review.
Phytochem. Rev. 2016, 15, 445–488. [CrossRef] [PubMed]

176. Liu, M.; Li, N.; Zhang, Y.; Zheng, Z.; Zhuo, Y.; Sun, B.; Bai, L.P.; Zhang, M.; Guo, M.Q.; Wu, J.L. Characterization of covalent
protein modification by triclosan in vivo and in vitro via three-dimensional liquid chromatography-mass spectrometry: New
insight into its adverse effects. Environ. Int. 2020, 136, 105423. [CrossRef] [PubMed]

177. Spraker, J.E.; Luu, G.T.; Sanchez, L.M. Imaging mass spectrometry for natural products discovery: A review of ionization methods.
Nat. Prod. Rep. 2020, 37, 150–162. [CrossRef]

178. Abe, C.; Zhang, Y.; Takao, K.; Sasaki, K.; Ochiai, K.; Matsui, T. Visualization Analysis of Glyceollin Production in Germinating
Soybeans by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging Technique. J. Agric. Food Chem. 2021, 69,
7057–7063. [CrossRef]

179. Seneviratne, H.K.; Dalisay, D.S.; Kim, K.W.; Moinuddin, S.G.; Yang, H.; Hartshorn, C.M.; Davin, L.B.; Lewis, N.G. Non-host
disease resistance response in pea (Pisum sativum) pods: Biochemical function of DRR206 and phytoalexin pathway localization.
Phytochemistry 2015, 113, 140–148. [CrossRef]

http://doi.org/10.1021/jf200776w
http://doi.org/10.1021/acs.jafc.9b00503
http://doi.org/10.1038/s41598-020-68757-x
http://doi.org/10.1016/j.jplph.2021.153472
http://doi.org/10.1371/journal.pone.0111930
http://doi.org/10.1094/PHYTO-12-21-0496-R
http://doi.org/10.3390/ijms21228525
http://doi.org/10.1111/j.1364-3703.2010.00643.x
http://www.ncbi.nlm.nih.gov/pubmed/21029322
http://doi.org/10.1016/j.plaphy.2014.07.002
http://www.ncbi.nlm.nih.gov/pubmed/25084325
http://doi.org/10.1371/journal.pone.0042576
http://doi.org/10.1038/s41598-020-72781-2
http://doi.org/10.1080/19440049.2014.968810
http://doi.org/10.3390/plants10081530
http://doi.org/10.1021/acs.jafc.5b00785
http://www.ncbi.nlm.nih.gov/pubmed/25865436
http://doi.org/10.1007/s13361-014-0863-6
http://www.ncbi.nlm.nih.gov/pubmed/24692044
http://doi.org/10.1073/pnas.0405704101
http://doi.org/10.1186/1746-4811-6-20
http://doi.org/10.1039/C3NP70100J
http://www.ncbi.nlm.nih.gov/pubmed/24452137
http://doi.org/10.1016/j.tplants.2016.04.007
http://www.ncbi.nlm.nih.gov/pubmed/27155743
http://doi.org/10.1007/s11101-015-9440-2
http://www.ncbi.nlm.nih.gov/pubmed/27340381
http://doi.org/10.1016/j.envint.2019.105423
http://www.ncbi.nlm.nih.gov/pubmed/32035293
http://doi.org/10.1039/C9NP00038K
http://doi.org/10.1021/acs.jafc.1c02261
http://doi.org/10.1016/j.phytochem.2014.10.013


Metabolites 2023, 13, 424 29 of 30

180. Taira, S.; Sugiura, Y.; Moritake, S.; Shimma, S.; Ichiyanagi, Y.; Setou, M. Nanoparticle-assisted laser desorption/ionization based
mass imaging with cellular resolution. Anal. Chem. 2008, 80, 4761–4766. [CrossRef]

181. Shiono, K.; Taira, S. Imaging of Multiple Plant Hormones in Roots of Rice (Oryza sativa) Using Nanoparticle-Assisted Laser
Desorption/Ionization Mass Spectrometry. J. Agric. Food Chem. 2020, 68, 6770–6775. [CrossRef]

182. Tata, A.; Perez, C.J.; Hamid, T.S.; Bayfield, M.A.; Ifa, D.R. Analysis of metabolic changes in plant pathosystems by imprint
imaging DESI-MS. J. Am. Soc. Mass Spectrom. 2015, 26, 641–648. [CrossRef]

183. Orchard, S.; Montechi-Palazzi, L.; Deutsch, E.W.; Binz, P.A.; Jones, A.R.; Paton, N.; Pizarro, A.; Creasy, D.M.; Wojcik, J.; Hermjakob,
H. Five years of progress in the Standardization of Proteomics Data 4th Annual Spring Workshop of the HUPO-Proteomics
Standards Initiative April 23–25, 2007 Ecole Nationale Superieure (ENS), Lyon, France. Proteomics 2007, 7, 3436–3440. [CrossRef]

184. Martens, L.; Chambers, M.; Sturm, M.; Kessner, D.; Levander, F.; Shofstahl, J.; Tang, W.H.; Rompp, A.; Neumann, S.; Pizarro, A.D.;
et al. mzML—A community standard for mass spectrometry data. Mol. Cell. Proteom. 2011, 10, R110.000133. [CrossRef] [PubMed]

185. Li, H.; Cai, Y.; Guo, Y.; Chen, F.; Zhu, Z.J. MetDIA: Targeted Metabolite Extraction of Multiplexed MS/MS Spectra Generated by
Data-Independent Acquisition. Anal. Chem. 2016, 88, 8757–8764. [CrossRef]

186. Rost, H.L.; Sachsenberg, T.; Aiche, S.; Bielow, C.; Weisser, H.; Aicheler, F.; Andreotti, S.; Ehrlich, H.C.; Gutenbrunner, P.; Kenar, E.;
et al. OpenMS: A flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 2016, 13, 741–748.
[CrossRef] [PubMed]

187. Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL:
Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [CrossRef]

188. Pluskal, T.; Castillo, S.; Villar-Briones, A.; Oresic, M. MZmine 2: Modular framework for processing, visualizing, and analyzing
mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [CrossRef]

189. Damiani, T.; Bonciarelli, S.; Thallinger, G.G.; Koehler, N.; Krettler, C.A.; Salihoglu, A.K.; Korf, A.; Pauling, J.K.; Pluskal, T.; Ni,
Z.; et al. Software and Computational Tools for LC-MS-Based Epilipidomics: Challenges and Solutions. Anal. Chem. 2023, 95,
287–303. [CrossRef] [PubMed]

190. Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.E.; Li, S.; Xia, J. MetaboAnalyst
5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [CrossRef]
[PubMed]

191. Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing,
multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 2022, 17, 1735–1761. [CrossRef]

192. Farahbakhsh, F.; Massah, A.; Hamzehzarghani, H.; Yassaie, M.; Amjadi, Z.; El-Zaeddi, H.; Carbonell-Barrachina, A.A. Compara-
tive profiling of volatile organic compounds associated to temperature sensitive resistance to wheat streak mosaic virus (WSMV)
in resistant and susceptible wheat cultivars at normal and elevated temperatures. J. Plant Physiol. 2023, 281, 153903. [CrossRef]

193. Ren, Z.; Fang, M.; Muhae-Ud-Din, G.; Gao, H.; Yang, Y.; Liu, T.; Chen, W.; Gao, L. Metabolomics analysis of grains of wheat
infected and noninfected with Tilletia controversa Kuhn. Sci. Rep. 2021, 11, 18876. [CrossRef] [PubMed]

194. Chaleckis, R.; Meister, I.; Zhang, P.; Wheelock, C.E. Challenges, progress and promises of metabolite annotation for LC-MS-based
metabolomics. Curr. Opin. Biotechnol. 2019, 55, 44–50. [CrossRef] [PubMed]

195. Vinaixa, M.; Schymanski, E.L.; Neumann, S.; Navarro, M.; Salek, R.M.; Yanes, O. Mass spectral databases for LC/MS- and
GC/MS-based metabolomics: State of the field and future prospects. TrAC Trends Anal. Chem. 2016, 78, 23–35. [CrossRef]

196. Sawada, Y.; Nakabayashi, R.; Yamada, Y.; Suzuki, M.; Sato, M.; Sakata, A.; Akiyama, K.; Sakurai, T.; Matsuda, F.; Aoki, T.; et al.
RIKEN tandem mass spectral database (ReSpect) for phytochemicals: A plant-specific MS/MS-based data resource and database.
Phytochemistry 2012, 82, 38–45. [CrossRef] [PubMed]

197. Lei, Z.; Jing, L.; Qiu, F.; Zhang, H.; Huhman, D.; Zhou, Z.; Sumner, L.W. Construction of an Ultrahigh Pressure Liquid
Chromatography-Tandem Mass Spectral Library of Plant Natural Products and Comparative Spectral Analyses. Anal. Chem.
2015, 87, 7373–7381. [CrossRef] [PubMed]

198. Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan,
T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking.
Nat. Biotechnol. 2016, 34, 828–837. [CrossRef]

199. Rummun, N.; Serag, A.; Rondeau, P.; Ramsaha, S.; Bourdon, E.; Bahorun, T.; Farag, M.A.; Neergheen, V.S. Antiproliferative
activity of Syzygium coriaceum, an endemic plant of Mauritius, with its UPLC-MS metabolite fingerprint: A mechanistic study.
PLoS ONE 2021, 16, e0252276. [CrossRef]

200. Matsuda, F.; Hirai, M.Y.; Sasaki, E.; Akiyama, K.; Yonekura-Sakakibara, K.; Provart, N.J.; Sakurai, T.; Shimada, Y.; Saito, K.
AtMetExpress development: A phytochemical atlas of Arabidopsis development. Plant Physiol. 2010, 152, 566–578. [CrossRef]
[PubMed]

201. Saito, K.; Kanaya, S.; Hirai, M.Y.; Suzuki, M.; Sawada, Y.; Nakabayashi, R.; Matsuda, F. Mass Spectra-Based Framework for
Automated Structural Elucidation of Metabolome Data to Explore Phytochemical Diversity. Front. Plant Sci. 2011, 2, 40. [CrossRef]

202. Bais, P.; Moon-Quanbeck, S.M.; Nikolau, B.J.; Dickerson, J.A. Plantmetabolomics.org: Mass spectrometry-based Arabidopsis
metabolomics—Database and tools update. Nucleic Acids Res. 2012, 40, D1216–D1220. [CrossRef]

203. Fukushima, A.; Kusano, M.; Mejia, R.F.; Iwasa, M.; Kobayashi, M.; Hayashi, N.; Watanabe-Takahashi, A.; Narisawa, T.; Tohge,
T.; Hur, M.; et al. Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling
Database for Knockout Mutants in Arabidopsis. Plant Physiol. 2014, 165, 948–961. [CrossRef] [PubMed]

http://doi.org/10.1021/ac800081z
http://doi.org/10.1021/acs.jafc.0c00749
http://doi.org/10.1007/s13361-014-1039-0
http://doi.org/10.1002/pmic.200700658
http://doi.org/10.1074/mcp.R110.000133
http://www.ncbi.nlm.nih.gov/pubmed/20716697
http://doi.org/10.1021/acs.analchem.6b02122
http://doi.org/10.1038/nmeth.3959
http://www.ncbi.nlm.nih.gov/pubmed/27575624
http://doi.org/10.1038/nmeth.3393
http://doi.org/10.1186/1471-2105-11-395
http://doi.org/10.1021/acs.analchem.2c04406
http://www.ncbi.nlm.nih.gov/pubmed/36625108
http://doi.org/10.1093/nar/gkab382
http://www.ncbi.nlm.nih.gov/pubmed/34019663
http://doi.org/10.1038/s41596-022-00710-w
http://doi.org/10.1016/j.jplph.2022.153903
http://doi.org/10.1038/s41598-021-98283-3
http://www.ncbi.nlm.nih.gov/pubmed/34556726
http://doi.org/10.1016/j.copbio.2018.07.010
http://www.ncbi.nlm.nih.gov/pubmed/30138778
http://doi.org/10.1016/j.trac.2015.09.005
http://doi.org/10.1016/j.phytochem.2012.07.007
http://www.ncbi.nlm.nih.gov/pubmed/22867903
http://doi.org/10.1021/acs.analchem.5b01559
http://www.ncbi.nlm.nih.gov/pubmed/26107650
http://doi.org/10.1038/nbt.3597
http://doi.org/10.1371/journal.pone.0252276
http://doi.org/10.1104/pp.109.148031
http://www.ncbi.nlm.nih.gov/pubmed/20023150
http://doi.org/10.3389/fpls.2011.00040
http://doi.org/10.1093/nar/gkr969
http://doi.org/10.1104/pp.114.240986
http://www.ncbi.nlm.nih.gov/pubmed/24828308


Metabolites 2023, 13, 424 30 of 30

204. Aron, A.T.; Gentry, E.C.; McPhail, K.L.; Nothias, L.F.; Nothias-Esposito, M.; Bouslimani, A.; Petras, D.; Gauglitz, J.M.; Sikora, N.;
Vargas, F.; et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020, 15,
1954–1991. [CrossRef] [PubMed]

205. Sud, M.; Fahy, E.; Cotter, D.; Azam, K.; Vadivelu, I.; Burant, C.; Edison, A.; Fiehn, O.; Higashi, R.; Nair, K.S.; et al. Metabolomics
Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and
training, and analysis tools. Nucleic Acids Res. 2016, 44, D463–D470. [CrossRef] [PubMed]

206. Haug, K.; Salek, R.M.; Conesa, P.; Hastings, J.; de Matos, P.; Rijnbeek, M.; Mahendraker, T.; Williams, M.; Neumann, S.; Rocca-
Serra, P.; et al. MetaboLights—An open-access general-purpose repository for metabolomics studies and associated meta-data.
Nucleic Acids Res. 2013, 41, D781–D786. [CrossRef] [PubMed]

207. Di Minno, A.; Gelzo, M.; Caterino, M.; Costanzo, M.; Ruoppolo, M.; Castaldo, G. Challenges in Metabolomics-Based Tests,
Biomarkers Revealed by Metabolomic Analysis, and the Promise of the Application of Metabolomics in Precision Medicine. Int. J.
Mol. Sci. 2022, 23, 5213. [CrossRef]

208. Fiehn, O.; Robertson, D.; Griffin, J.; van der Werf, M.; Nikolau, B.; Morrison, N.; Sumner, L.W.; Goodacre, R.; Hardy, N.W.; Taylor,
C.; et al. The metabolomics standards initiative (MSI). Metabolomics 2007, 3, 175–178. [CrossRef]

209. Ruttkies, C.; Schymanski, E.L.; Wolf, S.; Hollender, J.; Neumann, S. MetFrag relaunched: Incorporating strategies beyond in silico
fragmentation. J. Cheminform. 2016, 8, 3. [CrossRef] [PubMed]

210. Duhrkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Bocker, S. SIRIUS
4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [CrossRef]

211. Tortosa, M.; Cartea, M.E.; Rodriguez, V.M.; Velasco, P. Unraveling the metabolic response of Brassica oleracea exposed to
Xanthomonas campestris pv. campestris. J. Sci. Food Agric. 2018, 98, 3675–3683. [CrossRef]

212. Liu, J.; Nothias, L.F.; Dorrestein, P.C.; Tahlan, K.; Bignell, D.R.D. Genomic and Metabolomic Analysis of the Potato Common Scab
Pathogen Streptomyces scabiei. ACS Omega 2021, 6, 11474–11487. [CrossRef]

213. Molina, J.; Nikolic, D.; Jeevarathanam, J.R.; Abzalimov, R.; Park, E.J.; Pedales, R.; Mojica, E.E.; Tandang, D.; McLaughlin, W.;
Wallick, K.; et al. Living with a giant, flowering parasite: Metabolic differences between Tetrastigma loheri Gagnep. (Vitaceae)
shoots uninfected and infected with Rafflesia (Rafflesiaceae) and potential applications for propagation. Planta 2021, 255, 4.
[CrossRef] [PubMed]

214. Ma, A.; Qi, X. Mining plant metabolomes: Methods, applications, and perspectives. Plant Commun. 2021, 2, 100238. [CrossRef]
[PubMed]

215. Shen, X.; Wang, R.; Xiong, X.; Yin, Y.; Cai, Y.; Ma, Z.; Liu, N.; Zhu, Z.J. Metabolic reaction network-based recursive metabolite
annotation for untargeted metabolomics. Nat. Commun. 2019, 10, 1516. [CrossRef] [PubMed]

216. Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, J.C.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; et al.
Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Methods 2021,
18, 747–756. [CrossRef]

217. Olivon, F.; Grelier, G.; Roussi, F.; Litaudon, M.; Touboul, D. MZmine 2 Data-Preprocessing To Enhance Molecular Networking
Reliability. Anal. Chem. 2017, 89, 7836–7840. [CrossRef]

218. Bujak, R.; Daghir-Wojtkowiak, E.; Kaliszan, R.; Markuszewski, M.J. PLS-Based and Regularization-Based Methods for the
Selection of Relevant Variables in Non-targeted Metabolomics Data. Front. Mol. Biosci. 2016, 3, 35. [CrossRef]

219. Augustijn, D.; de Groot, H.J.M.; Alia, A. HR-MAS NMR Applications in Plant Metabolomics. Molecules 2021, 26, 931. [CrossRef]
220. Ferry-Dumazet, H.; Gil, L.; Deborde, C.; Moing, A.; Bernillon, S.; Rolin, D.; Nikolski, M.; de Daruvar, A.; Jacob, D. MeRy-B: A web

knowledgebase for the storage, visualization, analysis and annotation of plant NMR metabolomic profiles. BMC Plant Biol. 2011,
11, 104. [CrossRef]

221. Mihaleva, V.V.; te Beek, T.A.; van Zimmeren, F.; Moco, S.; Laatikainen, R.; Niemitz, M.; Korhonen, S.P.; van Driel, M.A.; Vervoort,
J. MetIDB: A publicly accessible database of predicted and experimental 1H NMR spectra of flavonoids. Anal. Chem. 2013, 85,
8700–8707. [CrossRef]

222. Farag, M.A.; Huhman, D.V.; Dixon, R.A.; Sumner, L.W. Metabolomics reveals novel pathways and differential mechanistic and
elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol.
2008, 146, 387–402. [CrossRef]

223. Naithani, S.; Gupta, P.; Preece, J.; D’Eustachio, P.; Elser, J.L.; Garg, P.; Dikeman, D.A.; Kiff, J.; Cook, J.; Olson, A.; et al. Plant
Reactome: A knowledgebase and resource for comparative pathway analysis. Nucleic Acids Res. 2020, 48, D1093–D1103.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1038/s41596-020-0317-5
http://www.ncbi.nlm.nih.gov/pubmed/32405051
http://doi.org/10.1093/nar/gkv1042
http://www.ncbi.nlm.nih.gov/pubmed/26467476
http://doi.org/10.1093/nar/gks1004
http://www.ncbi.nlm.nih.gov/pubmed/23109552
http://doi.org/10.3390/ijms23095213
http://doi.org/10.1007/s11306-007-0070-6
http://doi.org/10.1186/s13321-016-0115-9
http://www.ncbi.nlm.nih.gov/pubmed/26834843
http://doi.org/10.1038/s41592-019-0344-8
http://doi.org/10.1002/jsfa.8876
http://doi.org/10.1021/acsomega.1c00526
http://doi.org/10.1007/s00425-021-03787-x
http://www.ncbi.nlm.nih.gov/pubmed/34841446
http://doi.org/10.1016/j.xplc.2021.100238
http://www.ncbi.nlm.nih.gov/pubmed/34746766
http://doi.org/10.1038/s41467-019-09550-x
http://www.ncbi.nlm.nih.gov/pubmed/30944337
http://doi.org/10.1038/s41592-021-01197-1
http://doi.org/10.1021/acs.analchem.7b01563
http://doi.org/10.3389/fmolb.2016.00035
http://doi.org/10.3390/molecules26040931
http://doi.org/10.1186/1471-2229-11-104
http://doi.org/10.1021/ac4016837
http://doi.org/10.1104/pp.107.108431
http://doi.org/10.1093/nar/gkz996
http://www.ncbi.nlm.nih.gov/pubmed/31680153

	Introduction 
	Plant Innate Immunity and Plant–Pathogen Interaction 
	Defense Metabolites Aid Plants to Cope with a Plethora of Stressful Pathogens 
	Phytoanticipins, the Constitutive Chemical Barriers 
	Phytoalexins, the Inducible Antimicrobial Metabolites 
	Pathogenesis-Related Omics Data Provide New Findings to Study Plant Defense Responses 
	Metabolomics as Better Tools for Decoding Pathogen–Plant Interactions 

	Current Analytical Tools for Studying the Metabolomics Reprogramming in Pathogen—Plant Interactions 
	NMR Based Metabolomics Analysis 
	GC-MS Based Metabolomics Analysis of VOCs and Primary Metabolites 
	LC-MS Based Metabolomics for Decoding Secondary Metabolites Reprogramming 
	MS Imaging to Decode Spatial Changes in Plants Response to Stressors 

	Metabolomics Data Analysis and Visualization 
	Conclusions and Future Perspectives 
	References

