Fatty Liver Disease in Patients with Prediabetes and Overweight or Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Demographic and Clinical Data Collection
2.3. Definitions
2.3.1. MetS
2.3.2. Cardiovascular Risk
2.3.3. FLI as a Surrogate Measure of Fatty Liver
2.4. Statistical Analyses
3. Results
3.1. General Characteristics of the Study Population
3.2. Prevalence of FLI-Defined NAFLD
3.3. FLI-Defined NAFLD and CVR
4. Discussion
4.1. FLI-Defined NAFLD by Sex
4.2. FLI-Defined NAFLD and MetS
4.3. FLI-Defined NAFLD and Associated Comorbidities
4.4. Screening FLI-Defined NAFLD in Primary Health Care
4.5. Study Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Younossi, Z.M.; Marchesini, G.; Pinto-Cortez, H.; Petta, S. Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis: Implications for Liver Transplantation. Transplantation 2019, 103, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Bellentani, S. The epidemiology of non-alcoholic fatty liver disease. Liver Int. 2017, 37, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Borggreve, S.E.; Hillege, H.L.; Wolffenbuttel, B.H.R.; de Jong, P.E.; Bakker, S.J.L.; van der Steege, G.; van Tol, A.; Dullaart, R.P.F.; PREVEND Study Group. The effect of cholesteryl ester transfer protein -629C->A promoter polymorphism on high-density lipoprotein cholesterol is dependent on serum triglycerides. J. Clin. Endocrinol. Metab. 2005, 90, 4198–4204. [Google Scholar] [CrossRef] [Green Version]
- Le, M.H.; Yeo, Y.H.; Li, X.; Li, J.; Zou, B.; Wu, Y.; Ye, Q.; Huang, D.Q.; Zhao, C.; Zhang, J.; et al. 2019 Global NAFLD Prevalence: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2021, 20, 2809–2817.e28. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.Q.; El-Serag, H.B.; Loomba, R. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2020, 18, 223–238. [Google Scholar] [CrossRef]
- Estes, C.; Anstee, Q.M.; Arias-Loste, M.T.; Bantel, H.; Bellentani, S.; Caballeria, J.; Colombo, M.; Craxi, A.; Crespo, J.; Day, C.P.; et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol. 2018, 69, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Aller, R.; Fernández-Rodríguez, C.; Iacono, O.L.; Bañares, R.; Abad, J.; Carrión, J.A.; García-Monzón, C.; Caballería, J.; Berenguer, M.; Rodríguez-Perálvarez, M.; et al. Documento de consenso. Manejo de la enfermedad hepática grasa no alcohólica (EHGNA). Guía de práctica clínica. Gastroenterol. Y Hepatol. 2018, 41, 328–349. [Google Scholar] [CrossRef]
- Caballería, L.; Pera, G.; Auladell, M.A.; Torán, P.; Muñoz, L.; Miranda, D.; Alumà, A.; Casas, J.D.; Sánchez, C.; Gil, D.; et al. Prevalence and factors associated with the presence of nonalcoholic fatty liver disease in an adult population in Spain. Eur. J. Gastroenterol. Hepatol. 2010, 22, 24–32. [Google Scholar] [CrossRef]
- Fresneda, S.; Abbate, M.; Busquets-Cortés, C.; López-González, A.; Fuster-Parra, P.; Bennasar-Veny, M.; Yáñez, A.M. Sex and age differences in the association of fatty liver index-defined non-alcoholic fatty liver disease with cardiometabolic risk factors: A cross-sectional study. Biol. Sex Differ. 2022, 13, 1–16. [Google Scholar] [CrossRef]
- Tana, C.; Ballestri, S.; Ricci, F.; Di Vincenzo, A.; Ticinesi, A.; Gallina, S.; Giamberardino, M.A.; Cipollone, F.; Sutton, R.; Vettor, R.; et al. Cardiovascular Risk in Non-Alcoholic Fatty Liver Disease: Mechanisms and Therapeutic Implications. Int. J. Environ. Res. Public Health 2019, 16, 3104. [Google Scholar] [CrossRef] [Green Version]
- Riazi, K.; Azhari, H.; Charette, J.H.; E Underwood, F.; A King, J.; Afshar, E.E.; Swain, M.G.; E Congly, S.; Kaplan, G.G.; Shaheen, A.-A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef]
- Stefan, N.; Cusi, K. A global view of the interplay between non-alcoholic fatty liver disease and diabetes. Lancet Diabetes Endocrinol. 2022, 10, 284–296. [Google Scholar] [CrossRef]
- Targher, G.; Day, C.P.; Bonora, E. Risk of Cardiovascular Disease in Patients with Nonalcoholic Fatty Liver Disease. New Engl. J. Med. 2010, 363, 1341–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younossi, Z.M.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2017, 15, 11–20. [Google Scholar] [CrossRef]
- Yang, K.C.; Hung, H.-F.; Lu, C.-W.; Chang, H.-H.; Lee, L.-T.; Huang, K.-C. Association of Non-alcoholic Fatty Liver Disease with Metabolic Syndrome Independently of Central Obesity and Insulin Resistance. Sci. Rep. 2016, 6, 27034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cholongitas, E. Epidemiology of nonalcoholic fatty liver disease in Europe: A systematic review and meta-analysis. Ann. Gastroenterol. 2021, 34, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Moschen, A.R.; Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 2016, 14, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Busquets-Cortés, C.; Bennasar-Veny, M.; López-González, A.-A.; Fresneda, S.; Aguiló, A.; Yanez, A. Fatty liver index and progression to type 2 diabetes: A 5-year longitudinal study in Spanish workers with pre-diabetes. BMJ Open 2021, 11, e045498. [Google Scholar] [CrossRef]
- Nishi, T.; Babazono, A.; Maeda, T.; Imatoh, T.; Une, H. Evaluation of the fatty liver index as a predictor for the development of diabetes among insurance beneficiaries with prediabetes. J. Diabetes Investig. 2014, 6, 309–316. [Google Scholar] [CrossRef]
- Falguera, M.; Vilanova, M.B.; Alcubierre, N.; Granado-Casas, M.; Marsal, J.R.; Miró, N.; Cebrian, C.; Molló, À.; Franch-Nadal, J.; Mata-Cases, M.; et al. Prevalence of pre-diabetes and undiagnosed diabetes in the Mollerussa prospective observational cohort study in a semi-rural area of Catalonia. BMJ Open 2020, 10, e033332. [Google Scholar] [CrossRef] [Green Version]
- Jäger, S.; Jacobs, S.; Kröger, J.; Stefan, N.; Fritsche, A.; Weikert, C.; Boeing, H.; Schulze, M.B. Association between the Fatty Liver Index and Risk of Type 2 Diabetes in the EPIC-Potsdam Study. PLoS ONE 2015, 10, e0124749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Shealy, K.M.; Wu, J.; Waites, J.; Taylor, N.A.; Sarbacker, G.B. Patterns of Diabetes Screening and Prediabetes Treatment during Office Visits in the US. J. Am. Board Fam. Med. 2019, 32, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Nhim, K.; Khan, T.; Gruss, S.M.; Wozniak, G.; Kirley, K.; Schumacher, P.; Luman, E.T.; Albright, A. Primary Care Providers’ Prediabetes Screening, Testing, and Referral Behaviors. Am. J. Prev. Med. 2018, 55, e39–e47. [Google Scholar] [CrossRef]
- Wong, V.W.; Zelber-Sagi, S.; Cusi, K.; Carrieri, P.; Wright, E.; Crespo, J.; Lazarus, J.V. Management of NAFLD in primary care settings. Liver Int. 2022, 42, 2377–2389. [Google Scholar] [CrossRef] [PubMed]
- Abbate, M.; Fresneda, S.; Yañez, A.; Ricci-Cabello, I.; Galmes-Panades, A.M.; Aguilo, A.; Bennasar-Veny, M.; Vidal, C.; Llobera, J.; Gonzalez-Torrente, S.; et al. Nurse-led telephone intervention for lifestyle changes on glycaemic control in people with prediabetes: Study protocol for a randomized controlled trial. J. Adv. Nurs. 2021, 77, 3204–3217. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care 2021, 45, S17–S38. [Google Scholar] [CrossRef]
- Domingo-Salvany, A.; Bacigalupe, A.; Carrasco, J.M.; Espelt, A.; Ferrando, J.; Borrell, C.; del Grupo de Determinantes Sociales de la Sociedad Española de Epidemiología. Proposals for social class classification based on the Spanish National Classification of Occupations 2011 using neo-Weberian and neo-Marxist approaches. Gac. Sanit. 2013, 27, 263–272. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for Controlling and Monitoring the Tobacco Epidemic; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Centers Disease Control and Prevention. Behavioral Risk Factor Surveillance System Survey Questionnaire; CDC: Atlanta, GA, USA, 2019. [Google Scholar]
- United States Department of Health and Human Services. Population Assessment of Tobacco and Health (PATH) Study [United States]; Inter-University Consortium for Political and Social Research: Ann Arbor, MI, USA, 2020. [Google Scholar]
- Grant, B.F.; Chu, A.; Sigman, R.; Amsbary, M.; Kali, J.; Sugawara, Y.; Goldstein, R. National Institute on Alcohol Abuse and Alcoholism National Epidemiologic Survey on Alcohol and Related Conditions-III (NESARC-III) Source and Accuracy Statement; National Institute on Alcohol Abuse: Bethesda, MD, USA, 2015. [Google Scholar]
- Stewart, A.M.-J.M.; Olds, T.; De Ridder, H. International standards for anthropometric assessment. In Kinanthropometry and Exercise Physiology; Routledge: New York, NY, USA, 2011; Volume 137. [Google Scholar]
- Astorino, T.A.; Baker, J.S.; Brock, S.; Dalleck, L.C.; Goulet, E.D.B.; Gotshall, R.W.; Hutchison, A.; Knight-Maloney, M.; Kravitz, L.C.; Laskin, J.J.; et al. Validity and Reliability of Body Composition Analysis Using the Tanita BC 418-MA. J. Exerc. Physiol. 2012, 15, 74–83. [Google Scholar]
- WHO. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; WHO: Genewa, Switzerland, 2000. [Google Scholar]
- Salas-Salvadó, J.; Rubio, M.A.; Barbany, M.; Moreno, B. Consenso SEEDO 2007 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica. Med. Clín. 2007, 128, 184–196. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. The IDF Consensus Worldwide Definition of the Metabolic Syndrome; International Diabetes Federation (IDF): Brussels, Belgium, 2006; pp. 1–24. [Google Scholar]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J.; IDF Epidemiology Task Force Consensus Group. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Marrugat, J.; Solanas, P.; D’Agostino, R.; Sullivan, L.; Ordovas, J.; Cordón, F.; Ramos, R.; Sala, J.; Masià, R.; Rohlfs, I.; et al. Estimación del riesgo coronario en España mediante la ecuación de Framingham calibrada. Rev. Esp. Cardiol. 2003, 56, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS): The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [Green Version]
- Conroy, R.M.; Pyörälä, K.; Fitzgerald, A.P.; Sans, S.; Menotti, A.; De Backer, G.; De Bacquer, D.; Ducimetière, P.; Jousilahti, P.; Keil, U.; et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project. Eur. Heart J. 2003, 24, 987–1003. [Google Scholar] [CrossRef] [Green Version]
- Koehler, E.M.; Schouten, J.N.; Hansen, B.E.; Hofman, A.; Stricker, B.H.; Janssen, H.L. External Validation of the Fatty Liver Index for Identifying Nonalcoholic Fatty Liver Disease in a Population-based Study. Clin. Gastroenterol. Hepatol. 2013, 11, 1201–1204. [Google Scholar] [CrossRef]
- Quek, J.; Chan, K.E.; Wong, Z.Y.; Tan, C.; Tan, B.; Lim, W.H.; Tan, D.J.H.; Tang, A.S.P.; Tay, P.; Xiao, J.; et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 8, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Franch-Nadal, J.; Caballeria, L.; Mata-Cases, M.; Mauricio, D.; Giraldez-García, C.; Mancera, J.; Goday, A.; Mundet-Tudurí, X.; Regidor, E.; for the PREDAPS Study Group. Fatty liver index is a predictor of incident diabetes in patients with prediabetes: The PREDAPS study. PLoS ONE 2018, 13, e0198327. [Google Scholar] [CrossRef] [Green Version]
- Vesa, C.M.; Behl, T.; Nemeth, S.; Bratu, O.G.; Diaconu, C.C.; Moleriu, R.D.; Negrut, N.; Zaha, D.C.; Bustea, C.; Radu, F.I.; et al. Prediction of NAFLD occurrence in prediabetes patients. Exp. Ther. Med. 2020, 20, 1. [Google Scholar] [CrossRef]
- Lonardo, A.; Nascimbeni, F.; Ballestri, S.; Fairweather, D.; Win, S.; Than, T.A.; Abdelmalek, M.F.; Suzuki, A. Sex Differences in Nonalcoholic Fatty Liver Disease: State of the Art and Identification of Research Gaps. Hepatology 2019, 70, 1457–1469. [Google Scholar] [CrossRef]
- DiStefano, J.K. NAFLD and NASH in Postmenopausal Women: Implications for Diagnosis and Treatment. Endocrinology 2020, 161, bqaa134. [Google Scholar] [CrossRef] [PubMed]
- Kuang, M.; Lu, S.; Xie, Q.; Peng, N.; He, S.; Yu, C.; Qiu, J.; Sheng, G.; Zou, Y. Abdominal obesity phenotypes are associated with the risk of developing non-alcoholic fatty liver disease: Insights from the general population. BMC Gastroenterol. 2022, 22, 311. [Google Scholar] [CrossRef] [PubMed]
- Zeb, I.; Katz, R.; Nasir, K.; Ding, J.; Rezaeian, P.; Budoff, M.J. Relation of nonalcoholic fatty liver disease to the metabolic syndrome: The Multi-Ethnic Study of Atherosclerosis. J. Cardiovasc. Comput. Tomogr. 2013, 7, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Anstee, Q.M.; Targher, G.; Day, C.P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 330–344. [Google Scholar] [CrossRef]
- Caballeria, J.; Caballeria, L. Esteatohepatitis no alcohólica y diabetes Nonalcoholic steatohepatitis and diabetes. Endocrinol. Nutr. 2016, 63, 377–379. [Google Scholar] [CrossRef]
- Balkau, B.; Lange, C.; Vol, S.; Fumeron, F.; Bonnet, F. Nine-year incident diabetes is predicted by fatty liver indices: The French D.E.S.I.R. study. BMC Gastroenterol. 2010, 10, 56. [Google Scholar] [CrossRef]
- Fung, J.; Lee, C.-K.; Chan, M.; Seto, W.-K.; Lai, C.-L.; Yuen, M.-F.; the Hong Kong Liver Health Census Study Group. High prevalence of non-alcoholic fatty liver disease in the Chinese—Results from the Hong Kong liver health census. Liver Int. 2014, 35, 542–549. [Google Scholar] [CrossRef]
- Xie, Y.; Kong, W.; Wang, X.; Wu, Z. Association of glycated hemoglobin with non-alcoholic fatty liver disease patients and the severity of liver steatosis and fibrosis measured by transient elastography in adults without diabetes. BMC Endocr. Disord. 2022, 22, 1–10. [Google Scholar] [CrossRef]
- Lonardo, A.; Nascimbeni, F.; Mantovani, A.; Targher, G. Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? J. Hepatol. 2017, 68, 335–352. [Google Scholar] [CrossRef]
- Wu, J.; Ward, E.; Lu, Z.K. Addressing Lifestyle Management During Visits Involving Patients with Prediabetes: NAMCS 2013–2015. J. Gen. Intern. Med. 2018, 34, 1412–1418. [Google Scholar] [CrossRef] [Green Version]
- Tseng, E.; Greer, R.C.; O’Rourke, P.; Yeh, H.-C.; McGuire, M.M.; Clark, J.M.; Maruthur, N.M. Survey of primary care providers’ knowledge of screening for, diagnosing and managing prediabetes. J. Gen. Intern. Med. 2017, 32, 1172–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rikhi, R.; Singh, T.; Esfeh, J.M. Work up of fatty liver by primary care physicians, review. Ann. Med. Surg. 2020, 50, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Busquets-Cortés, C.; Bennasar-Veny, M.; López-González, A.; Fresneda, S.; Abbate, M.; Yáñez, A.M. Utility of Fatty Liver Index to predict reversion to normoglycemia in people with prediabetes. PLoS ONE 2021, 16, e0249221. [Google Scholar] [CrossRef] [PubMed]
Variable | All n = 186 | Men n = 89 (47.84%) | Women n = 97 (52.15%) | p-Value * |
---|---|---|---|---|
Age (years) | 59.26 (10.32) | 58.65 (10.43) | 59.82 (10.24) | 0.440 |
Social class | 0.960 | |||
White collar | 40 (21.5) | 19 (21.3) | 21 (21.6) | |
Blue collar | 146 (78.5) | 70 (78.7) | 76 (78.4) | |
Smoking status | <0.001 | |||
Never | 84 (45.2) | 27 (30.3) | 57 (58.8) | |
Former | 74 (39.8) | 52 (58.4) | 22 (22.7) | |
Current | 28 (15.1) | 10 (11.2) | 18 (18.6) | |
BMI (kg/m2) | 32.29 (3.53) | 32.00 (3.32) | 32.56 (3.71) | 0.279 |
BMI categories | 0.395 | |||
Overweight | 49 (26.3) | 26 (29.2) | 22 (23.7) | |
Obese | 137 (73.7) | 63 (33.9) | 74 (76.3) | |
WC (cm) | 105.62 (10.19) | 109.10 (8.90) | 102.44 (10.29) | <0.001 |
SBP (mmHg) | 133.98 (14.13) | 137.02 (13.48) | 131.22 (14.77) | 0.005 |
DBP (mmHg) | 83.76 (9.29) | 85.33 (9.27) | 82.35 (9.12) | 0.029 |
BP categories | 0.660 | |||
Normal | 32 (17.2) | 13 (14.6) | 19 (19.6) | |
Prehypertension | 25 (13.4) | 12 (13.5) | 13 (13.4) | |
Hypertension | 129 (69.4) | 64 (71.9) | 65 (67.0) | |
FPG (mg/dL) | 108.76 (6.24) | 109.44 (6.59) | 108.13 (5.86) | 0.155 |
HbA1c ∇ | 5.89 (0.32) | 5.86 (0.33) | 5.92 (0.32) | 0.282 |
GGT (IU/L) | 44.11 (60.06) | 56.88 (82.51) | 32.40 (20.53) | 0.008 |
AST (IU/L) + | 24.11 (11.79) | 27.23 (12.75) | 21.23 (10.05) | 0.001 |
ALT (IU/L) ° | 27.68 (18.95) | 34.03 (23.31) | 21.73 (10.80) | <0.001 |
Cholesterol (mg/dL) | 198.28 (35.01) | 194.73 (37.74) | 201.54 (32.15) | 0.186 |
HDL-C (mg/dL) | 49.98 (12.20) | 46.26 (9.91) | 53.39 (13.13) | <0.001 |
LDL-C (mg/dL) | 119.55 (29.74) | 118.84 (30.59) | 120.19 (29.11) | 0.761 |
TG (mg/dL) | 152.04 (143.21) | 163.62 (195.67) | 141.41 (64.73) | 0.310 |
Presence of dyslipidemia | 107 (57,5) | 52 (58.4) | 55 (56.7) | 0.812 |
Presence of MetS | 137 (73,7) | 65 (73.0) | 72 (74.2) | 0.854 |
REGICOR | 4.55 (2.68) | 5.58 (3.16) | 3.60 (1.68) | <0.001 |
Categories of Framingham-REGICOR | <0.001 | |||
Low risk a | 113 (60.8) | 39 (43.8) | 74 (76.3) | |
Moderate risk a | 62 (33.3) | 40 (44.9) | 22 (22.7) | |
High risk a | 11 (5.9) | 10 (11.2) | 1 (1.0) | |
SCORE | 2.91 (2.62) | 3.69 (2.82) | 2.20 (2.20) | <0.001 |
Categories of SCORE | <0.001 | |||
Low risk a | 52 (28.0) | 15 (16.9) | 37 (38.1) | |
Moderate risk | 96 (51.6) | 47 (52.8) | 49 (50.5) | |
High risk a | 38 (20.4) | 27 (30.3) | 11 (11.3) | |
FLI | 75.61 (19.02) | 79.26 (17.53) | 72.27 (19.79) | 0.012 |
FLI categories | 0.102 | |||
<60 | 41 (22.0) | 15 (16.9) | 26 (26.8) | |
≥60 | 145 (78.0) | 74 (83.1) | 71 (73.2) |
Variable | FLI < 60 (n = 41) | FLI ≥ 60 (n = 145) | OR (95% CI) | p-Value * |
---|---|---|---|---|
Age (years) | 58.56 (10.96) | 59.46 (10.16) | 1.01 (0.97–1.04) | 0.623 |
Social class | 0.225 | |||
White collar | 6 (14.6) | 34 (23.4) | Ref. | |
Blue collar | 35 (85.4) | 111 (76.6) | 0.55 (0.21–1.41) | |
Smoking status | ||||
Never | 22 (53.7) | 62 (42.8) | Ref. | 0.425 |
Former | 13 (31.7) | 61 (42.1) | 1.61 (0.74–3.448) | |
Current | 6 (14.6) | 22 (15.2) | 1.60 (0.46–3.62) | |
BMI (kg/m2) | 28.62 (1.55) | 33.33 (3.23) | 2.58 (1.88–3.55) | <0.001 |
BMI categories | <0.001 | |||
Overweight | 32 (78.0) | 17 (11.7) | Ref. | |
Obese | 9 (22.0) | 128 (88.3) | 26.35 (10.75–64.57) | |
WC (cm) in men | 100.10 (5.61) | 110.94 (8.44) | 1.25 (1.11–1.41) | <0.001 |
WC (cm) in women | 91.47 (6.50) | 106.46 (8.32) | 1.28 (1.15–1.42) | <0.001 |
SBP (mmHg) | 130.51 (14.28) | 134.97 (13.97) | 1.02 (0.99–1.05) | 0.075 |
DBP (mmHg) | 81.40 (8.62) | 84.44 (9.39) | 1.03 (0.99–1.07) | 0.065 |
BP categories | 0.151 | |||
Normal | 11 (26.8) | 21 (14.5) | Ref. | |
Prehypertension | 6 (14.6) | 19 (11.3) | 1.57 (0.48–5.10) | |
Hypertension | 24 (58.5) | 105 (72.4) | 2.27 (0.96–5.33) | |
FPG (mg/dL) | 108.02 (5.91) | 108.97 (6.34) | 1.02 (0.96–1.08) | 0.396 |
HbA1c ∇ | 5.88 (0.29) | 5.89 (0.33) | 1.10 (0.33–3.70) | 0.801 |
GGT (IU/L) | 25.32 (10.29) | 49.43 (66.90) | 1.06 (1.02–1.10) | <0.001 |
AST (IU/L) + | 19.68 (5.00) | 25.43 (12.87) | 1.11 (10.30–1.19) | <0.001 |
ALT (IU/L) ° | 19.09 (7.81) | 30.17 (20.47) | 1.10 (1.05–1.16) | <0.001 |
Cholesterol (mg/dL) | 194.22 (31.18) | 199.43 (36.03) | 1.00 (0.99–1.01) | 0.402 |
HDL-C (mg/dL) n= 184 | 53.85 (11.88) n = 40 | 48.90 (12.11) n = 144 | 0.96 (0.94–0.99) | 0.023 |
LDL-C (mg/dL) n= 181 | 120.63 (28.37) n = 41 | 119.24 (30.22) n = 140 | 0.99 (0.98–1.01) | 0.792 |
TG (mg/dL) | 94.46 (27.70) | 168.32 (157.88) | 1.02 (1.01–1.04) | <0.001 |
Presence of dyslipidemia | ||||
21 (51.2) | 86 (59.3) | 1.39 (0.69–2.80) | 0.355 | |
Presence of MetS | 20 (48.8) | 116 (81.1) | 5.91 (2.34–14.93) | <0.001 |
REGICOR | 3.53 (2.27) | 4.84 (2.73) | 1.29 (1.07–1.56) | 0.006 |
Categories of Framingham-REGICOR | 0.005 | |||
Low risk a | 34 (82.9) | 78 (54.5) | Ref. | |
Moderate risk b | 6 (14.6) | 55 (38.5) | 3.99 (1.57–10.16) | |
High risk | 1 (2.4) | 10 (7.0) | 4.35 (0.53–35.40) | |
SCORE | 2.35 (2.38) | 3.07 (2.67) | 1.12 (0.96–1.31) | 0.121 |
Categories of SCORE | 0.172 | |||
Low risk | 13 (31.7) | 38 (26.6) | Ref. | |
Moderate risk | 24 (58.5) | 72 (50.3) | 1.02 (0.47–2.24) | |
High risk | 4 (9.8) | 33 (23.1) | 2.82 (0.83–9.50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias-Fernández, M.; Fresneda, S.; Abbate, M.; Torres-Carballo, M.; Huguet-Torres, A.; Sánchez-Rodríguez, C.; Bennasar-Veny, M.; Yañez, A.M.; Busquets-Cortés, C. Fatty Liver Disease in Patients with Prediabetes and Overweight or Obesity. Metabolites 2023, 13, 531. https://doi.org/10.3390/metabo13040531
Arias-Fernández M, Fresneda S, Abbate M, Torres-Carballo M, Huguet-Torres A, Sánchez-Rodríguez C, Bennasar-Veny M, Yañez AM, Busquets-Cortés C. Fatty Liver Disease in Patients with Prediabetes and Overweight or Obesity. Metabolites. 2023; 13(4):531. https://doi.org/10.3390/metabo13040531
Chicago/Turabian StyleArias-Fernández, María, Sergio Fresneda, Manuela Abbate, Marina Torres-Carballo, Aina Huguet-Torres, Cristian Sánchez-Rodríguez, Miquel Bennasar-Veny, Aina M. Yañez, and Carla Busquets-Cortés. 2023. "Fatty Liver Disease in Patients with Prediabetes and Overweight or Obesity" Metabolites 13, no. 4: 531. https://doi.org/10.3390/metabo13040531
APA StyleArias-Fernández, M., Fresneda, S., Abbate, M., Torres-Carballo, M., Huguet-Torres, A., Sánchez-Rodríguez, C., Bennasar-Veny, M., Yañez, A. M., & Busquets-Cortés, C. (2023). Fatty Liver Disease in Patients with Prediabetes and Overweight or Obesity. Metabolites, 13(4), 531. https://doi.org/10.3390/metabo13040531