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Abstract: Maternal mineral nutrition during the critical phases of fetal development may leave
lifetime impacts on the productivity of an individual. Most research within the developmental origins
of the health and disease (DOHaD) field is focused on the role of macronutrients in the genome
function and programming of the developing fetus. On the other hand, there is a paucity of knowledge
about the role of micronutrients and, specifically, minerals in regulating the epigenome of livestock
species, especially cattle. Therefore, this review will address the effects of the maternal dietary mineral
supply on the fetal developmental programming from the embryonic to the postnatal phases in cattle.
To this end, we will draw a parallel between findings from our cattle model research with data from
model animals, cell lines, and other livestock species. The coordinated role and function of different
mineral elements in feto-maternal genomic regulation underlies the establishment of pregnancy and
organogenesis and, ultimately, affects the development and functioning of metabolically important
tissues, such as the fetal liver, skeletal muscle, and, importantly, the placenta. Through this review,
we will delineate the key regulatory pathways involved in fetal programming based on the dietary
maternal mineral supply and its crosstalk with epigenomic regulation in cattle.

Keywords: developmental biology; epigenetics; epigenome; essential nutrients; genetics; macrominerals;
microminerals; restricted nutrition

1. Introduction

The mechanisms and the interaction of processes in the growth of an individual from
embryonic to adult life is investigated in the field of developmental biology [1,2]. Rigorous
research over the last half of a century has led to an emergence of reports that conjoin
developmental biology with the areas of genetics [3], evolution [4], and epidemiology [5–7].
This impact on developmental biology, specifically in the area of epidemiology, has resulted
in the formulation of a concept and, ultimately, a separate discipline, namely, fetal program-
ing or the developmental origins of health and disease (DOHaD), first articulated by the
human epidemiologist Dr. David Barker and colleagues [8].

The concept of the DOHaD hypothesis was not new at that time and can be traced
back to the idea from the early 1800s of organic evolution, the concept that the adopted
physical changes in one generation are transferable to subsequent generations via gametes,
by Lamarck [9]; however, Barker was among the first to coin the term “fetal programming”
or “developmental origins of health and disease”. Widdowson and McCance [10] were
among the first cell biologists who provided evidence that there are some critical phases in
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development, especially during the pre-weaning period, in which undernutrition leads to
changes in growth and development in rats. However, later evidence by Barker [8] and oth-
ers in this emerging discipline suggested that fetal growth during pregnancy is regulated by
numerous factors that, in turn, regulate genetic and epigenetic pathways [11,12]. Maternal
nutrient intake during gestation is one of the major factors. The nutrients available to
the conceptus not only affect the expression of the fetal and placental genomes but also
significantly impact offspring growth postnatally [12,13].

Apart from human and laboratory animal model research [14,15], different stud-
ies have linked the concept of developmental programming to livestock performance,
including cattle [16–19], sheep [20,21], and pigs [22,23]. Furthermore, some literature re-
views [24–28] have pointed out the role of micronutrients in epigenome regulation, which
leads to developmental programming. These ideas are the basis of developmental plasticity,
defined as fetal adaptations to an altered intrauterine environment at the expense of postna-
tal developmental prospects [29]. Nutritional manipulations during times of developmental
plasticity, i.e., embryonic, fetal, or neonatal life, exert either short or long-term effects on the
development of muscle, adipose tissue, and ovarian reserves and the overall longevity of
the offspring [13,30–34]. Based on these studies and some recent livestock modeling [35,36],
it seems that nutritional alterations do affect metabolic disorders in humans or model
organisms and may have equal or more severe impacts on cow–calf, feedlot, and dairy
production systems in the livestock sector.

The influence of macronutrients such as carbohydrates, proteins, and lipids has been
researched and reviewed several times [17,25,37–39], with data extending to the omics level
to investigate their regulatory roles in epigenomics and metabolomics [18–20,33,40]. In
contrast, very little is known about their effects on the maternal dietary mineral supply and
their regulatory role(s) in programming genomic function and fetal development. Although
minerals are required in a smaller amount than macronutrients, their deficiency can lead to a
significant reduction in growth and development [41]. Moreover, an excess of minerals can
lead to toxicity. The mineral requirements of beef and dairy cattle along with the maximum
tolerable limits are shown in Table 1 [42–44]. In this review, our objective is to summarize
the key role of essential macro- and microminerals in fetal epigenome programming.

Table 1. Mineral requirements and maximum tolerable limits during pregnancy as established by the
National Academies of Sciences, Engineering, and Medicine (NASEM) for cattle.

Mineral Requirements of Dairy Cattle a Mineral Requirements of Beef Cattle b Maximum
Tolerable

Level (MTL) cMineral Lactating
Cow

Dry
Pregnant Cow

Growing
Heifer

Growing and
Finishing Cow

Gestating
Cow

Early
Lactating Cow

Calcium, % d 0.59 0.35 0.45 0.6 0.25 0.3 1.5
Phosphorous, % 0.36 0.2 0.21 0.22 0.17 0.21 0.7
Magnesium, % 0.17 0.14 0.12 0.1 0.12 0.20 0.40
Potassium, % 1.02 0.66 0.56 0.6 0.6 0.7 2
Sodium, % 0.22 0.17 0.16 0.06–0.08 0.06–0.08 0.1 3
Sulfur, % 0.2 0.2 0.2 0.15 0.15 0.15 0.4
Cobalt, mg/kg d 0.2 0.2 0.2 0.15 0.15 0.15 25
Copper, mg/kg 9 18.5 15.75 10 10 10 40
Iodine, mg/kg 0.44 0.53 0.55 0.5 0.5 0.5 50
Iron, mg/kg 17.6 14 32.5 50 50 50 500
Manganese, mg/kg 28 40.5 41.25 20 40 40 2000
Selenium, mg/kg 0.3 0.3 0.3 0.1 0.1 0.1 5
Zinc, mg/kg 60.8 31 36.5 30 30 30 500

a Nutrient Requirements of Dairy Cattle from the NASEM, 2021 [42]; b Nutrient Requirements of Beef Cattle by
the NASEM, 2016 [43]; c Mineral maximum tolerable levels (MTL) established for cattle by the NASEM, 2005 [44];
d % of dry matter and mg/kg of dry matter.
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2. Fetal Programming as a Multifactorial System

Although much of the research in fetal programming has focused on insults dur-
ing mid- and late gestation, there is a growing interest in the earlier stages of gestation,
which may “set the stage” for later programming events. Although most of the fetal size
increase takes place in the last trimester, the first third of gestation is a critical period
for organogenesis and tissue hyperplasia, as well as placentation [21,34,45,46], as shown
in Figure 1. The prenatal growth trajectory of the conceptus is controlled by maternal
nutrition either directly, by the provision of the essential nutrients; indirectly, via placental
function, which regulates the transport of these nutrients [47]; or by altering the epigenetic
mechanisms [48–51].
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Figure 1. Timeline indicating organogenesis and development of different structures during gestation in cattle [45,46,52–58]. 
Figure 1. Timeline indicating organogenesis and development of different structures during gestation in cattle [45,46,52–58].
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Pregnancy recognition occurs 15 to 16 days after estrous in cattle [58] and initiates
maternal uterine vasculature changes to allow for the proper respiratory gas exchange
and nutrient transfer to the developing embryo. Pregnancy is associated with a significant
decrease in CpG methylation at the Sp1 promotor region of the KCNMB1 gene (potassium
calcium-activated channel subfamily M regulatory Beta subunit 1) and an increase in the
expression of large-conductance Ca+2-activated K+ channel receptors, BKCa, causing uterine
artery dilation [59]. The expression of KCNMB1 is also regulated by an increase in the
expression of estrogenic receptor alpha [60] and the maintenance of membrane potential
by K+ and Ca+2 ions to cause pregnancy-associated relaxation by reducing the myogenic
tone [61,62] (Figure 2). In addition, estrogen is a potent angiogenic factor in the uterus and
is involved in systemic cardiovascular changes during pregnancy (e.g., increased cardiac
output [63,64]).
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ment, zinc deficiency impairs the function of Zic (Zinc finger proteins of the cerebellum) 
genes [70], which are essential for cerebellar development [70–72]. Zinc supranutrition 
(the supplementation of more than the normal requirement but less than the maximum 
tolerable limit) has shown the potential to enhance the cognitive ability of offspring in rats 
by increasing the expression of the signal transducer and activator of transcription 3 
(STAT3) and matrix metalloproteinase-2/9 (MMP-2/9) [69]. STAT3-MMP-2/9 activity pro-
motes the invasion and migration of placental trophoblast cells and improves neural func-
tion [69,73]. In heart development, zinc deficiency alters the distribution of human natural 
killer-1 (HNK-1) cells and connexin 43 (Cx43) in the myocardium, contributing to the de-
velopment of cardiovascular anomalies [74,75].  

Like zinc, copper deficiency and supranutrition are associated with oxidative distress 
and neural degenerative disorders [76,77]. It has also been observed that both copper de-
ficiency and the improper absorption of copper from the rumen in cattle can lead to such 
conditions. This can be due to the accessibility of molybdenum and sulfur, resulting in the 
formation of thiomolybdates, which can bind with copper in the rumen leading to inap-
propriate copper availability [78]. Copper deficiency leads to the suppression of the activ-
ity of a cuproenzyme, cytochrome-c oxidase, in the red nucleus region associated with 
large motor neurons, causing enzootic ataxia or swayback in lambs [79,80]. In addition, 

Figure 2. Schematic overview of the role of estrogen, Ca+2, and K+ in the establishment of pregnancy-
associated relaxation and myogenic tone reduction. Pregnancy increases the basal estrogen level and
demethylate CpG at the Sp1 promotor site to increase KCNMB1 expression [61]. KCNMB1 leads to
opening of BKca channels, causing efflux of K+ and release of Ca+2, which further promote KCNMB1
expression [59]. Change in membrane potential of vascular smooth muscle in the uterine artery by
efflux of K+ and release of Ca+2 results in uterine artery dilation along with pregnancy-induced
relaxation [61]. KCNMB1, potassium calcium-activated channel subfamily M regulatory Beta subunit
1; BKCa, large-conductance Ca+2-activated K+ channel receptors.

The development of fetal organs is significantly affected by mineral availability [65].
Zinc deficiency or excess during pregnancy can impact the development of multiple organs,
including the brain, lungs, skeleton, and heart [66–69]. In the case of brain develop-
ment, zinc deficiency impairs the function of Zic (Zinc finger proteins of the cerebellum)
genes [70], which are essential for cerebellar development [70–72]. Zinc supranutrition
(the supplementation of more than the normal requirement but less than the maximum
tolerable limit) has shown the potential to enhance the cognitive ability of offspring in
rats by increasing the expression of the signal transducer and activator of transcription
3 (STAT3) and matrix metalloproteinase-2/9 (MMP-2/9) [69]. STAT3-MMP-2/9 activity
promotes the invasion and migration of placental trophoblast cells and improves neural
function [69,73]. In heart development, zinc deficiency alters the distribution of human
natural killer-1 (HNK-1) cells and connexin 43 (Cx43) in the myocardium, contributing to
the development of cardiovascular anomalies [74,75].

Like zinc, copper deficiency and supranutrition are associated with oxidative distress
and neural degenerative disorders [76,77]. It has also been observed that both copper
deficiency and the improper absorption of copper from the rumen in cattle can lead to
such conditions. This can be due to the accessibility of molybdenum and sulfur, resulting
in the formation of thiomolybdates, which can bind with copper in the rumen leading
to inappropriate copper availability [78]. Copper deficiency leads to the suppression of
the activity of a cuproenzyme, cytochrome-c oxidase, in the red nucleus region associ-
ated with large motor neurons, causing enzootic ataxia or swayback in lambs [79,80]. In
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addition, supranutritional levels of of copper, along with zinc, cobalt, and manganese,
enhance the expression of metallothionein 1A (MT1A) in the dam and Cu-Zn superoxide
dismutase (CU/Zn SOD) in developing offspring of cattle [77]. The MT1A is the major
transporter of metal ions and CU/Zn SOD is involved in the regulation of oxidative stress
and neurodegenerative disorder [77,81].

Selenium has biological functions via selenoproteins [28,82]. A maternal Se supplemen-
tation has effects on reproduction and developmental outcomes, which may be mediated by
epigenetic events [28,83]. Selenium deficiency decreases the expression of selenoproteins,
such as glutathione peroxidases, including GPx1, GPx2, GPx4, and SELENOP, including
Selenoprotein-P, leading to alterations in embryonic development, oxidative stress mech-
anisms, reproductive development, and male fertility, respectively [84,85]. Maternal Se
deficiency is associated with pancreatic atrophy in the developing fetus [86]. Moreover,
maternal Se deficiency causes an elevation in the selenoenzyme type II deiodinase (Dio2),
which reduces thyroxine production (Figure 3). On the other hand, supranutritional Se
enhances thyroxine levels and impairs the growth hormone, insulin-like growth factor
(GH-IGF) system [87,88]. The GH-IGF system impairment causes glucose intolerance and
hypo-insulinemia in the fetus [86].
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impacts the expression of selenoproteins, i.e., SEPP1 and Dio2 in dam’s liver [89]. SEPP1 will be transported to fetus by ApoER2, and Dio2 will affect thyroxines
interconversion across fetal–maternal tissues [85,89–92]. SEPSECS, (Sep (O-Phosphoserine) TRNA:Sec (Selenocysteine) TRNA Synthase); SBP2, selenocysteine
binding protein 2; SEPP1, Selenoprotein-P; Dio2, TypeII Deiodinase; ApoER2, Apolipoprotein E Receptor-2; Dio3, TypeIII Deiodinase; T3, Triiodothyronine-3;
T4, Thyroxine-4.
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In cattle, primary and secondary myogenesis during the early fetal period start at days
47 and 119, respectively, and establish the lifetime potential for muscle development (see
Figure 1) [56,93,94]. This is why there is no net increase in the number of muscle fibers after
birth. Myogenesis requires the binding of active thyroid hormones to its receptors [95,96],
especially thyroid receptor α, which is predominantly expressed in skeletal muscle [97]
and is involved in promoting angiogenesis [98,99]. The deficiency of selenium, zinc, and
iron can cause the impairment of thyroid hormone synthesis and action [100] by decreasing
the expression of glutathione peroxidase (a selenoprotein) [101], 1,5′-deiodinase [102],
and thyroperoxidase [103], respectively. Iron deficiency causes iron deficiency anemia,
which reduces the activity of thyroid peroxidase (a Fe-dependent enzyme), leading to the
repression of thyroid hormone synthesis and myogenesis [104].

Fetal skeletal development and bone mineralization are affected by maternal mineral
status. Severe hypocalcemia, hypophosphatemia [105,106], and hypomagnesemia [107,108]
are associated with reduced levels of parathyroid hormone (PTH) (Figure 4). Normally,
PTH acts on PTH receptor 1 (PTHR1) of the kidney, which activates cyclic adenosine
monophosphate (cAMP)-associated pathways and requires Mg+2 as a cofactor [109,110]
for calcitriol (1,25(OH)D) and vitamin D production. However, a decrease in PTH leads to
vitamin D deficiency [111], which ultimately affects bone formation and mineralization in
the developing fetus [107]. Both hypo- and hypercalcemic dams were associated with the
upregulation of fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN), and acetyl
coenzyme A carboxylase 1 (ACC1) in the adipose tissue and liver of the offspring, leading
to dyslipidemia and bone demineralization to maintain the serum level of calcium in the
offspring [112].
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Figure 4. Proposed mechanism of feto-maternal transport of Ca, P, Mg, and iodine and
their roles in regulating molecular mechanism of parathyroid hormone (PTH) and calcitriol
(1,25-dihydroxycholecalciferol, 1,25(OH)2D) in cattle. Maternal Ca+2 concentration causes a change
in the expression of PTHrP in placenta and mammary tissue along with the expression of CaSR in
placenta [105,111,113]. PTH is regulated by CaSR in the fetus and maternal PTHrP binds to PTHR1 in
the kidney and activates the cAMP-associated conversion of calcitriol (1,25(OH)D), in which Mg+2

will be used as a cofactor [109–111]. CaSR, calcium sensing receptor; PTHrP, parathyroid hormone
related proteins; PTHR1, parathyroid hormone 1 receptor; cAMP, cyclic adenosine monophosphate;
PKA, phosphokinase activated; CREB, cAMP response element-binding protein; calcitriol, 1,25(OH)D.

3. The Roles of Minerals in Fetal Genome Regulation

Epigenomic regulation in the fetus is affected by the insufficiency of maternal nutri-
ents, including minerals. In a recent study in cattle, the authors reported that essential
micronutrient supplementation and the dietary plane of nutrition (as assessed by the rate
of bodyweight gain) during early gestation can affect the neonatal immune response and
the availability of mineral reserves for postnatal development [114,115]. In addition, the
expression of genes associated with cholesterol synthesis, ion homeostasis, and nutrient
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transport was altered in the developing placenta [116,117]. To explain the epigenomic
regulation of these pathways based on maternal mineral homeostasis and their effects on
fetal programming, different studies have been conducted in model organisms (see Table 2).

Table 2. Maternal mineral nutrition associated with epigenomic regulation of the developing fetus.

Mineral Model Epigenome Regulation Organ Effect Reference

Ca Rat

Hypomethylation of CpG
dinucleotide in promotor of

hydroxysteroid 11-beta
dehydrogenase 1 (Hsd11b1)

Liver Induction of insulin
resistance in adult life [118]

Mg Rat
(Mg deficient model)

Hypermethylation of CpG
dinucleotide in promotor of

11β-hydroxysteroid
dehydrogenase-2 (Hsd11b2)

Liver
Alters neonatal hepatic

glucocorticoid
metabolism

[119]

Fe Rat
(Fe deficient model)

Hypomethylation at CpG site
and reduction in histone H4
acetylation in promoter of

brain-derived neurotrophic
factor (BDNF)

Brain (hippocampus)

Crucial for regulation of
hippocampal plasticity

and development of
neural circuit

[120]

Fe Rat
(Fe deficient model)

Hypermethylation in 63 genes
and hypomethylation

in 45 genes
Brain (hippocampus)

Neural function
dysregulation and

alterations in cell-to-cell
signal transduction

[121]

Fe Domestic pig
(Fe deficient model)

Twelve differentially
methylated cytosines regulating

nine differentially expressed
genes were identified

Brain (hippocampus)

Associated genes were
found to be involved in

angiogenesis and
neurodevelopment

[122]

Zn Mouse
(Zn deficient model)

Elevated expression of
metallothionine-2 (MT2) mRNA

response to histone
modifications in

metal-responsive elements
associated with the promotor

region of MT2

Liver

Epigenetic memory of
zinc deficiency in early

development may persist
to adulthood, impacting
availability of essential

trace minerals

[123]

Se Rainbow trout
(Se deficient model)

Selenium availability affected
the differentially methylated
cytosines of more than 6500

differentially methylated genes

Liver

The 6500 differentially
methylated genes were
found to be associated

with immune
modulations and
neural signaling

[124]

Cu Humans

Copper levels positively
coincided with DNA

methylation at CpG island and
transcription site of Zinc Finger

Protein 197 (ZNF197)

Placenta

Can alter placentation
and growth in postnatal
life by impairing growth

hormone secretion

[125]

The transcriptomics of the developing fetus can be regulated either by changing the
methylation pattern of specific DNA regions or by repressing mRNA expression based on
the adequacy of maternal mineral nutrition. For example, Zn is transported in the blood by
forming a complex with metallothionein-2 (MT2) [126]. In a mouse model, Zn deficiency
was associated with a polymorphism in MT2 at rs1610216 (MT2A–209A/G) along with
histone modification and hypermethylation of a metal-responsive element (MRE) in the
promotor region of MT2 [123], and similar changes are seen in human [127]. Furthermore,
the mRNA expression of zinc transporter 1 (ZnT1) in a zebrafish model [128], as well as
zinc importing protein (ZIP14) in a rat model [75], and divalent metal transporter 1 (DMT1)
in human cell lines [129] is associated with the availability of zinc. The impairment of the
expression of these genes affects zinc availability to the developing fetus and, subsequently,
organogenesis [66,67].
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Selenium deficiency affects the expression of selenoenzymes such as GPx1, GPx2,
and GPx4 and selenoproteins (i.e., Selenoproteins-P, SELENOP), which are involved in
not only fetal reproductive development and the regulation of oxidative stress [84,85] but
also the overall DNA methylation pattern. Selenium availability affects the concentration
of S-adenosyl homocysteine (a potential inhibitor of DNA methyltransferases) and the
availability of S-adenosyl methionine (the methyl-donor for all methylation reactions) in the
methionine–homocysteine cycle [130–133]. In a rainbow trout model, selenium availability
affected the differentially methylated cytosines of more than 6500 differentially methylated
genes associated with immune modulations and neural signaling [124].

Like zinc and selenium deficiency, maternal iron deficiency in pregnancy is critical as
it can permanently affect brain development [120,121]. Iron deficiency is associated with
histone modification and DNA methylation at the brain-derived neurotrophic factor IV
(BDNF-IV) promotor region in the hippocampus of the developing fetus, which affects
cognitive response and hippocampal plasticity, as observed in a rat model [120]. Addition-
ally, iron deficiency causes a reduction in the expression of DMT1 (a major transporter)
in rats, which leads to impaired manganese availability to the developing fetus [134,135].
Copper deficiency can also impair DMT1 expression and affect the availability of iron
and manganese to the fetus [136] (Figure 5). In a study of copper availability and DNA
methylation changes in fetuses during pregnancy in humans, the most robust negatively
associated, differentially methylated region was found in a zinc-finger gene, ZNF197, which
was correlated with birth weight [125].
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Figure 5. Proposed mechanism of fetomaternal transport of Fe, Mn, Zn, and Cu in cattle. Iron or
manganese can form complexes with transferrin and bind to TfR1 in the placenta, which transports Fe
or Mn to the fetus [135,137]. Cu and Zn are also transported by placental transporters CTR1 or Cu-Zn
SOD [77,81,138,139] and ZIP14 [75], respectively. All these mentioned minerals are in the divalent
form and, in the fetus, are transported via DMT1 [129,134–136]. ZnT1, zinc transporter 1; MT1A,
metallothionine-1A; ZIP14, zinc-importing protein; DMT1, divalent metal transporter 1; CTR1, copper
transporter protein 1; Cu-Zn SOD, copper zinc superoxide dismutase; ATOX1, antioxidant 1 copper
chaperone; ATP7A, ATPase copper-transporting alpha; TfR1, transferrin 1 receptor.

In terms of macrominerals, maternal magnesium deficiency and calcium deficiency
affect the methylation of CpG island regions of hydroxysteroid 11-beta dehydrogenase
2 (Hsd11b2) [119] and hydroxysteroid 11-beta dehydrogenase 1 (Hsd11b1) [118], respectively,
leading to the impairment of glucocorticoid metabolism in the developing fetus. The hepatic
glucocorticoid concentration was altered in rats [119], which affects the GH-IGF system,
leading to a reduction in postnatal skeletal development and myogenesis [95,96]. Due to
sex-specific modifications, however, the effects of insulin resistance were minimal in later
F2 and F3 generations, although insulin production was still dysregulated [140,141].
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4. Feto-Maternal Crosstalk

After attachment/implantation, fetomaternal crosstalk and the transport of nutrients
(including minerals) are completely dependent on the placenta. Before placental vascu-
larization is completed (the first 50 d of gestation in cattle), histotrophic nutrition (via
uterine secretions) is the main source of nutrients to the fetus [21]. However, after placental
circulation is established, hemotrophic nutrition is the primary pathway involved in the
transfer of nutrients to the fetus. In ruminants, chorionic development begins at about day
20 of pregnancy, and placental development along with the interdigitation of fetomaternal
villi completes at day 50 [46]. The establishment of pregnancy requires minerals and is es-
pecially associated with membrane potential as regulated by estrogen, K+, and Ca+2 [61,62].
In ewes, Ca+2 and Na+ levels increase in histotroph on post-fertilization from days 13 to 16,
suggesting their role in placental development and implantation [142]. During pregnancy,
estrogen binds to the SP1 site in the promotor of the KCNMB1 gene, which causes upregu-
lation in the expression of BKCa [61]. The opening of BKCa channels results in the efflux
of K+ and the sarcoplasmic release of Ca+2 to further enhance KCNMB1 expression and
BKCa channels [59], which causes the pregnancy-induced relaxation of uterine vascular
smooth muscle. This hypothesis was further strengthened in cattle models by one recent
study in which sarcoplasmic reticulum Ca+2-ATPase 3 (ATP2A3) and ATPase subunit beta-1
(ATP1B1) were found to be upregulated in caruncles of the mineral-supplemented group
compared to the non-supplemented one, indicating the intracellular sarcoplasmic Ca+2

release through these ATPase pumps [116].
The placental transport of other micro- and macrominerals is required for fetal de-

velopmental programming. Zinc is maternally transported by ZnT1 in the form of the
Zn-MT complex [126] and binds to ZIP14 in placental trophoblast. It is further transported
to the fetus by ZnT2 and DMT1 [126] (Figure 5). When zinc and copper supplementa-
tion and cobalt and manganese in beef cattle were examined together, MT1A expression
was found upregulated in the dams and Cu/Zn SOD levels were upregulated in their
successive offerings [77]. This explains the maternal pathway for zinc transport, but the
transport mechanism of zinc in the fetus still needs validation in the cattle model. The
cattle model study, however, recently showed evidence supporting fetal transport. It was
found that the metallothionein coding genes MT1A, MT2A, and MT1E are upregulated,
while ZnT10 is differentially expressed in mineral-supplemented fetal groups compared to
non-supplemented groups [117].

Selenium and iodine deficiency can impair fetal development by influencing the
GH-IGF system [87,91]. In the maternal liver, selenium in the presence of selenophos-
phate synthetase and SEPSECS (Sep [O-Phosphoserine]) TRNA:Sec ([Selenocysteine TRNA
Synthase]) is converted into selenophosphate and selenocyctenyl tRNA, respectively. Se-
lenocyctenyl tRNA in the presence of SBP (selenocysteine binding protein 2) produces
selenoproteins, such as SELENOP, and deiodinases [89]. SELENOP binds to ApoER2
(Apolipoprotein E Receptor-2) in the placental trophoblast and is transported to the fe-
tus [85,90]. The production of Dio2 converts the Thyroxine-4 (T4) to active triiodothyronine
(T3) [89]. T3 and T4 are produced in the fetal thyroid gland by thyroglobulin produced from
iodine and tyrosine [91]. Free T3 increases the expression of Dio3 in placental trophoblast,
which will convert T3 back to inactive T4 in the fetus. This mechanism is associated with
low active T3 in the fetus and, thus, prevents fetal hyperthyroidism [92] (Figure 3). The
proposed mechanism of selenium feto-maternal transport based on lab animal data was
not validated in a lamb model, and no changes in fetal T3:T4 were identified when ewes
were supplemented with selenium [88]. This puts a question mark on the role of Dio3 in
the interconversion of T3 to T4 in fetuses, indicating the current lack of understanding
regarding fetal selenium transport.

Placental transporters are regulated by minerals, including manganese, iron, and
copper, as shown in Figure 5. Manganese or iron in blood serum forms a complex with
transferrin (Tf ) proteins. This complex interacts with the transferrin 1 receptor (TfR1)
at the placental microvillous membrane and is endocytosed in vesicle form [135,137].
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This proposed pathway of the manganese/iron-Tf complex binding to TfR1 for vesicular
endocytosis was also supported in a recent cattle model study, in which TfR1 was differen-
tially expressed in the minerals-supplemented group compared to the non-supplemented
group [117]. The acidification of these vesicles causes the release of either manganese or
iron, which is further transported to the fetus by DMT1 [135,137,139,143,144]. The fetal
uptake of Cu is performed by the binding of Cu+2 from maternal plasma to a high-affinity
copper transporter protein 1, CTR1, at the placental trophoblast [145]. The transfer of Cu
from CTR1 to a chaperon protein, ATOX1, is associated with the transport to either the
fetus by the ATPase ATP7A or back to the dam and then the maternal liver by the ATPase
ATP7B [138,139]. Copper supplementation data in a cattle model have shown that, rather
than CTR1, MTIA and Cu/Zn SOD can be the maternal and fetal transporters of copper,
respectively [77,146], emphasizing the need for further research on copper deficiency in a
cattle model.

The transport and regulation of some macrominerals such as magnesium, calcium,
and phosphorous are interlinked and are affected by the availability of each in the maternal
diet (Figure 4). Calcium from blood plasma interacts with the calcium-sensing receptor
(CaSR) at the placenta and increases the expression of placental parathyroid hormone-
related proteins (PTHrP) and the release of parathyroid hormone (PTH) from the fetal
parathyroid gland [105,113]. PTHrP expression increases in the maternal mammary tissues
of humans; thus, both calcium-associated mechanisms run parallel in the fetal and maternal
systems [111]. Both PTH and PTHrP from the fetus and PTHrP from the dam act on PTH re-
ceptor 1 (PTHR1) of the kidney both in the fetus and dam, which activates cyclic adenosine
monophosphate (cAMP)-associated pathways and requires Mg+2 as a cofactor [109,110].
The cAMP-associated pathways increase the expression of 25(OH)D(3)-1-α hydroxylase,
which then increases calcitriol production from 25(OH)D3, resulting in calcium and phos-
phorous absorption from the intestine [110,111]. Based on these mechanisms, the deficiency
of any of these minerals—magnesium, calcium, or phosphorous—will affect the availability
of each other and, ultimately, affect bone mineralization and development in the fetal and
maternal systems.

5. Final Considerations

The potential regulatory roles of maternal mineral intake in developmental program-
ming, from conception to birth, indicate that the excess or deficiency of minerals can lead
to pre- and postnatal metabolic disorders and growth abnormalities [147]. The limitation of
the studies we have cited is that most are based primarily on laboratory animal models.
Although there is a need to validate these observations more extensively and in other
species, basic epigenomic regulation involves similar patterns in most species, and, as
such, similar responses are expected in cattle and other livestock models [148–150]. Recent
studies using cattle as experimental models [18,19,114–116] have provided evidence that
maternal nutrition during early pregnancy affects the deposition of minerals for postnatal
development, metal ion homeostasis, growth regulatory pathways (e.g., the GH-IGF and
thyroid hormone pathways), and, in particular, the overall metabolomics of the devel-
oping fetus. Based on animal models, and despite the limited evidence from livestock
models [116,117], we believe that the proposed mechanisms are very likely to be valid but
still need to be examined in livestock models of mineral deficiency or excess. Moreover,
the literature concerning sheep [88] and cattle [77,146] models still brings into question the
accepted pathways of feto-maternal transport, especially for selenium, zinc, and copper.

Another major limitation is that the available data are mostly based on mRNA, which
is insufficient to make conclusions about epigenomic regulation and its role in fetal pro-
gramming. In this review, we have presented some key genomic/molecular regulatory
pathways involved in the effects of minerals on the epigenetic regulation of fetal and pla-
cental development. However, much more information and a much better understanding
of the alterations in gene expression and their association with epigenetic signals (i.e.,
non-coding RNAs, histone modifications, and DNA methylation patterns) are needed in
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other species models. Recent reviews have done a good job explaining the role of epigenetic
signals in the effects of maternal and paternal stressors on the developing embryo and
fetus [34,151]. The effects of these stressors, however, across the offspring’s lifetime and
across subsequent generations warrant further investigation. In addition, many of the
mineral deficiencies regulate the GH-IGF and thyroid hormone systems; however, the
compensatory adaptations of subsequent generations to maternal and postnatal stressors
in terms of epigenetic signal inheritance need to be explored further [140].

Future studies are needed to address these abovementioned limitations in the avail-
able data to gain a better understanding of maternal mineral nutrition and its role in
the epigenetic regulation of the developing fetus and offspring. Furthermore, we also
need to identify efficient ways to correlate the epigenomic signaling data (i.e., the DNA
methylation pattern, histone modifications, or non-coding RNAs) with genomic regulation,
so that we can effectively translate the effects of maternal nutrition and other prenatal
stressors across generations by delineating the cascade of minerals and mineral transporters
involved in feto-maternal crosstalk. However, based on the available literature from animal
models (including livestock species), humans, and cell lines, we have discussed our current
understanding of the genomic regulatory roles of the following:

• Calcium in dyslipidemia and insulin resistance;
• Zinc in neural, cardiac, and general organ development and trace mineral transport;
• Selenium in reproductive function, the regulation of the GH-IGF system, and the

thyroid hormone system;
• Magnesium in glucocorticoid metabolism;
• Copper in oxidative stress, the regulation of the GH-IGF system, and placental

development;
• Calcium and potassium in the establishment of pregnancy and the regulation of

placental vascular tone;
• Selenium and iron in growth hormone metabolism and myogenesis;
• Magnesium, calcium, and phosphorous in skeletal development and parathyroid

hormone and vitamin D metabolism.
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