An Exploratory Study of the Metabolite Profiling from Pesticides Exposed Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Sample Collection
2.2. Ethical Aspects of Research
2.3. Standards and Reagents
2.4. Sample Preparation
2.4.1. Plasma Preparation
2.4.2. Urine Preparation
2.5. Analytical System
2.6. Detection and Identification of Non-Target Metabolites
2.7. Statistical Analysis
3. Results and Discussion
3.1. Population Characteristics
3.2. Identification of Plasma Metabolic Profile of Individuals Occupationally Exposed to Pesticides
3.3. Analysis of Metabolic Pathways Affected by Exposure to Pesticides Based on Plasma Metabolomics Results by UPLC-QTOF-MS
3.3.1. Metabolism of Glycerophospholipids and Linoleic Acid
3.3.2. Phenylalanine/Tyrosine Biosynthesis and Glutamine Metabolism
3.3.3. Ubiquinone Biosynthesis
3.4. Identification of Urinary Metabolic Profile of Individuals Occupationally Exposed to Pesticides
3.5. Analysis of Metabolic Pathways Affected by Exposure to Pesticides Based on Urine Metabolomics Results by UPLC-QTOF-MS
3.5.1. Glycosylphosphatidylinositol-Anchor Biosynthesis
3.5.2. Histidine Metabolism
3.5.3. Purine Metabolism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, A.; Ahmad, M. Deciphering the toxic effects of organochlorine pesticide, dicofol on human RBCs and lymphocytes. Pestic. Biochem. Physiol. 2017, 143, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Bolognesi, C.; Creus, A.; Ostrosky-Wegman, P.; Marcos, R. Micronuclei and pesticide exposure. Mutagenesis 2011, 26, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, F.F. Um Alerta Sobre os Impactos dos Agrotóxicos na Saúde; Dossiê ABRASCO; Escola Politécnica de Saúde Joaquim Venâncio: Rio de Janeiro, Brazil, 2015. [Google Scholar]
- Kvitko, K.; Bandinelli, E.; Henriques, J.A.P.; Heuser, V.D.; Rohr, P.; Silva, F.R.; Schneider, N.B.; Fernandes, S.; Ancines, C.; Silva, J. Susceptibility to DNA damage in workers occupationally exposed to pesticides, to tannery chemicals and to coal dust during mining. Genet. Mol. Biol. 2012, 35, 1060–1068. [Google Scholar] [CrossRef]
- Silva, C.; Perestrelo, R.; Silva, P.; Tomás, H.; Câmara, J.S. Breast Cancer Metabolomics: From Analytical Platforms to Multivariate Data Analysis: A Review. Metabolites 2019, 9, 102. [Google Scholar] [CrossRef]
- Stefely, J.A.; Pagliarini, D.J. Biochemistry of Mitochondrial Coenzyme Q Biosynthesis. Trends Biochem. Sci. 2017, 42, 824–843. [Google Scholar] [CrossRef] [PubMed]
- Amorim, L.C.A. Biomarkers for evaluating exposure to chemical agents present in the environment. Rev. Bras. Epidemiol. 2003, 6, 158–170. [Google Scholar] [CrossRef]
- Arbo, M.D.; Garcia, S.C.; Sarpa, M.; Da Silva Junior, F.M.R.; Nascimento, S.N.; Garcia, A.L.H.; Da Silva, J. Brazilian workers occupationally exposed to different toxic agents: A systematic review on DNA damage. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022, 879–880, 503519. [Google Scholar] [CrossRef]
- Secretaria Especial de Previdência e Trabalho. Norma Regulamentadora 7 (NR7)—Programa de Controle Médico de Saúde Ocupacional. Aprovada e Atualizada pela Portaria Nº 6.734, de 09 de março de 2020. Available online: https://www.gov.br/trabalho-e-previdencia/pt-br/acesso-a-informacao/participacao-social/conselhos-e-orgaos-colegiados/ctpp/arquivos/normas-regulamentadoras/nr-07-atualizada-2022-1.pdf (accessed on 23 June 2022).
- Dalmolin, S.P.; Dreon, D.B.; Thiesen, F.V.; Dallegrave, E. Biomarkers of occupational exposure to pesticides: Systematic review of insecticides. Environ. Toxicol. Pharmacol. 2020, 75, 103304. [Google Scholar] [CrossRef]
- Canuto, G.A.B.; Costa, J.L.; Cruz, P.L.R.; Souza, A.R.L.; Faccio, A.T.; Klassen, A.; Rodrigues, K.T.; Tavares, M.F.M. Metabolômica: Definições, estado-da-arte e aplicações representativas. Química Nova 2018, 41, 75–91. [Google Scholar] [CrossRef]
- Dudka, I.; Kossowska, B.; Senhadri, H.; Latajka, R.; Hajek, J.; Andrzejak, R.; Antonowicz-Juchniewicz, J.; Gancarz, R. Metabonomic analysis of serum of workers occupationally exposed to arsenic, cadmium and lead for biomarker research: A preliminary study. Environ. Int. 2014, 68, 71–81. [Google Scholar] [CrossRef]
- Mendes, M.P.R.; Paiva, M.J.N.; Costa-Amaral, I.C.; Carvalho, L.V.B.; Figueiredo, V.O.; Gonçalves, E.S.; Larentis, A.L.; André, L.C. Metabolomic Study of Urine from Workers Exposed to Low Concentrations of Benzene by UHPLC-ESI-QToF-MS Reveals Potential Biomarkers Associated with Oxidative Stress and Genotoxicity. Metabolites 2022, 12, 978. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.; Sanchez, C.L.; Brammer-Robbins, E.; Pena-Delgado, C.; Kroyter, N.; El Ahmadie, N.; Watkins, J.M.; Aristizabal-Henao, J.J.; Bowden, J.A.; Souders, C.L., 2nd; et al. Neurotoxicity assessment of QoI strobilurin fungicides azoxystrobin and trifloxystrobin in human SH-SY5Y neuroblastoma cells: Insights from lipidomics and mitochondrial bioenergetics. NeuroToxicology 2022, 91, 290–304. [Google Scholar] [CrossRef] [PubMed]
- Bujak, R.; Struck-Lewicka, W.; Markuszewski, M.J.; Kaliszan, R. Metabolomics for laboratory diagnostics. J. Pharm. Biomed. Anal. 2015, 113, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Gangola, S.; Bhatt, P.; Kumar, A.J.; Bhandari, G.; Joshi, S.; Punetha, A.; Bhatt, K.; Rene, E.R. Biotechnological tools to elucidate the mechanism of pesticide degradation in the environment. Chemosphere 2022, 296, 133916. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tian, Y.; Jiang, P.; Lin, Y.; Liu, X.; Yang, H. Recent advances in the application of metabolomics for food safety control and food quality analyses. Crit. Rev. Food Sci. Nutr. 2020, 61, 1448–1469. [Google Scholar] [CrossRef]
- Pérez-Navarro, J.; Da Ros, A.; Masuero, D.; Izquierdo-Cañas, P.M.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S.; Mattivi, F.; Vrhovsek, U. LC-MS/MS analysis of free fatty acid composition and other lipids in skins and seeds of Vitis vinifera grape cultivars. Food Res. Int. 2019, 125, 108556. [Google Scholar] [CrossRef]
- Sanchez, C.L.; Souders, C.L., 2nd; Pena-Delgado, C.J.; Nguyen, K.T.; Kroyter, N.; Ahmadie, N.E.; Aristizabal-Henao, J.J.; Bowden, J.A.; Martyniuk, C.J. Neurotoxicity assessment of triazole fungicides on mitochondrial oxidative respiration and lipids in differentiated human SH-SY5Y neuroblastoma cells. NeuroToxicology 2020, 80, 76–86. [Google Scholar] [CrossRef]
- Szewczyk, R.; Różalska, S.; Mironenka, J.; Bernat, P. Atrazine biodegradation by mycoinsecticide Metarhizium robertsii: Insights into its amino acids and lipids profile. J. Environ. Manag. 2020, 262, 110304. [Google Scholar] [CrossRef]
- Abdelnur, P.V. Metabolômica e Espectrometria de Massas; Circular Técnica; Embrapa Agroenergia: Brasília, Brazil, 2011. [Google Scholar]
- García-Sevillano, M.A.; García-Barrera, T.; Navarro, F.; Abril, N.; Pueyo, C. Combination of Direct Infusion Mass Spectrometry and Gas Chromatography Mass Spectrometry for Toxicometabolomic Study of Red Blood Cells and Serum of Mice Mus Musculus after Mercury Exposure. J. Chromatogr. B 2015, 985, 75–84. [Google Scholar] [CrossRef]
- Zhong, Z.; Huang, Y.; Huang, Q.; Zheng, S.; Huang, Z.; Deng, W.; Li, T. Serum metabolic profiling analysis of gout patients based on UPLC-Q-TOF/MS. Clin. Chim. Acta 2021, 515, 52–60. [Google Scholar] [CrossRef]
- BRUKER Daltonik GMBH. T-ReX LC-QTOF Solution Tutorial—Metabolite Identification Using Spectral Libraries in MetaboScape; BRUKER Daltonik GMBH: Billerica, MA, USA, 2018. [Google Scholar]
- Hou, Y.; Cao, C.; Bao, W.; Yang, S.; Shi, H.; Hao, D. The plasma metabolic profiling of chronic acephate exposure in rats via an ultra-performance liquid chromatography-mass spectrometry based metabonomic method. Mol. Biosyst. 2015, 11, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Araújo, A.M.; Carvalho, F.; Guedes de Pinho, P.; Carvalho, M. Toxicometabolomics: Small Molecules to Answer Big Toxicological Questions. Metabolites 2021, 11, 692. [Google Scholar] [CrossRef] [PubMed]
- Godzien, J.; Ciborowski, M.; Angulo, S.; Barbas, C. From numbers to a biological sense: How the strategy chosen for metabolomics data treatment may affect final results. A practical example based on urine fingerprints obtained by LC-MS. Electrophoresis 2013, 34, 2812–2826. [Google Scholar] [CrossRef]
- Hoo, Z.H.; Candlish, J.; Teare, D. What is an ROC curve? Emerg. Med. J. 2017, 34, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.; Zhu, W.; Wang, D.; Qi, S.; Wang, Y.; Yan, J.; Dong, K.; Zheng, M.; Wang, C. Metabolomics and transcriptomics reveal the toxicity of difenoconazole to the early life stages of zebrafish (Danio rerio). Aquat. Toxicol. 2018, 194, 112–120. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, C.; Wang, L.; Wang, X.; He, H.; Wu, S.; Zhao, X. Insights into the combined effects of environmental concentration of difenoconazole and tebuconazole on zebrafish early life stage. Sci. Total Environ. 2022, 830, 154687. [Google Scholar] [CrossRef]
- Van Meter, R.J.; Glinski, D.A.; Purucker, S.T.; Henderson, W.M. Influence of exposure to pesticide mixtures on the metabolomic profile in post-metamorphic green frogs (Lithobates clamitans). Sci. Total Environ. 2018, 624, 1348–1359. [Google Scholar] [CrossRef]
- Wang, Y.; Teng, M.; Wang, D.; Yan, J.; Miao, J.; Zhou, Z.; Zhu, W. Enantioselective bioaccumulation following exposure of adult zebrafish (Danio rerio) to epoxiconazole and its effects on metabolomic profile as well as genes expression. Environ. Pollut. 2017, 229, 264–271. [Google Scholar] [CrossRef]
- Weng, Y.; Huang, Z.; Wu, A.; Yu, Q.; Lu, H.; Lou, Z.; Lu, L.; Bao, Z.; Jin, Y. Embryonic toxicity of epoxiconazole exposure to the early life stage of zebrafish. Sci. Total Environ. 2021, 778, 146407. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, M.; Tang, J.; Ma, S.; Yu, Y. Derivatization gas chromatography negative chemical ionization mass spectrometry for the analysis of trace organic pollutants and their metabolites in human biological samples. Anal. Bioanal. Chem. 2020, 25, 6679–6690. [Google Scholar] [CrossRef]
- Christie, W.W. Prostanoids: Prostaglandins, Prostacyclins and Thromboxanes. The Lipidweb. 2022. Available online: https://www.lipidmaps.org/resources/lipidweb/lipidweb.html/lipids/fa-eic/eicprost/index.htm (accessed on 26 November 2022).
- Javaid, S.; Farooq, T.; Rehman, Z.; Afzal, A.; Ashraf, W.; Rasool, M.F.; Alqahtani, F.; Alsanea, S.; Alasmari, F.; Alanazi, M.M.; et al. Dynamics of Choline-Containing Phospholipids in Traumatic Brain Injury and Associated Comorbidities. Int. J. Mol. Sci. 2021, 22, 11313. [Google Scholar] [CrossRef]
- Roy, P.; Tomassoni, D.; Nittari, G.; Traini, E.; Amenta, F. Effects of choline containing phospholipids on the neurovascular unit: A review. Front. Cell. Neurosci. 2022, 16, 479. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qiu, J.; Xu, Y.; Liao, G.; Jia, Q.; Pan, Y.; Wang, T.; Qian, Y. Integrated non-targeted lipidomics and metabolomics analyses for fluctuations of neonicotinoids imidacloprid and acetamiprid on Neuro-2a cells. Environ. Pollut. 2021, 284, 117327. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.A.; Almeida, V.V.; Ruiz, M.R.; Visentainer, J.E.L. Omega-3 and omega-6 polyunsaturated fatty acids: Importance and occurrence in foods. Rev. Nutr. 2006, 19, 761–770. [Google Scholar] [CrossRef]
- Mbiydzenyuy, N.E.; Ninsiima, H.I.; Valladares, M.B.; Pieme, C.A. Zinc and linoleic acid pre-treatment attenuates biochemical and histological changes in the midbrain of rats with rotenone-induced Parkinsonism. BMC Neurosci. 2018, 19, 29. [Google Scholar] [CrossRef]
- Yan, S.; Meng, Z.; Tian, S.; Teng, M.; Yan, J.; Jia, M.; Li, R.; Zhou, Z.; Zhu, W. Neonicotinoid insecticides exposure cause amino acid metabolism disorders, lipid accumulation and oxidative stress in ICR mice. Chemosphere 2020, 246, 125661. [Google Scholar] [CrossRef]
- Pabst, T.; Kortz, L.; Fiedler, G.M.; Ceglarek, U.; Idle, J.R.; Beyoğlu, D. The plasma lipidome in acute myeloid leukemia at diagnosis in relation to clinical disease features. BBA Clin. 2017, 7, 105–114. [Google Scholar] [CrossRef]
- Tyurina, Y.Y.; Polimova, A.M.; Maciel, E.; Tyurin, V.A.; Kapralova, V.I.; Winnica, D.E.; Vikulina, A.S.; Domingues, M.R.; McCoy, J.; Sanders, L.H.; et al. LC/MS analysis of cardiolipins in substantia nigra and plasma of rotenone-treated rats: Implication for mitochondrial dysfunction in Parkinson’s disease. Free. Radic. Res. 2015, 49, 681–691. [Google Scholar] [CrossRef]
- Birch, M.R.; Johansen, M.; Skakkebæk, N.; Andersson, A.M.; Rehfeld, A. In vitro investigation of endocrine disrupting effects of pesticides on Ca2+-signaling in human sperm cells through actions on the sperm-specific and steroid-activated CatSper Ca2+-channel. Environ. Int. 2022, 167, 107399. [Google Scholar] [CrossRef]
- Kurz, J.; Parnham, M.J.; Geisslinger, G.; Schiffmann, S. Ceramides as Novel Disease Biomarkers. Trends Mol. Med. 2019, 25, 20–32. [Google Scholar] [CrossRef]
- Robinson, A.J.; Davies, S.; Darley, R.L.; Tonks, A. Reactive Oxygen Species Rewires Metabolic Activity in Acute Myeloid Leukemia. Front. Oncol. 2021, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mato, J.M.; Alonso, C.; Noureddin, M.; Lu, S.C. Biomarkers and subtypes of deranged lipid metabolism in nonalcoholic fatty liver disease. World J. Gastroenterol. 2019, 25, 3009–3020. [Google Scholar] [CrossRef] [PubMed]
- Novais, F.J. Caracterização do Metaboloma Sérico de Bovinos Nelore e Sua Potencial Associação à Eficiência Alimentar. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 2017. [Google Scholar]
- Gao, Z.; Batool, R.; Xie, W.; Huang, X.; Wang, Z. Transcriptome and Metabolome Analysis Reveals the Importance of Amino-Acid Metabolism in Spodoptera Frugiperd Exposed to Spinetoram. Insects 2022, 13, 852. [Google Scholar] [CrossRef]
- Da Silva, A. Síntese e Caracterização de Derivados da L-Fenilalanina e L-Tirosina Alinhada à “Química Verde” e Avaliação da Toxicidade. Bachelor’s Thesis, Universidade Federal de Mato Grosso, Cuiabá, Brazil, 2020. [Google Scholar]
- Rodrigues, J.A.; Narasimhamurthy, R.K.; Joshi, M.B.; Dsouza, H.S.; Mumbrekar, K.D. Pesticides Exposure-Induced Changes in Brain Metabolome: Implications in the Pathogenesis of Neurodegenerative Disorders. Neurotox. Res. 2022, 40, 1539–1552. [Google Scholar] [CrossRef] [PubMed]
- Ch, R.; Singh, A.K.; Pathak, M.K.; Singh, A.; Kesavachandran, C.N.; Bihari, V.; Mudiam, M.K.R. Saliva and urine metabolic profiling reveals altered amino acid and energy metabolism in male farmers exposed to pesticides in Madhya Pradesh State, India. Chemosphere 2019, 226, 636–644. [Google Scholar] [CrossRef]
- Cruzat, V.F.; Petry, E.R.; Tirapegui, P.J. Glutamine: Biochemical, Metabolic, Molecular Aspects and Supplementation. Rev. Bras. Med. Esporte 2009, 15, 5. [Google Scholar] [CrossRef]
- Bonvallot, N.; David, A.; Chalmel, F.; Chevrier, C.; Cordier, S.; Cravedi, J.P.; Zalko, D. Metabolomics as a powerful tool to decipher the biological effects of environmental contaminants in humans. Curr. Opin. Toxicol. 2018, 8, 48–56. [Google Scholar] [CrossRef]
- Cattani, D.; Cesconetto, P.A.; Tavares, M.K.; Parisotto, E.B.; De Oliveira, P.A.; Rieg, C.E.H.; Leite, M.C.; Prediger, R.D.S.; Wendt, N.C.; Razzera, G.; et al. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress. Toxicology 2017, 387, 67–80. [Google Scholar] [CrossRef]
- Payet, L.A.; Leroux, M.; Willison, J.C.; Kihara, A.; Pelosi, L.; Pierrel, F. Mechanistic Details of Early Steps in Coenzyme Q Biosynthesis Pathway in Yeast. Cell Chem. Biol. 2016, 23, 1241–1250. [Google Scholar] [CrossRef]
- Vujić, T.; Schvartz, D.; Iliuk, A.; Sanchez, J.C. Ubiquinone Metabolism and Transcription HIF-1 Targets Pathway Are Toxicity Signature Pathways Present in Extracellular Vesicles of Paraquat-Exposed Human Brain Microvascular Endothelial Cells. Int. J. Mol. Sci. 2021, 22, 5065. [Google Scholar] [CrossRef]
- Park, H.; Seo, S.I.; Lim, J.H.; Song, J.; Seo, J.H.; Kim, P.I. Screening of Carbofuran-Degrading Bacteria Chryseobacterium sp. BSC2-3 and Unveiling the Change in Metabolome during Carbofuran Degradation. Metabolites 2022, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Khodadadi, M.; Pourfarzam, M. A review of strategies for untargeted urinary metabolomic analysis using gas chromatography–mass spectrometry. Metabolomics 2020, 16, 66. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Huang, Y.; Zhan, H.; Bhatt, P.; Chen, S. An Overview of Strobilurin Fungicide Degradation: Current Status and Future Perspective. Front. Microbiol. 2020, 11, 389. [Google Scholar] [CrossRef]
- Hu, W.; Liu, C.W.; Jiménez, J.A.; McCoy, E.S.; Hsiao, Y.C.; Lin, W.; Engel, S.M.; Lu, K.; Zylka, M.J. Detection of Azoxystrobin Fungicide and Metabolite Azoxystrobin-Acid in Pregnant Women and Children, Estimation of Daily Intake, and Evaluation of Placental and Lactational Transfer in Mice. Environ. Health Perspect. 2022, 130, 027013. [Google Scholar] [CrossRef] [PubMed]
- Mesnage, R.; Teixeira, M.; Mandrioli, D.; Falcioni, L.; Ibragim, M.; Ducarmon, Q.R.; Zwittink, R.D.; Amiel, C.; Panoff, J.M.; Bourne, E.; et al. Multi-omics phenotyping of the gut-liver axis reveals metabolic perturbations from a low-dose pesticide mixture in rats. Commun. Biol. 2021, 4, 471. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.; Luetjohann, J.; Hanschen, F.S.; Schreiner, M.; Kuballa, J.; Jantzen, E.; Rohn, S. Identification and characterization of pesticide metabolites in Brassica species by liquid chromatography travelling wave ion mobility quadrupole time-of-flight mass spectrometry (UPLC-TWIMS-QTOF-MS). Food Chem. 2018, 244, 292–303. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Kumar, V.; Datta, S.; Wani, A.B.; Singh, D.; Singh, K.; Singh, J. Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ. Chem. Lett. 2016, 14, 317–329. [Google Scholar] [CrossRef]
- Turrella, T.C. Avaliação da Remoção de Pesticidas em Vinho Branco por Membranas de Microfiltração. Master’s Thesis, Universidade de Caxias do Sul, Caxias do Sul, Brazil, 2020. [Google Scholar]
- Chen, H.; Wang, K.; Ji, W.; Xu, H.; Liu, Y.; Wang, S.; Wang, Z.; Gao, F.; Lin, Z.; Ji, T. Metabolomic analysis of honey bees (Apis mellifera) response to carbendazim based on UPLC-MS. Pestic. Biochem. Physiol. 2021, 179, 104975. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Li, J.; Wang, D.; Bao, Z.; Wang, Q.; Jin, Y. Health risks of chlorothalonil, carbendazim, prochloraz, their binary and ternary mixtures on embryonic and larval zebrafish based on metabolomics analysis. J. Hazard. Mater. 2021, 404, 124240. [Google Scholar] [CrossRef]
- Beihammer, G.; Maresch, D.; Altmann, F.; Strasser, R. Glicosilfosfatidilinositol-Anchor Synthesis in Plants: A Glycobiology Perspective. Frente. Plant Sci. 2020, 11, 611188. [Google Scholar] [CrossRef]
- Swarts, B.M.; Guo, Z. Chemical synthesis of glycosylphosphatidylinositol anchors. Adv. Carbohydr. Chem. Biochem. 2012, 67, 137–219. [Google Scholar] [PubMed]
- Wu, T.; Yin, F.; Guang, S.; He, F.; Yang, L.; Peng, J. The Glycosylphosphatidylinositol biosynthesis pathway in human diseases. Orphanet J. Rare Dis. 2020, 15, 129. [Google Scholar] [CrossRef] [PubMed]
- Gardocki, M.E.; Jani, N.; Lopes, J. Phosphatidylinositol biosynthesis: Biochemistry and regulation. Mol. Cell Biol. Lipids 2005, 1735, 89–100. [Google Scholar] [CrossRef]
- Bernat, P.; Nykiel-Szymańska, J.; Stolarek, P.; Słaba, M.; Szewczyk, R.; Różalska, S. 2,4-dichlorophenoxyacetic acid-induced oxidative stress: Metabolome and membrane modifications in Umbelopsis isabellina, a herbicide degrader. PLoS ONE 2018, 13, e0199677. [Google Scholar] [CrossRef] [PubMed]
- Acuña, I.; Ruiz, A.; Cerdó, T.; Cantarero, S.; López-Moreno, A.; Aguilera, M.; Campoy, C.; Suárez, A. Rapid and simultaneous determination of histidine metabolism intermediates in human and mouse microbiota and biomatrices. BioFactors 2021, 48, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, M.E.; Brosnan, J.T. Histidine Metabolism and Function. J. Nutr. 2020, 150, 2570S–2575S. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, F.; Wang, T.; Xu, J.; Qian, Y. Host Metabolic Disorders Induced by Alterations in Intestinal Flora under Dietary Pesticide Exposure. J. Agric. Food Chem. 2021, 69, 6303–6317. [Google Scholar] [CrossRef]
- Yan, Q.; Paul, K.C.; Walker, D.I.; Furlong, M.A.; Del Rosario, I.; Yu, Y.; Zhang, K.; Cockburn, M.G.; Jones, D.P.; Ritz, B.R. High-Resolution Metabolomic Assessment of Pesticide Exposure in Central Valley, California. Chem. Res. Toxicol. 2021, 34, 1337–1347. [Google Scholar] [CrossRef]
- Malkowski, S.N.; Atilho, R.M.; Greenlee, E.B.; Weinberg, C.E. A rare bacterial RNA motif is implicated in the regulation of the purF gene whose encoded enzyme synthesizes phosphoribosylamine. RNA 2020, 26, 1838–1846. [Google Scholar] [CrossRef]
- Pareek, V.; Pedley, A.M.; Benkovic, S.J. Human de novo purine biosynthesis. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 1–16. [Google Scholar] [CrossRef]
- McCune, J.S.; Storer, B.; Thomas, S.; McKiernan, J.; Gupta, R.; Sandmaier, B.M. Inosine Monophosphate Dehydrogenase Pharmacogenetics in Hematopoietic Cell Transplantation Patients. J. Am. Soc. Blood Marrow Transpl. 2018, 24, 1802–1807. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, D.; Xu, Y.; Ma, L.; Du, M.; Li, P.; Yin, Z.; Xu, H.; Wu, X. Stereoselective toxicity mechanism of neonicotinoid dinotefuran in honeybees: New perspective from a spatial metabolomics study. Sci. Total Environ. 2022, 809, 151116. [Google Scholar] [CrossRef] [PubMed]
- Kislitskaya, V.N.; Kenzhin, Z.D.; Kultanov, B.Z.; Dosmagambetova, R.S.; Turmuhambetova, A.A. Disturbance of Antioxidant Enzymes and Purine Metabolism in the Ejaculate of Men Living in Disadvantaged Areas of Kyzylorda Region. Open Access Maced. J. Med. Sci. 2015, 3, 489–492. [Google Scholar] [CrossRef]
- Lopes, C.V.A.; Albuquerque, G.S.C. Agrochemicals and their impacts on human and environmental health: A systematic review. Rev. Saúde Debate 2018, 42, 518–534. [Google Scholar] [CrossRef]
Variables | Exposed (n = 20) | Control (n = 20) | p-Value |
---|---|---|---|
Age group 2 | n (%) | n (%) | 0.118 |
20 a 30 | 2 (10.0) | 8 (40.0) | |
31 a 40 | 6 (30.0) | 3 (15.0) | |
41 a 55 | 9 (45.0) | 5 (25.0) | |
>55 | 3 (15.0) | 4 (20.0) | |
Scholarity (Years) 1 | 5 (4–8) | 16 (12–20) | 0.223 |
Occupation 2 | <0.001 * | ||
Administrative | 0 (0) | 15 (75) | |
Family agriculture | 14 (70) | 0 (0) | |
Applicator | 6 (30) | 0 (0) | |
Student | 0 (0) | 3 (15) | |
Other | 0 (0) | 2 (10) |
Identification | Compounds | m/z | a VIP Score | b Fold Change | c p-Value | Chemical Classification |
---|---|---|---|---|---|---|
1 | 1-[2-chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanol | 349.038 | 3.50 | −3.8528 | 3.6 × 10−24 | Triazole |
2 | 13-bromo(...)hydroxy-tridecatrienoic acid | 389.076 | 3.39 | −2.3291 | 2.5 × 10−14 | Prenol Lipids |
3 | PI(20:5(5Z,8Z,11Z,14Z,17Z)/0:0) | 618.280 | 3.36 | −3.620 | 1.9 × 10−12 | Glycerophosphoinositol |
4 | Diphosphatidylglycerol | 709.794 | 3.31 | −4.0838 | 3.6 × 10−12 | Phosphatidylglycerol |
5 | Cer(d16:1/LTE4) | 692.479 | 3.17 | −3.6229 | 1.2 × 10−11 | Ceramides |
6 | Glutamate | 147.053 | 2.57 | −1.4101 | 1.2 × 10−5 | Amino acids, peptides and analogues |
7 | PG(18:3(9Z,12Z,15Z)/22:4(7Z,10Z,13Z,16Z)) | 821.071 | 2.50 | 1.4805 | 1.5 × 10−5 | Glycerophospholipids |
8 | Paraxantine | 180.064 | 2.33 | 1.4462 | 3.6 × 10−3 | Purine and derivatives |
9 | 5-aminophthalazine-1,4-diol | 194.083 | 2.31 | 2.1139 | 6.3 × 10−3 | Benzodiazine |
10 | LysoPA(0:0/18:1(9Z)) | 436.258 | 2.15 | 1.1522 | 4.8 × 10−4 | Glycerophospholipids |
11 | Sphingomyelin | 730.598 | 2.01 | 2.14 | 4.3 × 10−3 | Sphingolipids |
12 | 1,22-Docosanedioic acid | 370.308 | 2.00 | 2.4958 | 1.3 × 10−2 | Fatty acids |
13 | 3-(Methylthio)propanoyl-CoA | 869.689 | 1.95 | 1.003 | 1.8 × 10−2 | Glycerophospholipids |
14 | 5-O-b-D- glucopyranoside | 903.255 | 1.94 | 1.1131 | 1.6 × 10−2 | Carbohydrates |
15 | 13,14-Dihidro PGE1 | 356.256 | 1.93 | −2.138 | 7.8 × 10−3 | Lipids |
16 | Val Gly Asp | 289.127 | 1.90 | 1.1063 | 1.6 × 10−2 | Amino acids, peptides and analogues |
17 | Phosphatidylethanolamine (18:3) | 475.269 | 1.79 | −2.402 | 3.4 × 10−2 | Phosphatidylethanolamine |
18 | Phosphatidylcholine (20:0/14:0) | 762.092 | 1.78 | −1.1386 | 2.3 × 10−2 | Phosphatidylcholine |
19 | Norepinephrine sulfate | 249.030 | 1.77 | 1.13 | 3.3 × 10−2 | Arylsulfate |
20 | Phosphatidylcholine (14:1) | 465.285 | 1.75 | −2.6305 | 2.5 × 10−2 | Phosphatidylcholine |
21 | L-tirosine | 180.073 | 1.64 | 1.1367 | 3.4 × 10−2 | Amino acids, peptides and analogues |
Identification | Compounds | m/z | a VIP Score | b Fold Change | c p-Value | Chemical Classification |
---|---|---|---|---|---|---|
1 | Phosphoribosylamine | 229.035 | 4.4742 | 2.8165 | 3.0 × 10−2 | Pentose phosphate |
2 | Carbendazim | 191,187 | 3.2886 | −1.4924 | 6.0 × 10−3 | Benzimidazole |
3 | Triacylglycerol | 852.757 | 3.2706 | 1.1967 | 2.9 × 10−4 | Glycerolipids |
4 | 1-Palmityl-2-palmitoleoyl-glycero-3-phosphocholine | 717.567 | 3.2557 | 1.1233 | 3.8 × 10−3 | Glycerolipids |
5 | PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:4(6Z,9Z,12Z,15Z)) | 783.483 | 3.2477 | 1.1553 | 3.9 × 10−3 | Glycerolipids |
6 | N-Acetylgalactosamine | 221.208 | 3.2183 | 1.637 | 4.5 × 10−3 | Carbohydrates |
7 | TG(10:0/10:0/10:0) | 919.767 | 3.0001 | 1.0771 | 1.0 × 10−3 | Glycerolipids |
8 | SM(d18:1/12:0) | 646.504 | 2.9576 | 1.0084 | 2.0 × 10−3 | Sphingolipids |
9 | UDP-D-galacturonic acid | 581.034 | 2.9366 | 1.0137 | 2.3 × 10−3 | Pyrimidine nucleotide |
10 | TG(15:0/18:0/O-18:0) | 834.804 | 29.296 | 1.0899 | 2.0 × 10−2 | Glycerolipids |
11 | Glycosyl 2-{6-(2-cyanophenoxy)pyrimidine-4-yloxy}benzoate | 495.127 | 2.9051 | −1.291 | 2.0 × 10−2 | Benzenoid |
12 | Diphosphoinositol tetraphosphate | 819.794 | 2.797 | 1.0012 | 4.5 × 10−3 | Inositol phosphate |
13 | PE(18:3(6Z,9Z,12Z)/P-18:0) | 725.535 | 2.7486 | 1.0137 | 1.0 × 10−3 | Glycerolipids |
14 | Mycophenolic Acid Glucuronide | 496.158 | 2.4476 | −1.276 | 3.4 × 10−3 | Carbohydrates |
15 | Histidine | 155.069 | 2.139 | −1.1325 | 3.1 × 10−3 | Amino acids, peptides and analogues |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nolasco, D.M.; Mendes, M.P.R.; Marciano, L.P.d.A.; Costa, L.F.; Macedo, A.N.D.; Sakakibara, I.M.; Silvério, A.C.P.; Paiva, M.J.N.; André, L.C. An Exploratory Study of the Metabolite Profiling from Pesticides Exposed Workers. Metabolites 2023, 13, 596. https://doi.org/10.3390/metabo13050596
Nolasco DM, Mendes MPR, Marciano LPdA, Costa LF, Macedo AND, Sakakibara IM, Silvério ACP, Paiva MJN, André LC. An Exploratory Study of the Metabolite Profiling from Pesticides Exposed Workers. Metabolites. 2023; 13(5):596. https://doi.org/10.3390/metabo13050596
Chicago/Turabian StyleNolasco, Daniela Magalhães, Michele P. R. Mendes, Luiz Paulo de Aguiar Marciano, Luiz Filipe Costa, Adriana Nori De Macedo, Isarita Martins Sakakibara, Alessandra Cristina Pupin Silvério, Maria José N. Paiva, and Leiliane C. André. 2023. "An Exploratory Study of the Metabolite Profiling from Pesticides Exposed Workers" Metabolites 13, no. 5: 596. https://doi.org/10.3390/metabo13050596
APA StyleNolasco, D. M., Mendes, M. P. R., Marciano, L. P. d. A., Costa, L. F., Macedo, A. N. D., Sakakibara, I. M., Silvério, A. C. P., Paiva, M. J. N., & André, L. C. (2023). An Exploratory Study of the Metabolite Profiling from Pesticides Exposed Workers. Metabolites, 13(5), 596. https://doi.org/10.3390/metabo13050596