Comprehensive Characterization of Secondary Metabolites in Fruits and Leaves of Cloudberry (Rubus chamaemorus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Plant Material, Extraction, and Fractionation
2.3. Monosaccharide Analysis
2.4. Spectrophotometric Determination of Total Phenolic Content and Pigments
2.5. Antioxidant Activity Determination
2.6. Two-Dimensional NMR Spectroscopy
2.7. High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry
3. Results and Discussion
3.1. Comparative Analysis of Fruit and Leaf Ethanolic Extracts
3.2. Polarity-Based Fractionation of Leaf Extract and General Characterization of Fractions
3.3. Polyphenolic Compounds in the Fraction F2
3.4. Less Polar Compounds in the Fractions F3 and F4
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thiem, B. Rubus chamaemorus L.—A boreal plant rich in biologically active metabolites: A review. Biol. Lett. 2003, 40, 3–13. [Google Scholar]
- Whaley, A.K.; Ponkratova, A.O.; Teslov, L.S.; Luzhanin, V.G. Review of cloudberry secondary metabolites and their biological activity. Med. Pharm. J. 2020, 22, 50–59. [Google Scholar] [CrossRef]
- Kähkönen, M.; Kylli, P.; Ollilainen, V.; Salminen, J.; Heinonen, M. Antioxidant Activity of Isolated Ellagitannins from Red Raspberries and Cloudberries. J. Agric. Food Chem. 2012, 60, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Määttä-Riihinen, K.R.; Kamal-Eldin, A.; Törrönen, A.R. Identification and Quantification of Phenolic Compounds in Berries of Fragaria and Rubus Species (Family Rosaceae). J. Agric. Food Chem. 2004, 52, 6178–6187. [Google Scholar] [CrossRef] [PubMed]
- Ferlemi, A.-V.; Lamari, F.N. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value. Antioxidants 2016, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Mertz, C.; Cheynier, V.; Günata, Z.; Brat, P. Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. J. Agric. Food Chem. 2007, 55, 8616–8624. [Google Scholar] [CrossRef]
- Renai, L.; Scordo, C.V.A.; Chiuminatto, U.; Ulaszewska, M.; Giordani, E.; Petrucci, W.A.; Tozzi, F.; Nin, S.; Del Bubba, M. Liquid Chromatographic Quadrupole Time-of-Flight Mass Spectrometric Untargeted Profiling of (Poly)phenolic Compounds in Rubus idaeus L. and Rubus occidentalis L. Fruits and Their Comparative Evaluation. Antioxidants 2021, 10, 704. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Heinonen, M. Berry phenolics and their antioxidant activity. J. Agric. Food Chem. 2001, 49, 4076–4082. [Google Scholar] [CrossRef]
- Afrin, S.; Giampieri, F.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Varela-López, A.; Quiles, J.L.; Mezzetti, B.; Battino, M. Chemopreventive and Therapeutic Effects of Edible Berries: A Focus on Colon Cancer Prevention and Treatment. Molecules 2016, 21, 169. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Nohynek, L.; Suvanto, J.; Salminen, J.-P.; Seppänen-Laakso, T.; Tähtiharju, J.; Honkapää, K.; Oksman-Caldentey, K.-M. Natural Antimicrobials from Cloudberry (Rubus chamaemorus) Seeds by Sanding and Hydrothermal Extraction. ACS Food Sci. Technol. 2021, 1, 917–927. [Google Scholar] [CrossRef]
- Rocabado, G.O.; Bedoya, L.M.; Abad, M.J.; Bermejo, P. Rubus—A review of its phytochemical and pharmacological profile. Nat. Prod. Commun. 2008, 3, 423–436. [Google Scholar] [CrossRef]
- Lashmanova, E.A.; Kuzivanova, O.A.; Dymova, O.V.; Moskalev, A.A. The Effects of Cloudberry Fruit Extract on Drosophila Melanogaster Lifespan and Stress Resistance. Adv. Gerontol. 2019, 9, 254–260. [Google Scholar] [CrossRef]
- McDougall, G.J.; Martinussen, I.; Junttila, O.; Verrall, S.; Stewart, D. Assessing the influence of genotype and temperature on polyphenol composition in cloudberry (Rubus chamaemorus L.) using a novel mass spectrometric method. J. Agric. Food Chem. 2011, 59, 10860–10868. [Google Scholar] [CrossRef] [PubMed]
- Thiem, B.; Goslinska, J. Antimicrobial activity of Rubus chamaemorus leaves. Fitoterapia 2004, 75, 93–95. [Google Scholar] [CrossRef]
- Whaley, A.K.; Ponkratova, A.O.; Orlova, A.A.; Serebryakov, E.B.; Smirnov, S.N.; Proksh, P.; Ionov, N.S.; Poroikov, V.V.; Luzhanin, V.G. Phytochemical Analysis of Polyphenol Secondary Metabolites in Cloudberry (Rubus chamaemorus L.) Leaves. Pharm. Chem. J. 2021, 55, 253–258. [Google Scholar] [CrossRef]
- Faleva, A.V.; Ul’yanovskii, N.V.; Falev, D.I.; Onuchina, A.A.; Budaev, N.A.; Kosyakov, D.S. New Oligomeric Dihydrochalcones in the Moss Polytrichum commune: Identification, Isolation, and Antioxidant Activity. Metabolites 2022, 12, 974. [Google Scholar] [CrossRef]
- Ul’yanovskii, N.V.; Onuchina, A.A.; Faleva, A.V.; Gorbova, N.S.; Kosyakov, D.S. Comprehensive Characterization of Chemical Composition and Antioxidant Activity of Lignan-Rich Coniferous Knotwood Extractives. Antioxidants 2022, 11, 2338. [Google Scholar] [CrossRef]
- Faleva, A.V.; Pikovskoi, I.I.; Pokryshkin, S.A.; Chukhchin, D.G.; Kosyakov, D.S. Features of the Chemical Composition and Structure of Birch Phloem Dioxane Lignin: A Comprehensive Study. Polymers 2022, 14, 964. [Google Scholar] [CrossRef]
- Jerković, I.; Cikoš, A.-M.; Babić, S.; Čižmek, L.; Bojanić, K.; Aladić, K.; Ul’yanovskii, N.V.; Kosyakov, D.S.; Lebedev, A.T.; Čož-Rakovac, R.; et al. Bioprospecting of Less-Polar Constituents from Endemic Brown Macroalga Fucus virsoides J. Agardh from the Adriatic Sea and Targeted Antioxidant Effects In Vitro and In Vivo (Zebrafish Model). Mar. Drugs 2021, 19, 235. [Google Scholar] [CrossRef]
- Ul’yanovskii, N.V.; Falev, D.I.; Kosyakov, D.S. Highly sensitive ligand exchange chromatographic determination of apiose in plant biomass. Microchem. J. 2022, 180, 107638. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Yashin, A.Y. A flow-injection system with amperometric detection for selective determination of antioxidants in food-stuffs and drinks. Russ. J. Gen. Chem. 2008, 78, 2566–2571. [Google Scholar] [CrossRef]
- Pegg, R.B.; Amarowicz, R.; Naczk, M.; Shahidi, F. PHOTOCHEM® for determination of antioxidant capacity of plant extracts. ACS Symp. Ser. 2007, 956, 140–158. [Google Scholar] [CrossRef]
- Ghitescu, R.-E.; Volf, I.; Carausu, C.; Bühlmann, A.-M.; Gilca, I.A.; Popa, V.I. Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrason. Sonochem. 2015, 22, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Vongsak, B.; Sithisarn, P.; Mangmool, S.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W. Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind Crops Prod. 2013, 44, 566–571. [Google Scholar] [CrossRef]
- Ha, Y.W.; Lim, S.S.; Ha, I.J.; Na, Y.-C.; Seo, J.-J.; Shin, H.; Son, S.H.; Kim, Y.S. Preparative isolation of four ginsenosides from Korean red ginseng (steam-treated Panax ginseng C. A. Meyer), by high-speed counter-current chromatography coupled with evaporative light scattering detection. J. Chromatogr. A 2007, 1151, 37–44. [Google Scholar] [CrossRef]
- Tzanova, M.; Atanasov, V.; Yaneva, Z.; Ivanova, D.; Dinev, T. Selectivity of current extraction techniques for flavonoids from plant materials. Processes 2020, 8, 1222. [Google Scholar] [CrossRef]
- Baardseth, P.; Russwurm, H. Content of some organic acids in cloudberry (Rubus chamaemorus L.). Food Chem. 1978, 3, 43–46. [Google Scholar] [CrossRef]
- Koponen, J.M.; Happonen, A.M.; Mattila, P.H.; Törrönen, A.R. Contents of Anthocyanins and Ellagitannins in Selected Foods Consumed in Finland. J. Agric. Food Chem. 2007, 55, 1612–1619. [Google Scholar] [CrossRef]
- Martić, A.; Čižmek, L.; Ul’yanovskii, N.V.; Paradžik, T.; Perković, L.; Matijević, G.; Vujović, T.; Baković, M.; Babić, S.; Kosyakov, D.S.; et al. Intra-Species Variations of Bioactive Compounds of Two Dictyota Species from the Adriatic Sea: Antioxidant, Antimicrobial, Dermatological, Dietary, and Neuroprotective Potential. Antioxidants 2023, 12, 857. [Google Scholar] [CrossRef]
- Yuan, G.-F.; Chen, X.-E.; Li, D. Conjugated linolenic acids and their bioactivities: A review. Food Funct. 2014, 5, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
Parameter/Compound | Fruits | Leaves |
---|---|---|
TPC | 7.0 ± 1.3 | 187 ± 4 |
Antioxidant Activity | ||
Electrochemical assay (in gallic acid equivalent) | 85 ± 6 | 230 ± 20 |
Photochemiluminescence assay (in Trolox equivalent) | 88 ± 2 | 250 ± 60 |
Free Monosaccharides | ||
Glucose | 198 ± 15 | 76 ± 8 |
Xylose | 8.4 ± 1.3 | 9.6 ± 0.8 |
Galactose | 4.2 ± 0.5 | 2.8 ± 0.3 |
Arabinose | 2.1 ± 0.3 | 3.8 ± 0.4 |
Fructose | 47 ± 6 | 8.8 ± 1.1 |
Parameter | F1 | F2 | F3 | F4 |
---|---|---|---|---|
Yield, % | 8.5 | 6.4 | 2.9 | 1.6 |
TPC, mg g−1 | - | 570 ± 50 | 107 ± 6 | - |
Total carotenoids, mg g−1 | - | - | 3.1 ± 0.1 | 0.93 ± 0.03 |
Pheophytin (A + B), mg g−1 | - | - | 1.71 ± 0.05 | 3.5 ± 0.2 |
Antioxidant Activity | ||||
Amperometric assay, mg g−1 | - | 750 ± 20 | 157 ± 9 | - |
PCL assay, mg g−1 | - | 1590 ± 20 | 201 ± 1 | - |
No | tR, min | Formula | m/z | Δm/z, ppm | Peak Area, ×107 | Assumed Compound |
---|---|---|---|---|---|---|
1 | 3.0 | C15H18O9 | 341.0874 | −1.09 | 5.45 | Caffeic acid 4-O-glucuronide |
2 | 3.2 | C15H18O9 | 341.0875 | −1.00 | 5.26 | Caffeic acid 3-glucoside |
3 | 3.5 | C21H20O12 | 463.0882 | −0.01 | 4.90 | Epigallocatechin ether of ascorbic acid |
4 | 3.6 | C30H26O12 | 577.1350 | −0.24 | 2.99 | Procyanidin B-type (isomer) |
5 | 3.6 | C15H18O9 | 341.0874 | −1.09 | 5.41 | 1-Caffeoyl-β-D-glucose |
6 | 3.8 | C45H38O18 | 865.1983 | −0.27 | 1.02 | Procyanidin C-type (isomer 1) |
7 | 4.1 | C15H14O6 | 289.0715 | −0.79 | 16.9 | Catechin |
8 | 4.3 | C20H28O12 | 459.1509 | 0.31 | 0.94 | Caffeic acid glycosylated with 2,3,4-Trihydroxy-2-methylbutyl β-D-gulopyranoside |
9 | 4.4 | C30H26O12 | 577.1345 | −1.19 | 43.1 | Procyanidin B2 |
10 | 5.0 | C45H38O18 | 865.1980 | −0.62 | 3.62 | Procyanidin C-type (isomer 2) |
11 | 5.1 | C16H20O9 | 355.1034 | −0.43 | 1.12 | Ferulic acid O-glucoside |
12 | 5.2 | C15H14O6 | 289.0714 | −1.32 | 36.7 | Epicatechin |
13 | 5.2 | C9H8O4 | 179.0349 | −0.39 | 0.69 | Caffeic acid |
14 | 5.7 | C16H20O9 | 355.1033 | −0.35 | 1.05 | Ferulic acid derivative I *,1 |
15 | 6.3 | C17H22O10 | 385.1140 | −0.1 | 1.35 | Sinapoyl D-glucoside |
16 | 6.6 | C16H20O9 | 355.1035 | 0.0 | 0.99 | Ferulic acid derivative II *,1 |
17 | 7.0 | C17H22O10 | 385.1139 | −0.25 | 1.24 | Sinapic acid derivative I *,2 |
18 | 7.2 | C45H38O18 | 865.1982 | −0.41 | 1.32 | Procyanidin C-type (isomer 3) |
19 | 7.7 | C17H22O10 | 385.1140 | 0.0 | 1.05 | Sinapic acid derivative II *,2 |
20 | 8.4 | C82H54O52 | 934.0712 ** | −0.39 | 15.5 | Sanguiin H-6 II |
21 | 9.6 | C19H14O12 | 433.0410 | −0.68 | 17.4 | Arabinofuranosylellagic acid |
22 | 9.9 | C14H6O8 | 300.9989 | −0.3 | 6.88 | Ellagic acid |
23 | 10.1 | C21H20O12 | 463.0884 | 0.35 | 8.57 | Isoquercetin |
24 | 10.2 | C21H18O13 | 477.0668 | −1.34 | 162 | Miquelianin |
25 | 10.2 | C21H16O13 | 475.0524 | −1.19 | 3.60 | 2-[2-[2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4-oxochromen-3-yl]oxy-2-oxoethyl]-2-hydroxybutanedioic acid |
26 | 10.8 | C27H28O16 | 607.1304 | −0.14 | 4.26 | Quercetin 3-[6′-(3-hydroxy-3-methylglutaryl) galactoside] |
27 | 10.8 | C24H22O15 | 549.0886 | 0.05 | 7.18 | Quercetin 3-(6′-malonylgalactoside) |
28 | 10.9 | C28H22O17 | 629.0782 | −0.38 | 4.31 | Dihydromyricetin ether of galloyl ascorbate |
29 | 11.0 | C21H18O12 | 461.0722 | −0.68 | 14.5 | Kaempferol 3-glucuronide |
30 | 11.1 | C28H36O11 | 547.2188 | 0.60 | 0.37 | (1S,2R)-2-Hydroxy-3,5,5-trimethyl-4-[(1E)-3-oxo-1-buten-1-yl]-3-cyclohexen-1-yl 6-O-[(2E)-3-(3,4-dihydroxyphenyl)-2-propenoyl]-β-D-glucopyranoside |
31 | 11.2 | C30H28O15 | 627.1354 | −0.27 | 0.64 | Taxifolin ether of leucodrin |
32 | 11.3 | C24H24O11 | 487.1245 | −0.28 | 4.97 | Beta-D-glucopyranose 1-(4-trans-coumaric acid)-2-(3,4-dihydroxy-trans-cinnamate) |
33 | 11.4 | C24H24O12 | 503.1196 | 0.26 | 3.27 | 3,6-Bis-O-[(2E)-3-(3,4-dihydroxyphenyl)-2-propenoyl]-D-glucopyranose |
34 | 11.5 | C21H16O13 | 475.0519 | 0.27 | 2.91 | Ellagic acid acetyl-xyloside |
35 | 11.6 | C28H36O11 | 547.2189 | 0.93 | 0.77 | Isomer of 30 |
36 | 11.8 | C28H22O16 | 613.0835 | −0.02 | 0.49 | Taxifolin ether of galloyl ascorbate |
37 | 12.1 | C28H36O11 | 547.2188 | 0.60 | 0.79 | (2R,3E)-4-[(1S)-1-Hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl]-3-buten-2-yl 6-O-[(2E)-3-(3,4-dihydroxyphenyl)-2-propenoyl]-β-D-glucopyranoside |
38 | 13.6 | C23H24O13 | 507.1144 | −0.01 | 1.66 | 5,8-Dihydroxy-4-oxo-1,2,3,4-tetrahydro-1-naphthalenyl 6-O-(3,4,5-trihydroxybenzoyl)-β-D-glucopyranoside |
No. | tR, min | Formula | m/z | Δm/z, ppm | Mode | Peak Area, ×107 | Assumed Compound | |
---|---|---|---|---|---|---|---|---|
F3 | F4 | |||||||
1 | 9.9 | C14H6O8 | 300.9988 | −0.70 | ESI(−) | 26.5 | - | Ellagic acid |
2 | 10.1 | C21H20O12 | 463.0882 | −0.07 | ESI(−) | 3.88 | - | Isoquercetin |
3 | 10.2 | C21H18O13 | 477.0675 | 0.02 | ESI(−) | 5.03 | - | Miquelianin |
4 | 10.8 | C27H28O16 | 607.1308 | 0.56 | ESI(−) | 1.19 | - | Quercetin 3-[6″-(3-hydroxy-3-methylglutaryl) galactoside] |
5 | 10.8 | C22H39O10 | 463.2548 | −0.24 | ESI(−) | 19.2 | - | Isoliquiritin |
6 | 11.0 | C21H18O12 | 461.0726 | 0.05 | ESI(−) | 2.58 | - | Kaempferol 3-glucuronide |
7 | 11.5 | C21H16O13 | 475.0516 | −0.44 | ESI(−) | 13.9 | - | Ellagic acid acetyl-xyloside |
8 | 14.0 | C30H48O7 | 519.3329 | 0.31 | ESI(−) | 2.18 | - | Trachelosperogenin B |
9 | 14.2 | C30H25O13 | 593.1298 | −0.41 | ESI(−) | 8.18 | - | Tiliroside |
10 | 14.8 | C30H48O7 | 519.3330 | 0.54 | ESI(−) | 1.93 | - | Platycodigenin |
11 | 15.9 (2.9) * | C30H48O6 | 503.3376 | −0.39 | ESI(−) | 15.4 | 0.02 | 19α-hydroxyasiatic acid |
12 | 16.4 (3.3) * | C30H48O6 | 503.3376 | −0.51 | ESI(−) | 18.8 | 0.02 | Tomentosic acid |
13 | 16.7 | C30H48O6 | 503.3375 | −0.69 | ESI(−) | 9.88 | - | Myrianthic acid |
14 | 17.3 | C30H48O6 | 503.3377 | −0.21 | ESI(−) | 5.56 | - | 1β-Hydroxyeuscaphic acid |
15 | 17.5 | C30H46O6 | 501.3222 | 0.08 | ESI(−) | 4.12 | - | Triterpenoic acid with keto-group (isomer I) |
16 | 18.0 | C30H46O6 | 501.3221 | −0.04 | ESI(−) | 5.32 | - | Triterpenoic acid with keto-group (isomer II) |
17 | 19.0 (5.3) * | C30H48O5 | 489.3571 | −0.81 | ESI(+) | 26.4 | 0.04 | Tormentic acid |
18 | 19.3 | C33H56O14 | 694.4007 [M + NH4]+ | −0.20 | ESI(+) | 0.97 | - | DGMG (18:3) |
19 | 20.4 | C27H46O9 | 532.3483 [M + NH4]+ | 0.60 | ESI(+) | 0.79 | - | MGMG (18:3), isomer I |
20 | 20.7 | C27H46O9 | 532.3480 [M + NH4]+ | 0.03 | ESI(+) | 0.88 | - | MGMG (18:3), isomer II |
21 | 21.9 | C30H48O4 | 473.3625 | −0.05 | ESI(+) | 2.87 | - | Corosolic acid |
22 | 22.1 | C40H54O4 | 599.4094 | −0.10 | ESI(+) | 1.96 | - | Erythroxanthin |
23 | 23.4 | C40H54O4 | 599.4097 | 0.30 | ESI(+) | 1.46 | - | Halocynthiaxanthin |
24 | 24.8 (11.8) * | C19H38O4 | 331.2842 | −0.14 | ESI(+) | 2.10 | 2.40 | Monopalmitin |
25 | 25.2 | C39H64O11 | 706.4523 [M + NH4]+ | 0.19 | ESI(+) | 1.35 | - | MGDG (18:3/Oxo 12:0) |
26 | 26.5 (13.5) * | C21H42O4 | 359.3156 | 0.16 | ESI(+) | 1.21 | 1.44 | Monostearin |
27 | 27.6 (14.4) * | C51H84O15 | 954.6149 [M + NH4]+ | 0.02 | ESI(+) | 49.8 | 0.09 | DGDG (18:3/18:3) |
28 | 28.1 (14.9) * | C40H75O9N | 714.5512 | −0.35 | ESI(+) | 18.8 | 0.04 | Soyacerebroside I |
29 | 28.3 (15.1) * | C51H86O15 | 956.6306 [M + NH4]+ | 0.06 | ESI(+) | 5.83 | 0.01 | DGDG (18:3/18:2) |
30 | 29.0 (15.8) * | C49H86O15 | 932.6307 [M + NH4]+ | 0.26 | ESI(+) | 23.5 | 0.09 | DGDG (16:0/18:3) |
31 | 29.1 (15.8) * | C35H36O5N4 | 593.2755 | −0.67 | ESI(+) | 78.0 | 2.16 | Pheophorbide a |
32 | 29.8 (16.4) * | C45H74O10 | 792.5620 [M + NH4]+ | −0.02 | ESI(+) | 98.6 | 0.28 | MGDG (18:3/18:3) |
33 | 30.4 (16.6) * | C40H55O | 551.4249 | 0.33 | ESI(+) | 14.9 | 1.58 | Anhydrolutein |
34 | 30.5 (16.7) * | C40H56O2 | 568.4271 | −0.63 | ESI(+) | 52.3 | 4.74 | Lutein |
35 | 30.5 (17.1) * | C51H90O15 | 960.6621 [M + NH4]+ | 0.32 | ESI(+) | 4.02 | 0.02 | DGDG(18:3/18:0) |
36 | 30.6 (17.2) * | C45H76O10 | 794.5774 [M + NH4]+ | −0.35 | ESI(+) | 15.1 | 0.05 | MGDG (18:3/18:2) |
37 | 31.0 (17.6) * | C43H73O11 | 765.5151 | −0.99 | ESI(−) | 28.2 | 0.06 | 1-(9Z,12Z,15Z-octadecatrienoyl)-2-hexadecanoyl-3-O-α-D-glucuronosyl-sn-glycerol (GlcADG(18:3/16:0) |
38 | 31.3 (17.9) * | C43H76O10 | 770.5778 [M + NH4]+ | 0.11 | ESI(+) | 6.67 | 0.03 | MGDG (16:0/18:3) |
39 | 31.5 (18.1)* | C35H78O10 | 796.5934 [M + NH4]+ | −0.26 | ESI(+) | 5.37 | 0.02 | MDDG (18:3/18:0) |
40 | 31.6 (18.1) * | C36H38O5N4 | 607.2913 | −0.39 | ESI(+) | 21.4 | 13.7 | Methyl pheophorbide a |
41 | 32.4 (18.8) * | C28H48O3 | 433.3677 | 0.19 | ESI(+) | 2.55 | 0.03 | 2-(4-Hydroxyphenyl)ethyl icosanoate |
42 | 32.4 (18.9) * | C45H78O11 | 793.5471 | −0.02 | ESI(−) | 3.70 | 0.01 | GlcADG(18:3/18:0) |
43 | 33.4 (19.3) * | C29H50O3 | 447.3831 | −0.41 | ESI(+) | 17.3 | 0.28 | 3,5-dihydroxystigmastan-6-one |
44 | 33.4 (19.3) * | C29H48O3 | 445.3676 | 0.05 | ESI(+) | 12.2 | 3.33 | 5-Hydroxystigmastane-3,6-dione |
45 | 34.0 (20.6) * | C40H71O10P | 741.4711 | −0.19 | ESI(−) | 20.2 | 0.23 | 1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1′-sn-glycerol) (PG(18:3/16:1)) |
46 | 36.7 (23.7) * | C55H76O6N4 | 887.5685 | 0.48 | ESI(+) | - | 29.3 | Hydroxypheophytin A |
47 | 38.5 (24.4) * | C55H72O6N4 | 885.5520 | −0.49 | ESI(+) | 0.51 | 239 | Pheophytin b |
48 | 39.5 (25.2) * | C55H74O5N4 | 871.5726 | −0.72 | ESI(+) | 0.33 | 2498 | Pheophytin a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faleva, A.V.; Ul’yanovskii, N.V.; Onuchina, A.A.; Falev, D.I.; Kosyakov, D.S. Comprehensive Characterization of Secondary Metabolites in Fruits and Leaves of Cloudberry (Rubus chamaemorus L.). Metabolites 2023, 13, 598. https://doi.org/10.3390/metabo13050598
Faleva AV, Ul’yanovskii NV, Onuchina AA, Falev DI, Kosyakov DS. Comprehensive Characterization of Secondary Metabolites in Fruits and Leaves of Cloudberry (Rubus chamaemorus L.). Metabolites. 2023; 13(5):598. https://doi.org/10.3390/metabo13050598
Chicago/Turabian StyleFaleva, Anna V., Nikolay V. Ul’yanovskii, Aleksandra A. Onuchina, Danil I. Falev, and Dmitry S. Kosyakov. 2023. "Comprehensive Characterization of Secondary Metabolites in Fruits and Leaves of Cloudberry (Rubus chamaemorus L.)" Metabolites 13, no. 5: 598. https://doi.org/10.3390/metabo13050598
APA StyleFaleva, A. V., Ul’yanovskii, N. V., Onuchina, A. A., Falev, D. I., & Kosyakov, D. S. (2023). Comprehensive Characterization of Secondary Metabolites in Fruits and Leaves of Cloudberry (Rubus chamaemorus L.). Metabolites, 13(5), 598. https://doi.org/10.3390/metabo13050598