1H-NMR-Based Metabolic Profiling in Muscle and Liver Tissue of Juvenile Turbot (Scophthalmus maximus) Fed with Plant and Animal Protein Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Design of Feeding Trial
2.2. Tissue Collection and Sample Preparation
2.3. Untargeted 1H-NMR Based Metabolic Profiling
2.4. Statistical Analysis
3. Results
3.1. Growth and Feed Performance and Nutritional Status of Fish Fed the Different Diets
3.2. Patterns of Compounds in Feed
3.3. 1H-NMR Based Metabolic Profile of the Muscle and Liver Tissue
3.4. Diet-Dependent Differences in Metabolic Profile in the Muscle and Liver Tissue
4. Discussion
4.1. Growth and Feed Performance
4.2. Metabolic Response in the Muscle
4.3. Dietary Effects on Energy Storage, Glucose Metabolism, and Metabolic Profile in Liver
4.4. Metabolites as Markers of Alteration of Metabolism Induced by Eco-Efficient Feed Formulations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aubin, J.; Papatryphon, E.; Van der Werf, H.M.G.; Petit, J.; Morvan, Y.M. Characterisation of the environmental impact of a turbot (Scophthalmus maximus) re-circulating production system using Life Cycle Assessment. Aquaculture 2006, 261, 1259–1268. [Google Scholar] [CrossRef]
- Iribarren, D.; Moreira, M.; Feijoo, G. Life Cycle Assessment of aquaculture feed and application to the turbot sector. Int. J. Environ. Res. 2012, 6, 837–848. [Google Scholar]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, F.; Harloff, H.J.; Tressel, R.P.; Kock, T.; Schulz, C. Effects of highly purified rapeseed protein isolate as fishmeal alternative on nutrient digestibility and growth performance in diets fed to rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 2021, 27, 1352–1362. [Google Scholar] [CrossRef]
- Karapanagiotidis, I.T.; Psofakis, P.; Mente, E.; Malandrakis, E.; Golomazou, E. Effect of fishmeal replacement by poultry by-product meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and gene expression of gilthead seabream (Sparus aurata). Aquac. Nutr. 2019, 25, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Fronte, B.; Abramo, F.; Brambilla, F.; De Zoysa, M.; Miragliotta, V. Effect of hydrolysed fish protein and autolysed yeast as alternative nitrogen sources on gilthead sea bream (Sparus aurata) growth performances and gut morphology. Ital. J. Anim. Sci. 2019, 18, 799–808. [Google Scholar] [CrossRef] [Green Version]
- Hoerterer, C.; Petereit, J.; Lannig, G.; Johansen, J.; Pereira, G.V.; Conceição, L.E.C.; Pastres, R.; Buck, B.H. Sustainable fish feeds: Potential of emerging protein sources in diets for juvenile turbot (Scophthalmus maximus) in RAS. Aquac. Int. 2022, 30, 1481–1504. [Google Scholar] [CrossRef]
- Petereit, J.; Hoerterer, C.; Bischoff-Lang, A.A.; Conceição, L.E.C.; Pereira, G.; Johansen, J.; Pastres, R.; Buck, B.H. Adult European Seabass (Dicentrarchus labrax) perform well on alternative circular-economy-driven feed formulations. Sustainability 2022, 14, 7279. [Google Scholar] [CrossRef]
- Hoerterer, C.; Petereit, J.; Lannig, G.; Johansen, J.; Conceição, L.E.C.; Buck, B.H. Effects of dietary plant and animal protein sources and replacement levels on growth and feed performance and nutritional status of market-sized turbot (Scophthalmus maximus) in RAS. Front. Mar. Sci. 2022, 9. [Google Scholar] [CrossRef]
- FAO. Scophthalmus maximus. Fisheries and Aquaculture Division. Available online: https://www.fao.org/fishery/en/culturedspecies/psetta_maxima/en (accessed on 8 July 2022).
- Oliva-Teles, A.; Enes, P.; Couto, A.; Peres, H. 8-Replacing fish meal and fish oil in industrial fish feeds. In Feed and Feeding Practices in Aquaculture, 2nd ed.; Davis, D.A., Ed.; Woodhead Publishing: Oxford, UK, 2022; pp. 231–268. [Google Scholar]
- Kroeckel, S.; Harjes, A.G.E.; Roth, I.; Katz, H.; Wuertz, S.; Susenbeth, A.; Schulz, C. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 2012, 364–365, 345–352. [Google Scholar] [CrossRef]
- Bonaldo, A.; Di Marco, P.; Petochi, T.; Marino, G.; Parma, L.; Fontanillas, R.; Koppe, W.; Mongile, F.; Finoia, M.G.; Gatta, P.P. Feeding turbot juveniles Psetta maxima L. with increasing dietary plant protein levels affects growth performance and fish welfare. Aquac. Nutr. 2015, 21, 401–413. [Google Scholar] [CrossRef]
- Chen, Z.C.; Liu, Y.; Li, Y.X.; Yang, P.; Hu, H.B.; Yu, G.J.; Ai, Q.H.; Xu, W.; Zhang, W.B.; Zhang, Y.G.; et al. Dietary arginine supplementation mitigates the soybean meal induced enteropathy in juvenile turbot, Scophthalmus maximus L. Aquac. Res. 2018, 49, 1535–1545. [Google Scholar] [CrossRef]
- Bai, N.; Gu, M.; Liu, M.; Jia, Q.; Pan, S.; Zhang, Z. Corn gluten meal induces enteritis and decreases intestinal immunity and antioxidant capacity in turbot (Scophthalmus maximus) at high supplementation levels. PLoS ONE 2019, 14, e0213867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casu, F.; Watson, A.M.; Yost, J.; Leffler, J.W.; Gaylord, T.G.; Barrows, F.T.; Sandifer, P.A.; Denson, M.R.; Bearden, D.W. Metabolomics analysis of effects of commercial soy-based protein products in red drum (Sciaenops ocellatus). J. Proteome Res. 2017, 16, 2481–2494. [Google Scholar] [CrossRef]
- Batista, S.; Medina, A.; Pires, M.A.; Moriñigo, M.A.; Sansuwan, K.; Fernandes, J.M.O.; Valente, L.M.P.; Ozório, R.O.A. Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast. Appl. Microbiol. Biotechnol. 2016, 100, 7223–7238. [Google Scholar] [CrossRef] [PubMed]
- Øverland, M.; Sørensen, M.; Storebakken, T.; Penn, M.; Krogdahl, Å.; Skrede, A. Pea protein concentrate substituting fish meal or soybean meal in diets for Atlantic salmon (Salmo salar)—Effect on growth performance, nutrient digestibility, carcass composition, gut health, and physical feed quality. Aquaculture 2009, 288, 305–311. [Google Scholar] [CrossRef]
- Glencross, B.; Evans, D.; Hawkins, W.; Jones, B. Evaluation of dietary inclusion of yellow lupin (Lupinus luteus) kernel meal on the growth, feed utilisation and tissue histology of rainbow trout (Oncorhynchus mykiss). Aquaculture 2004, 235, 411–422. [Google Scholar] [CrossRef]
- Alfaro, A.C.; Young, T. Showcasing metabolomic applications in aquaculture: A review. Rev. Aquac. 2018, 10, 135–152. [Google Scholar] [CrossRef]
- Samuelsson, L.M.; Förlin, L.; Karlsson, G.; Adolfsson-Erici, M.; Larsson, D.G. Using NMR metabolomics to identify responses of an environmental estrogen in blood plasma of fish. Aquat. Toxicol. 2006, 78, 341–349. [Google Scholar] [CrossRef]
- Cappello, T.; Giannetto, A.; Parrino, V.; Maisano, M.; Mauceri, A.; Fasulo, S. NMR-based metabolomics: A holistic approach for monitoring complex biological systems. Atti Della Accad. Peloritana Dei Pericolanti-Cl. Sci. Med. Biol. 2019, 107, 1–7. [Google Scholar]
- Kaneko, G.; Ushio, H.; Ji, H. Application of magnetic resonance technologies in aquatic biology and seafood science. Fish. Sci. 2019, 85, 1–17. [Google Scholar] [CrossRef]
- Roques, S.; Deborde, C.; Guimas, L.; Marchand, Y.; Richard, N.; Jacob, D.; Skiba-Cassy, S.; Moing, A.; Fauconneau, B. Integrative metabolomics for assessing the effect of insect (Hermetia illucens) protein extract on rainbow trout metabolism. Metabolites 2020, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Schock, T.B.; Newton, S.; Brenkert, K.; Leffler, J.; Bearden, D.W. An NMR-based metabolomic assessment of cultured cobia health in response to dietary manipulation. Food Chem. 2012, 133, 90–101. [Google Scholar] [CrossRef]
- Abro, R.; Moazzami, A.A.; Lindberg, J.E.; Lundh, T. Metabolic insights in Arctic charr (Salvelinus alpinus) fed with zygomycetes and fish meal diets as assessed in liver using nuclear magnetic resonance (NMR) spectroscopy. Int. Aquat. Res. 2014, 6, 63. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Liang, M.; Mai, K.; Zheng, K.; Xu, H. 1H NMR-based metabolomics studies on the effect of size-fractionated fish protein hydrolysate, fish meal and plant protein in diet for juvenile turbot (Scophthalmus maximus L.). Aquac. Nutr. 2017, 23, 523–536. [Google Scholar] [CrossRef]
- Roques, S.; Deborde, C.; Richard, N.; Skiba-Cassy, S.; Moing, A.; Fauconneau, B. Metabolomics and fish nutrition: A review in the context of sustainable feed development. Rev. Aquac. 2020, 12, 261–282. [Google Scholar] [CrossRef] [Green Version]
- Casu, F.; Watson, A.M.; Yost, J.; Leffler, J.W.; Gaylord, T.G.; Barrows, F.T.; Sandifer, P.A.; Denson, M.R.; Bearden, D.W. Investigation of graded-level soybean meal diets in red drum (Sciaenops ocellatus) using NMR-based metabolomics analysis. Comp. Biochem. Physiol. D-Genom. Proteom. 2019, 29, 173–184. [Google Scholar] [CrossRef]
- Lannig, G.; Eilers, S.; Pörtner, H.O.; Sokolova, I.M.; Bock, C. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas-Changes in metabolic pathways and thermal response. Mar. Drugs 2010, 8, 2318–2339. [Google Scholar] [CrossRef] [Green Version]
- Keppler, D.; Decker, K. 1.2 Glycogen. In Methods of Enzymatic Analysis: Metabolites 1: Carbohydrates; Bergmeyer, H.U., Ed.; Verlag Chemie: Weinheim, Germany; Basel, Switzerland, 1988. [Google Scholar]
- Georgoulis, I.; Bock, C.; Lannig, G.; Pörtner, H.O.; Feidantsis, K.; Giantsis, I.A.; Sokolova, I.M.; Michaelidis, B. Metabolic remodeling caused by heat-hardening in the Mediterranean mussel Mytilus galloprovincialis. J. Exp. Biol. 2022, 225, jeb.244795. [Google Scholar] [CrossRef]
- Jarak, I.; Tavares, L.; Palma, M.; Rito, J.; Carvalho, R.A.; Viegas, I. Response to dietary carbohydrates in European seabass (Dicentrarchus labrax) muscle tissue as revealed by NMR-based metabolomics. Metabolomics 2018, 14, 1–9. [Google Scholar] [CrossRef]
- Wei, Y.; Liang, M.; Mai, K.; Zheng, K.; Xu, H. The effect of ultrafiltered fish protein hydrolysate levels on the liver and muscle metabolic profile of juvenile turbot (Scophthalmus maximus L.) by 1H NMR-based metabolomics studies. Aquac. Res. 2017, 48, 3515–3527. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.; Windisch, H.S.; Ludwichowski, K.U.; Seegert, S.L.L.; Pörtner, H.O.; Storch, D.; Bock, C. Differences in neurochemical profiles of two gadid species under ocean warming and acidification. Front. Zool. 2017, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Purohit, P.V.; Rocke, D.M.; Viant, M.R.; Woodruff, D.L. Discrimination models using variance-stabilizing transformation of metabolomic NMR data. OMICS A J. Integr. Biol. 2004, 8, 118–130. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Wishart, D.S.; Xia, J.G. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Hermann, B.T.; Reusch, T.B.H.; Hanel, R. Effects of dietary purified rapeseed protein concentrate on hepatic gene expression in juvenile turbot (Psetta maxima). Aquac. Nutr. 2016, 22, 170–180. [Google Scholar] [CrossRef]
- Bian, F.; Zhou, H.; He, G.; Wang, C.; Peng, H.; Pu, X.; Jiang, H.; Wang, X.; Mai, K. Effects of replacing fishmeal with different cottonseed meals on growth, feed utilization, haematological indexes, intestinal and liver morphology of juvenile turbot (Scophthalmus maximus L.). Aquac. Nutr. 2017, 23, 1429–1439. [Google Scholar] [CrossRef]
- Dong, C.; He, G.; Mai, K.S.; Zhou, H.H.; Xu, W. Palatability of water-soluble extracts of protein sources and replacement of fishmeal by a selected mixture of protein sources for juvenile turbot (Scophthalmus maximus). J. Ocean Univ. China 2016, 15, 561–567. [Google Scholar] [CrossRef]
- Fuchs, V.I.; Schmidt, J.; Slater, M.J.; Zentek, J.; Buck, B.H.; Steinhagen, D. The effect of supplementation with polysaccharides, nucleotides, acidifiers and Bacillus strains in fish meal and soy bean based diets on growth performance in juvenile turbot (Scophthalmus maximus). Aquaculture 2015, 437, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Burel, C.; Boujard, T.; Kaushik, S.J.; Boeuf, G.; Van der Geyten, S.; Mol, K.A.; Kuhn, E.R.; Quinsac, A.; Krouti, M.; Ribaillier, D. Potential of plant-protein sources as fish meal substitutes in diets for turbot (Psetta maxima): Growth, nutrient utilisation and thyroid status. Aquaculture 2000, 188, 363–382. [Google Scholar] [CrossRef]
- Rebelein, A.; Pörtner, H.O.; Bock, C. Untargeted metabolic profiling reveals distinct patterns of thermal sensitivity in two related notothenioids. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2018, 217, 43–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kullgren, A.; Samuelsson, L.M.; Larsson, D.G.; Björnsson, B.T.; Bergman, E.J. A metabolomics approach to elucidate effects of food deprivation in juvenile rainbow trout (Oncorhynchus mykiss). Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1440–R1448. [Google Scholar] [CrossRef] [Green Version]
- Melis, R.; Sanna, R.; Braca, A.; Bonaglini, E.; Cappuccinelli, R.; Slawski, H.; Roggio, T.; Uzzau, S.; Anedda, R. Molecular details on gilthead sea bream (Sparus aurata) sensitivity to low water temperatures from 1H NMR metabolomics. Comp. Biochem. Physiol. a-Mol. Integr. Physiol. 2017, 204, 129–136. [Google Scholar] [CrossRef]
- Seibel, B.A.; Walsh, P.J. Trimethylamine oxide accumulation in marine animals: Relationship to acylglycerol storage. J. Exp. Biol. 2002, 205, 297–306. [Google Scholar] [CrossRef]
- Sotelo, C.G.; Rehbein, H. TMAO-degrading enzymes. In Seafood Enzymes; CRC Press: Boca Raton, FL, USA, 2000; pp. 193–216. [Google Scholar]
- Miao, S.Y.; Nie, Q.; Miao, H.J.; Zhang, W.B.; Mai, K.S. Effects of dietary carbohydrate-to-lipid ratio on the growth performance and feed utilization of juvenile turbot (Scophthalmus maximus). J. Ocean Univ. China 2016, 15, 660–666. [Google Scholar] [CrossRef]
- Guerreiro, I.; Enes, P.; Merrifield, D.; Davies, S.; Oliva-Teles, A. Effects of short-chain fructooligosaccharides on growth performance and hepatic intermediary metabolism in turbot (Scophthalmus maximus) reared at winter and summer temperatures. Aquac. Nutr. 2015, 21, 433–443. [Google Scholar] [CrossRef]
- Zeng, L.; Lei, J.L.; Ai, C.X.; Hong, W.S.; Liu, B. Protein-sparing effect of carbohydrate in diets for juvenile turbot Scophthalmus maximus reared at different salinities. Chin. J. Oceanol. Limnol. 2015, 33, 57–69. [Google Scholar] [CrossRef]
- Liu, X.; Mai, K.; Liufu, Z.; Ai, Q. Effects of dietary protein and lipid levels on growth, nutrient utilization, and the whole-body composition of turbot, Scophthalmus maximus, Linnaeus 1758, at Different Growth Stages. J. World Aquac. Soc. 2014, 45, 355–366. [Google Scholar] [CrossRef]
- Hemre, G.I.; Mommsen, T.P.; Krogdahl, A. Carbohydrates in fish nutrition: Effects on growth, glucose metabolism and hepatic enzymes. Aquac. Nutr. 2002, 8, 175–194. [Google Scholar] [CrossRef]
- Turchini, G.M.; Francis, D.S.; Du, Z.-Y.; Olsen, R.E.; Ringø, E.; Tocher, D.R. Chapter 5-The lipids. In Fish Nutrition, 4th ed.; Hardy, R.W., Kaushik, S.J., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 303–467. [Google Scholar] [CrossRef]
- Sheridan, M.A.; Mommsen, T.P. Effects of nutritional state on in vivo lipid and carbohydrate metabolism of coho salmon, Oncorhynchus kisutch. Gen. Comp. Endocrinol. 1991, 81, 473–483. [Google Scholar] [CrossRef]
- Maruhenda Egea, F.C.; Toledo-Guedes, K.; Sanchez-Jerez, P.; Ibanco-Cañete, R.; Uglem, I.; Saether, B.S. A metabolomic approach to detect effects of salmon farming on wild saithe (Pollachius virens) populations. J. Agric. Food Chem. 2015, 63, 10717–10726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, L.; Trattner, S.; Pickova, J.; Gómez-Requeni, P.; Moazzami, A.A. 1H NMR-based metabolomics studies on the effect of sesamin in Atlantic salmon (Salmo salar). Food Chem. 2014, 147, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Bai, N.; Gu, M.; Xu, X.; Xu, B.; Krogdahl, Å. Protective effects of mannan oligosaccharides on turbot Scophthalmus maximus suffering from soy enteropathy. Aquaculture 2017, 476, 141–151. [Google Scholar] [CrossRef]
- Bonaldo, A.; Parma, L.; Mandrioli, L.; Sirri, R.; Fontanillas, R.; Badiani, A.; Gatta, P.P. Increasing dietary plant proteins affects growth performance and ammonia excretion but not digestibility and gut histology in turbot (Psetta maxima) juveniles. Aquaculture 2011, 318, 101–108. [Google Scholar] [CrossRef]
CTRL | PLANT | PAP | MIX | |
---|---|---|---|---|
Level of Fishmeal Replacement | 0% | 20% | 20% | 40% |
Ingredients (g kg−1) | ||||
Fishmeal 1 | 500 | |||
Fishmeal (by-product) 2 | 350 | 350 | 250 | |
Fish hydrolysate (by-product) x | 50 | 50 | 50 | |
Insect meal (Hermetia illucens) x | 50 | 50 | 75 | |
Porcine hemoglobin 3 | 25 | |||
Poultry meal 4 | 102 | 75 | ||
Microbial protein meal (Methanotrophic bacteria) x | 25 | 25 | 50 | |
Yeast protein meal (Saccharomyces cerevisiae) x | 25 | 25 | 50 | |
Microalgae meal (Arthrospira platensis) 1 | 20 | 30 | ||
Microalgae meal (Chlorella vulgaris) 5 | 5 | 6 | ||
Microalgae meal (Tetraselmis chuii) 5 | 2 | 2 | ||
Soy protein concentrate 6 | 100 | |||
Pea protein concentrate 7 | 124 | 50 | 80 | |
Wheat gluten 7 | 110 | 115 | 100 | 100 |
Soybean meal 8 | 40 | |||
Wheat meal 9 | 80 | |||
Pea starch 10 | 40 | 88.9 | 89.9 | 89.9 |
Fish oil 1 | 116 | 46.4 | 46.4 | 46.4 |
DHA-Rich algae (Schizochytrium) 11 | 10.8 | 10.8 | 18.8 | |
Rapeseed oil 12 | 46.4 | 34.4 | 34.4 | |
Rapeseed lecithin 13 | 8 | 8 | 8 | |
Vitamin and mineral premix 14 | 10 | 10 | 10 | 10 |
Vitamin C 15 | 0.5 | 0.5 | 0.5 | 0.5 |
Vitamin E 15 | 0.5 | 0.5 | 0.5 | 0.5 |
Betaine HCl 16 | 5 | 5 | 5 | |
Macroalgae mix 17 | 5 | 5 | 5 | |
Antioxidant 18 | 1.8 | 1.8 | 1.8 | 1.8 |
Sodium propionate 19 | 1 | 1 | 1 | 1 |
L-Tryptophan 20 | 1.5 | 1.5 | 1.5 | |
DL-Methionine 21 | 3 | 3 | 3 | |
L-Taurine 16 | 5 | 5 | 6 | |
Yttrium oxide 22 | 0.2 | 0.2 | 0.2 | 0.2 |
Proximate composition | ||||
Moisture (%) | 4.1 | 6.7 | 7.3 | 7.5 |
Crude Protein (%) | 52.9 | 52.8 | 52.8 | 52.6 |
Crude Lipid (%) | 16.5 | 18.1 | 16.2 | 13.9 |
Ash (%) | 7.1 | 9.9 | 10.5 | 9.4 |
Energy (MJ kg−1) | 23.1 | 21.2 | 20.8 | 20.9 |
CTRL | PLANT | PAP | MIX | |
---|---|---|---|---|
Level of Fishmeal Replacement | 0% | 20% | 20% | 40% |
Acetate | 23.9 | 27.9 | 24.4 | 22.0 |
Alanine | 7.2 | 6.9 | 7.3 | 8.2 |
Betaine suppl. | 20.1 | 20.4 | 20.9 | 24.2 |
Carnitine | 1.3 | 1.3 | 1.3 | 2.3 |
Choline | 10.5 | 11.8 | 11.2 | 11.1 |
Creatine | 6.7 | 5.1 | 5.3 | 5.0 |
Creatine phosphate | 1.2 | 3.8 | 5.7 | 2.7 |
Creatinine | 8.7 | 8.0 | 8.1 | 7.4 |
Dimethylamine | 10.0 | 18.1 | 17.1 | 11.4 |
Fumarate | 0.1 | 0.1 | 0.0 | 0.1 |
Glucose-6-phosphate | 4.4 | 4.6 | 3.9 | 3.3 |
Glutamate | 6.6 | 8.3 | 7.0 | 9.2 |
Glycine | 5.4 | 5.4 | 5.2 | 5.4 |
Isoleucine | 1.3 | 3.3 | 1.3 | 1.8 |
Lactate | 15.6 | 23.4 | 24.7 | 24.6 |
Leucine | 6.5 | 6.6 | 7.1 | 6.8 |
Malonate | 1.9 | 2.4 | 1.8 | 2.1 |
Methionine suppl. | 1.4 | 15.1 | 12.7 | 14.9 |
N,N-Dimethylglycine | 1.2 | 3.2 | 3.2 | 1.8 |
O-Phosphocholine | 1.2 | 2.8 | 3.1 | 2.5 |
Sarcosine | 4.1 | 2.1 | 2.0 | 1.7 |
Succinate | 2.1 | 2.2 | 2.0 | 2.6 |
Taurine suppl. | 11.8 | 38.4 | 35.1 | 30.5 |
Threonine | 1.9 | 2.0 | 1.8 | 2.1 |
Valine | 2.6 | 2.3 | 2.5 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoerterer, C.; Petereit, J.; Lannig, G.; Bock, C.; Buck, B.H. 1H-NMR-Based Metabolic Profiling in Muscle and Liver Tissue of Juvenile Turbot (Scophthalmus maximus) Fed with Plant and Animal Protein Sources. Metabolites 2023, 13, 612. https://doi.org/10.3390/metabo13050612
Hoerterer C, Petereit J, Lannig G, Bock C, Buck BH. 1H-NMR-Based Metabolic Profiling in Muscle and Liver Tissue of Juvenile Turbot (Scophthalmus maximus) Fed with Plant and Animal Protein Sources. Metabolites. 2023; 13(5):612. https://doi.org/10.3390/metabo13050612
Chicago/Turabian StyleHoerterer, Christina, Jessica Petereit, Gisela Lannig, Christian Bock, and Bela H. Buck. 2023. "1H-NMR-Based Metabolic Profiling in Muscle and Liver Tissue of Juvenile Turbot (Scophthalmus maximus) Fed with Plant and Animal Protein Sources" Metabolites 13, no. 5: 612. https://doi.org/10.3390/metabo13050612
APA StyleHoerterer, C., Petereit, J., Lannig, G., Bock, C., & Buck, B. H. (2023). 1H-NMR-Based Metabolic Profiling in Muscle and Liver Tissue of Juvenile Turbot (Scophthalmus maximus) Fed with Plant and Animal Protein Sources. Metabolites, 13(5), 612. https://doi.org/10.3390/metabo13050612