A Spectrum of Age- and Gender-Dependent Lower Urinary Tract Phenotypes in Three Mouse Models of Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Diets
2.3. Mouse Strains
2.4. Strain Phenotypes
2.5. Void Spot Assay (VSA)
2.6. Glucose Tolerance Testing (GTT)
2.7. Histology
2.8. Statistics
3. Results
3.1. Body and Bladder Weights
3.2. Glucose Tolerance Testing
3.3. Void Spot Assays
4. Discussion
4.1. Broad-Based Themes to Emerge
- (1)
- Hyperglycemia usually drives polyuria, but not always. The positive correlation applied to KK-Ay males and females and to TallyHo males but did not apply to TallyHo females. NoncNZO females were not hyperglycemic and did not exhibit polyuria, while the males were modestly hyperglycemic and also were not polyuric. In the case of KK-Ay mice, the correlation between fasted blood glucose (which constantly changed over the lifespan of the study—8 mo) and total urine volumes was extremely tight (Figure 7). Tentatively, it might be concluded that, in mice, the degree of hyperglycemia is critical in driving a polyuric response and that exceeding some glucose threshold triggers it. The TallyHo females, for example, had AUC values of ~40,000 (compared with C57BL6/J’s at 12,500; Figure 4D) but were in the normal range for four-hour urine volume (~400 μL; Figure 8A).
- (2)
- The moderately high-fat diet used, 26% calories by fat compared to 16% for control, had minimal effect on weight gain and modest but consistent effects on glucose intolerance (making it worse); however, differences in voiding phenotypes were not detected with VSA. This may be because the VSA is a relatively noisy assay requiring larger group sizes to tease out phenotypes. Careful and appropriately powered cystometric studies may be required to uncover diet-related differences using these diets.
- (3)
- The metabolic status of T2D strains can be a moving target that, in some cases, improves with age. We note that KK-Ay males and females, as well as TallyHo females, deteriorated in glucose tolerance initially, while at later age points, improved somewhat.
- (4)
- The NoncNZO strain does not appear to be a useful model for the study of diabetic voiding dysfunction. The females were normoglycemic for 12 months, while the males were modestly hyperglycemic and stable. Void spot parameters for both males and females were relatively unchanging for 12 months and mostly within, or not too different, from what we would consider a normal range based on C57BL6/J mice for comparison.
4.2. Interpretation of VSA Parameters
4.3. TallyHo Mice
4.4. KK-Ay Mice
4.5. Other Observations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Litwin, M.S.; Saigal, C.S. (Eds.) US Department of Health and Human Services. In Urologic Diseases in America. Public Health Service National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases; US Government Printing Office: Washington, DC, USA, 2012; NIH Publication No. 12-7865. [Google Scholar]
- Hill, S.R.; Fayyad, A.M.; Jones, G.R. Diabetes mellitus and female lower urinary tract symptoms: A review. Neurourol. Urodyn. 2008, 27, 362–367. [Google Scholar] [CrossRef]
- Bladder Research Progress Review Group. Urologic complications of diabetes mellitus. In Overcoming Bladder Disease: A Strategic Plan for Research; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health: Bethesda, MD, USA, 2004; pp. 133–143. [Google Scholar]
- Brown, J.S.; Grady, D.; Ouslander, J.G.; Herzog, A.R.; Varner, R.E.; Posner, S.F.; Heart & Estrogen/Progestin Replacement Study (HERS) Research Group. Prevalence of urinary incontinence and associated risk factors in postmenopausal women. Obstet. Gynecol. 1999, 94, 66–70. [Google Scholar] [PubMed]
- Bump, R.C.; Sugerman, H.J.; Fantl, J.A.; McClish, D.K. Obesity and lower urinary tract function in women: Effect of surgically induced weight loss. Am. J. Obstet. Gynecol. 1992, 167, 392–397, discussion 397–399. [Google Scholar] [CrossRef] [PubMed]
- Devore, E.E.; Townsend, M.K.; Resnick, N.M.; Grodstein, F. The epidemiology of urinary incontinence in women with type 2 diabetes. J. Urol. 2012, 188, 1816–1821. [Google Scholar] [CrossRef]
- Dwyer, P.L.; Lee, E.T.; Hay, D.M. Obesity and urinary incontinence in women. Br. J. Obstet. Gynaecol. 1988, 95, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Kolbl, H.; Riss, P. Obesity and stress urinary incontinence: Significance of indices of relative weight. Urol. Int. 1988, 43, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.M.; Lukacz, E.S.; Liu, I.L.; Nager, C.W.; Luber, K.M. Pelvic floor disorders, diabetes, and obesity in women: Findings from the Kaiser Permanente Continence Associated Risk Epidemiology Study. Diabetes Care 2007, 30, 2536–2541. [Google Scholar] [CrossRef]
- Mommsen, S.; Foldspang, A. Body mass index and adult female urinary incontinence. World J. Urol. 1994, 12, 319–322. [Google Scholar] [CrossRef]
- Phelan, S.; Kanaya, A.M.; Subak, L.L.; Hogan, P.E.; Espeland, M.A.; Wing, R.R.; Burgio, K.L.; Dilillo, V.; Gorin, A.A.; West, D.S.; et al. Prevalence and risk factors for urinary incontinence in overweight and obese diabetic women: Action for health in diabetes (look ahead) study. Diabetes Care 2009, 32, 1391–1397. [Google Scholar] [CrossRef]
- Tai, H.C.; Chung, S.D.; Ho, C.H.; Tai, T.Y.; Yang, W.S.; Tseng, C.H.; Wu, H.P.; Yu, H.J. Metabolic syndrome components worsen lower urinary tract symptoms in women with type 2 diabetes. J. Clin. Endocrinol. Metab. 2010, 95, 1143–1150. [Google Scholar] [CrossRef]
- Brown, J.S. Urinary incontinence: An important and underrecognized complication of type 2 diabetes mellitus. J. Am. Geriatr. Soc. 2005, 53, 2028–2029. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.S.; Vittinghoff, E.; Lin, F.; Nyberg, L.M.; Kusek, J.W.; Kanaya, A.M. Prevalence and risk factors for urinary incontinence in women with type 2 diabetes and impaired fasting glucose: Findings from the National Health and Nutrition Examination Survey (NHANES) 2001–2002. Diabetes Care 2006, 29, 1307–1312. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, C.; Aronson, W.; Freedland, S.J.; Giovannucci, E.; Parsons, J.K. The correlation between metabolic syndrome and prostatic diseases. Eur. Urol. 2012, 61, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Mongiu, A.K.; McVary, K.T. Lower urinary tract symptoms, benign prostatic hyperplasia, and obesity. Curr. Urol. Rep. 2009, 10, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Moul, S.; McVary, K.T. Lower urinary tract symptoms, obesity and the metabolic syndrome. Curr. Opin. Urol. 2010, 20, 7–12. [Google Scholar] [CrossRef]
- Wang, S.; Mao, Q.; Lin, Y.; Wu, J.; Wang, X.; Zheng, X.; Xie, L. Body mass index and risk of BPH: A meta-analysis. Prostate Cancer Prostatic Dis. 2012, 15, 265–272. [Google Scholar] [CrossRef]
- Elrashidy, R.A.; Liu, G. Long-term diabetes causes molecular alterations related to fibrosis and apoptosis in rat urinary bladder. Exp. Mol. Pathol. 2019, 111, 104304. [Google Scholar] [CrossRef]
- Song, Q.X.; Sun, Y.; Deng, K.; Mei, J.Y.; Chermansky, C.J.; Damaser, M.S. Potential role of oxidative stress in the pathogenesis of diabetic bladder dysfunction. Nat. Rev. Urol. 2022, 19, 581–596. [Google Scholar] [CrossRef]
- Lee, S.; Rose’meyer, R.; McDermott, C.; Chess-Williams, R.; Sellers, D.J. Diabetes-induced alterations in urothelium function: Enhanced ATP release and nerve-evoked contractions in the streptozotocin rat bladder. Clin. Exp. Pharmacol. Physiol. 2018, 45, 1161–1169. [Google Scholar] [CrossRef]
- Pitre, D.A.; Ma, T.; Wallace, L.J.; Bauer, J.A. Time-dependent urinary bladder remodeling in the streptozotocin-induced diabetic rat model. Acta Diabetol. 2002, 39, 23–27. [Google Scholar] [CrossRef]
- Yang, X.F.; Wang, J.; Rui, W.; Xu, Y.F.; Chen, F.J.; Tang, L.Y.; Ren, W.K.; Fu, L.J.; Tan, B.; Huang, P.; et al. Time-dependent functional, morphological, and molecular changes in diabetic bladder dysfunction in streptozotocin-induced diabetic mice. Neurourol. Urodyn. 2019, 38, 1266–1277. [Google Scholar] [CrossRef]
- Dolber, P.C.; Jin, H.; Nassar, R.; Coffman, T.M.; Gurley, S.B.; Fraser, M.O. The effects of Ins2(Akita) diabetes and chronic angiotensin II infusion on cystometric properties in mice. Neurourol. Urodyn. 2015, 34, 72–78. [Google Scholar] [CrossRef]
- Odom, M.R.; Hughes, F.M., Jr.; Jin, H.; Purves, J.T. Diabetes causes NLRP3-dependent barrier dysfunction in mice with detrusor overactivity but not underactivity. Am. J. Physiol. Ren. Physiol. 2022, 323, F616–F632. [Google Scholar] [CrossRef]
- Abler, L.L.; O’Driscoll, C.A.; Colopy, S.A.; Stietz, K.P.K.; Wang, P.; Wang, Z.; Hartmann, F.; Crader-Smith, S.M.; Oellete, J.N.; Mehta, V.; et al. The influence of intermittent hypoxia, obesity, and diabetes on male genitourinary anatomy and voiding physiology. Am. J. Physiol. Ren. Physiol. 2021, 321, F82–F92. [Google Scholar] [CrossRef]
- Nobe, K.; Yamazaki, T.; Tsumita, N.; Hashimoto, T.; Honda, K. Glucose-dependent enhancement of diabetic bladder contraction is associated with a rho kinase-regulated protein kinase C pathway. J. Pharmacol. Exp. Ther. 2009, 328, 940–950. [Google Scholar] [CrossRef]
- Daneshgari, F.; Liu, G.; Imrey, P.B. Time dependent changes in diabetic cystopathy in rats include compensated and decompensated bladder function. J. Urol. 2006, 176, 380–386. [Google Scholar] [CrossRef]
- Kim, A.K.; Hamadani, C.; Zeidel, M.L.; Hill, W.G. Urological complications of obesity and diabetes in males and females of three mouse models: Temporal manifestations. Am. J. Physiol. Ren. Physiol. 2020, 318, F160–F174. [Google Scholar] [CrossRef] [PubMed]
- Ostenson, C.G. The pathophysiology of type 2 diabetes mellitus: An overview. Acta Physiol. Scand. 2001, 171, 241–247. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.G.; Monica, F.Z.; Passos, G.R.; Victorio, J.A.; Davel, A.P.; Oliveira, A.L.L.; Parada, C.A.; D’Ancona, C.A.L.; Hill, W.G.; Antunes, E. Selective Pharmacological Inhibition of NOX2 by GSK2795039 Improves Bladder Dysfunction in Cyclophosphamide-Induced Cystitis in Mice. Antioxidants 2022, 12, 92. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; MacIver, B.; Zhang, L.; Bien, E.M.; Ahmed, N.; Chen, H.; Hanif, S.Z.; de Oliveira, M.G.; Zeidel, M.L.; Hill, W.G. Deletion of Mechanosensory β1-integrin From Bladder Smooth Muscle Results in Voiding Dysfunction and Tissue Remodeling. Function 2022, 3, zqac042. [Google Scholar] [CrossRef]
- Rajandram, R.; Ong, T.A.; Razack, A.H.; MacIver, B.; Zeidel, M.; Yu, W. Intact urothelial barrier function in a mouse model of ketamine-induced voiding dysfunction. Am. J. Physiol. Ren. Physiol. 2016, 310, F885–F894. [Google Scholar] [CrossRef]
- Reifsnyder, P.C.; Flurkey, K.; Te, A.; Harrison, D.E. Rapamycin treatment benefits glucose metabolism in mouse models of type 2 diabetes. Aging 2016, 8, 3120–3130. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Chen, H.; Zhang, L.; Chan, D.; Hill, W.G.; Zeidel, M.L.; Yu, W. Molecular mechanisms of voiding dysfunction in a novel mouse model of acute urinary retention. FASEB J. 2021, 35, e21447. [Google Scholar] [CrossRef] [PubMed]
- Andrikopoulos, S.; Blair, A.R.; Deluca, N.; Fam, B.C.; Proietto, J. Evaluating the glucose tolerance test in mice. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1323–E1332. [Google Scholar] [CrossRef] [PubMed]
- Van De Vlekkert, D.; Machado, E.; d’Azzo, A. Analysis of Generalized Fibrosis in Mouse Tissue Sections with Masson’s Trichrome Staining. Bio Protoc. 2020, 10, e3629. [Google Scholar] [CrossRef]
- Erdogan, B.R.; Michel, M.B.; Matthes, J.; Castañeda, T.R.; Christen, U.; Arioglu-Inan, E.; Michel, M.C.; Pautz, A. A comparison of urinary bladder weight in male and female mice across five models of diabetes and obesity. Front. Pharmacol. 2023, 14, 1118730. [Google Scholar] [CrossRef]
- Daneshgari, F.; Liu, G.; Birder, L.; Hanna-Mitchell, A.T.; Chacko, S. Diabetic bladder dysfunction: Current translational knowledge. J. Urol. 2009, 182, S18–S26. [Google Scholar] [CrossRef]
- Golbidi, S.; Laher, I. Bladder dysfunction in diabetes mellitus. Front. Pharmacol. 2010, 1, 136. [Google Scholar] [CrossRef]
- Kaplan, S.A.; Te, A.E.; Blaivas, J.G. Urodynamic findings in patients with diabetic cystopathy. J. Urol. 1995, 153, 342–344. [Google Scholar] [CrossRef]
- Starer, P.; Libow, L. Cystometric evaluation of bladder dysfunction in elderly diabetic patients. Arch. Intern. Med. 1990, 150, 810–813. [Google Scholar] [CrossRef]
- Hunter, K.F.; Moore, K.N. Diabetes-associated bladder dysfunction in the older adult (CE). Geriatr. Nurs. 2003, 24, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Yang, X.; Wang, J.; Xu, Y.; Wang, R.; Tan, B.; Huang, P.; Cao, H. Diabetic bladder dysfunction in T2D KK-Ay mice and its changes in the level of relevant gene expression. Biomed. Pharmacother. 2020, 131, 110706. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, H.; Inomata, T.; Ogihara, K. Obstructive uropathy and hydronephrosis in male KK-Ay mice: A report of cases. J. Vet. Med. Sci. 1999, 61, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Babcock, V.I.; Southam, C.M. Obstructive uropathy in laboratory mice. Proc. Soc. Exp. Biol. Med. 1965, 120, 580–581. [Google Scholar] [CrossRef]
- Silverstein, E.; Sokoloff, L.; Mickelsen, O.; Jay, G.E. Primary Polydipsia and Hydronephrosis in an Inbred Strain of Mice. Am. J. Pathol. 1961, 38, 143–159. [Google Scholar]
- Sokoloff, L.; Barile, M.F. Obstructive genitourinary disease in male STR/IN mice. Am. J. Pathol. 1962, 41, 233–246. [Google Scholar]
- Inouye, B.M.; Hughes, F.M., Jr.; Jin, H.; Lütolf, R.; Potnis, K.C.; Routh, J.C.; Rouse, D.C.; Foo, W.C.; Purves, J.T. Diabetic bladder dysfunction is associated with bladder inflammation triggered through hyperglycemia, not polyuria. Res. Rep. Urol. 2018, 10, 219–225. [Google Scholar] [CrossRef]
- Tomechko, S.E.; Liu, G.; Tao, M.; Schlatzer, D.; Powell, C.T.; Gupta, S.; Chance, M.R.; Daneshgari, F. Tissue specific dysregulated protein subnetworks in type 2 diabetic bladder urothelium and detrusor muscle. Mol. Cell. Proteom. 2015, 14, 635–645. [Google Scholar] [CrossRef]
- de Oliveira, M.G.; de Medeiros, M.L.; Tavares, E.B.G.; Mónica, F.Z.; Antunes, E. Methylglyoxal, a Reactive Glucose Metabolite, Induces Bladder Overactivity in Addition to Inflammation in Mice. Front. Physiol. 2020, 11, 290. [Google Scholar] [CrossRef]
- Chen, H.; Wu, A.; Zeidel, M.L.; Yu, W. Smooth Muscle Insulin Receptor Deletion Causes Voiding Dysfunction: A Mechanism for Diabetic Bladder Dysfunction. Diabetes 2022, 71, 2197–2208. [Google Scholar] [CrossRef]
Strain | Pancreatic Insulin Content | Obesity | Hyperglycemia | Glucose Intolerance | Insulin Resistance |
---|---|---|---|---|---|
KK-AY | High | Moderate | Moderate but varies with age | Severe | Yes |
NONC | Intermediate | No | Moderate | Males—moderate Females—no | Yes |
TALLYHO | Low | Females—yes Males—no | Males—severe Females—moderate | Males—severe Female—moderate | Yes |
KK-AY (AT 9 MO) | TALLYHO (AT 9 MO) | NONCNZO (AT 12 MO) | |
---|---|---|---|
Male control diet | 2/6 | 1/6 | 0/10 |
Male high-fat diet | 3/6 | 4/6 | 0/10 |
Female control diet | 1/6 | 0/6 | 4/10 |
Female high-fat diet | 2/6 | 0/6 | 6/10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
MacIver, B.; Bien, E.M.; de Oliveira, M.G.; Hill, W.G. A Spectrum of Age- and Gender-Dependent Lower Urinary Tract Phenotypes in Three Mouse Models of Type 2 Diabetes. Metabolites 2023, 13, 710. https://doi.org/10.3390/metabo13060710
MacIver B, Bien EM, de Oliveira MG, Hill WG. A Spectrum of Age- and Gender-Dependent Lower Urinary Tract Phenotypes in Three Mouse Models of Type 2 Diabetes. Metabolites. 2023; 13(6):710. https://doi.org/10.3390/metabo13060710
Chicago/Turabian StyleMacIver, Bryce, Erica M. Bien, Mariana G. de Oliveira, and Warren G. Hill. 2023. "A Spectrum of Age- and Gender-Dependent Lower Urinary Tract Phenotypes in Three Mouse Models of Type 2 Diabetes" Metabolites 13, no. 6: 710. https://doi.org/10.3390/metabo13060710
APA StyleMacIver, B., Bien, E. M., de Oliveira, M. G., & Hill, W. G. (2023). A Spectrum of Age- and Gender-Dependent Lower Urinary Tract Phenotypes in Three Mouse Models of Type 2 Diabetes. Metabolites, 13(6), 710. https://doi.org/10.3390/metabo13060710