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Abstract: Inflammatory bowel diseases (IBDs), including Crohn’s disease (CD) and ulcerative colitis
(UC), have become a global health problem with a rapid growth of incidence in newly industrial-
ized countries. Observational studies have recognized associations between blood lipid traits and
IBDs, but the causality still remains unclear. To determine the causal effects of blood lipid traits,
including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C),
and low-density lipoprotein cholesterol (LDL-C) on IBDs, two-sample Mendelian randomization
(MR) analyses were conducted using the summary-level genome-wide association study (GWAS)
statistics of blood lipid traits and IBDs. Our univariable MR using multiplicative random-effect
inverse-variance weight (IVW) method identified TC (OR: 0.674; 95% CI: 0.554, 0.820; p < 0.00625)
and LDL-C (OR: 0.685; 95% CI: 0.546, 0.858; p < 0.00625) as protective factors of UC. The result of
our multivariable MR analysis further provided suggestive evidence of the protective effect of TC
on UC risk (OR: 0.147; 95% CI: 0.025, 0.883; p < 0.05). Finally, our MR-BMA analysis prioritized TG
(MIP: 0.336; θ̂MACE: −0.025; PP: 0.31; θ̂λ: −0.072) and HDL-C (MIP: 0.254; θ̂MACE: −0.011; PP: 0.232;
θ̂λ: −0.04) for CD and TC (MIP: 0.721; θ̂MACE: −0.257; PP: 0.648; θ̂λ: −0.356) and LDL-C (MIP: 0.31;
θ̂MACE: −0.095; PP: 0.256; θ̂λ: −0.344) for UC as the top-ranked protective factors. In conclusion, the
causal effect of TC for UC prevention was robust across all of our MR approaches, which provide
the first evidence that genetically determined TC is causally associated with reduced risk of UC. The
finding of this study provides important insights into the metabolic regulation of IBDs and potential
metabolites targeting strategies for IBDs intervention.

Keywords: lipid traits; cholesterol; inflammatory bowel diseases; Crohn’s disease; ulcerative colitis;
Mendelian randomization

1. Introduction

Inflammatory bowel diseases (IBDs) mainly consist of two major groups of diseases:
Crohn’s disease (CD) and ulcerative colitis (UC). CD can involve any part of the gastroin-
testinal tract from the oral cavity to the perianal region, while UC is characterized by diffuse
persistent colitis extending from the proximal rectum [1]. The pathological and clinical
features of the two types of diseases are both distinct and overlapping. IBDs are caused by
an overactive immune response to environmental factors in a genetically susceptible host.
Whole genome sequencing and other genetic analyses have revealed more than 200 loci
associated with IBDs risk [2,3]. In addition, environmental factors, including lifestyle, medi-
cation use, and surgery, may play a role in the development of the disease. The distributions
of IBDs were initially thought to be limited by race and geography, primarily affecting
people of Western European descent [4]. By the late twentieth century, patients suffering
from IBDs were identified in all regions of the world [5]. After a rise in the twentieth
century, the incidence of IBDs in the western world levels off in this century. However,
the incidence of IBDs in the newly industrialized countries of the twenty-first century is
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increasing [6]. The precise origin of these phenomena remains unknown; however, it can
be attributed to the complex interplay between genetics and the environment.

Without prompt and effective treatment, the naturally progressive course of IBDs can
advance from presenting mild and infrequent symptoms to causing severe debilitation,
requiring surgical intervention and potentially resulting in disability. However, due to tech-
nical limitations, current treatment strategies for IBDs focus on symptom relief and aim to
prevent all inflammations. The treatment methods currently used, including corticosteroids,
immunosuppressants, and biological agents, are ineffective for some patients and may
be related to adverse reactions that limit their use [7]. Furthermore, numerous treatment
options necessitate long-term parenteral treatment or carry a high risk of severe infections
and malignancies [8]. Therefore, prevention of the disease as well as early detection and
early elimination of inflammation in the early course of the disease is the best approach
to target the disease. Investigating the influence of genetic and environmental factors on
the pathogenesis and onset of IBDs may provide insight into risk reduction and symptom
alleviation for patients.

Lipids (such as cholesterol and triglycerides) are insoluble in plasma and are trans-
ported by binding to circulating lipoproteins [9]. In turn, circulating lipoproteins transport
lipids to various tissues for energy utilization, lipid deposition, steroid hormone production,
and bile acid formation. Blood contains five major classes of lipoproteins: chylomicrons,
very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density
lipoprotein (LDL), and high-density lipoprotein (HDL), and each of which carries different
amounts of cholesterol and triglycerides [10]. Blood lipid profiles, including total choles-
terol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol
(HDL-C), and triglycerides (TG), are widely tested in clinical practice. Lipid profile mea-
surements are currently most commonly used to help determine the risk of cardiovascular
disease (CVD) events. Many studies have shown that lipid profiles are closely related not
only to metabolic diseases but also to immune and inflammatory disorders [11].

The relationship between blood lipid traits and IBDs has been investigated by prior
studies and has yielded varying results. Some case-control studies have observed abnormal
blood lipid traits in patients with IBDs [12–15]. While the findings are conflicting, most
studies of individuals with IBDs show a predominant lipid pattern characterized by re-
duced levels of TC and LDL-C but increased TG and HDL-C levels compared to healthy
controls. In addition, the degree of dyslipidemia has been found to correlate with IBDs
activity and severity [16]. A study of patients with enterocutaneous fistula showed that
IBD was an independent predictor of hypertriglyceridemia [17]. Another observational
study found that hypocholesterolemia was more common in patients with IBDs in a hos-
pital population [18]. However, the observational study could not distinguish the causal
relationships due to confounding and reverse causality.

Mendelian randomization (MR) can be used to efficiently detect inferences of causal
relationships between genetically influenced exposures and diseases. It incorporates genetic
instrumental variables (IVs) into traditional causal inference methods and provides a
solution to the problem of causality without many of the typical biases that affect the
validity of causal inference methods. We conducted MR analysis using large-scale genome-
wide association study (GWAS) data on blood lipid traits and IBDs to identify the metabolic
causal factor for IBDs prevention and management.

2. Method
2.1. Mendelian Randomization Analysis Study Design

This study used a two-sample MR design to assess the causal effects of four blood
lipid traits and IBDs. The single-nucleotide variations (SNVs) used to demonstrate causal
effects in the MR analysis must satisfy three key assumptions: Firstly, the IVs must be
closely related to the exposure; Secondly, the IVs are not related to any confounders of the
risk factor–outcome association; Thirdly, the IVs do not affect the outcome through any
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pathway other than the exposure of interest [19]. The fundamental assumptions of MR are
depicted in Figure 1.

Figure 1. Graphical overview of the two-sample MR study design. Blood lipid trait-associated single
nucleotide variations were utilized as instrumental variables to investigate the causal relationship
between blood lipid traits and inflammatory bowel diseases. The arrows in the figure denote the
assumptions of MR analysis, indicating that the instrumental variable should be associated with the
exposure of interest but not related to potential confounders and should influence the outcome only
through the exposure. Abbreviations: CD, Crohn’s disease; MR, Mendelian randomization; SNV,
single-nucleotide variation; UC, ulcerative colitis.

2.2. Data Sources
Appropriate IVs for MR Analysis Were Selected from Two Distinct GWASs

Summary-level data of blood lipid traits were obtained from GWASs performed in
45 studies that reported naturally occurring variants in 188,577 individuals of European
ancestry and 7898 individuals of non-European ancestry [20]. This GWAS identifies SNVs
associated with lipid traits, including TG, TC, LDL-C, and HDL-C. In this study, we
used data from a subset that included 37 studies consisting of individuals of European
ancestry for subsequent analyses and lessened the chance of population stratification
(Supplementary Table S1).

Summary statistics for IBDs were obtained from the International Inflammatory Bowel
Disease Genetics Consortium (IIBDGC). The study of IBDs involved 34,652 individuals of
European ancestry where the subgroup CD consisted of 5956 patients and 14,927 controls,
while the UC subgroup included 6968 patients and 20,464 controls [3]. Diagnoses of CD and
UC were based on standard radiological, endoscopic, and histopathological evaluations.
Participants were all of European descent. The characteristics of the included cohorts for
the GWAS of IBDs are summarized in Supplementary Table S2.

The data sources for this study were all freely available abstract-level information.
Ethical approval and written informed consent of the subjects were obtained in all origi-
nal studies.

2.3. Instrument Selection

We carried out a variety of quality control procedures to identify eligible, instrumental
SNVs from the GWAS summary data of IBDs, including UC and CD. First, to satisfy the
first hypothesis, SNVs associated with corresponding exposures under a genome-wide
significance threshold of p = 5 × 10−8 were selected as initial IVs. For SNVs not available
in the IBDs database, proxy SNVs were used based on European population genotype data
derived from the 1000 Genomes Project phase 3 (version 5) (r2 > 0.8).

To ensure independence, IVs were subjected to a PLINK clustering process. We
used a clustering technique with r2 < 0.001 and a window size of 10,000 kb to eliminate
SNVs associated with significant linkage disequilibrium (LD). Only the SNV with the
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lower p value would be kept among those pairs of SNVs where the r2 was higher than
the predetermined threshold. Subsequently, the PhenoScanner database (http://www.
phenoscanner.medschl.cam.ac.uk/) was used (accessed on 16 February 2023) to find all
SNVs associated with potential confounders [21]. All SNVs associated with confounding
variables and outcome-related SNVs were eliminated to satisfy the second hypothesis
(p < 5 × 10−8). The threshold of 5 × 10−8 is widely recognized as the criterion for declaring
genome-wide association significance for common variants with a minor allele frequency
of 5% or higher in European ancestry populations [22,23]. This established threshold was
based on the International HapMap Consortium’s study in 2005 in which they estimated
the number of common independent variants in the European population to be 150 per
500 kilobase pairs (kb) through permutation testing of genotypes in 10 densely genotyped
genomic regions and extrapolated to all the genome (~3.3 Gb) and suggested a threshold of
5 × 10−8 [24].

In addition, we calculated the F-statistic of SNVs for each exposure using the follow-
ing formula:

F =

(
R2

k

)
/

( [
1 − R2]

[n − k − 1]

)
where R2 is the change in exposure explained using the SNV, n is the sample size, and k
is the number of SNVs. The F-statistic was used to assess the strength of the IV. F < 10
indicates the presence of weak instrumental bias [25].

Finally, the statistical effects of this MR analysis are estimated using a power calculation
method based on the Burgess design [26].

2.4. MR Estimates

To calculate the causal influence of exposure variables on an outcome, MR analysis
employs genetic variations as IVs. In the study, the summary statistics were employed to
assess the causative relationships between blood lipid traits (TC, TG, LDL-C, and HDL-C)
and IBDs (CD and UC) using various MR approaches. The odds ratios (OR) of CD and UC
were calculated per one standard deviation (SD) increment in genetically predicted blood
lipid traits.

A variety of univariable MR approaches were employed to assess the causal rela-
tionships between blood lipid traits and IBDs, including multiplicative random-effect
inverse-variance weighted (IVW), fixed-effect IVW, simple median, weighted median, MR-
Egger, and penalized weighted median methods. The fixed-effect IVW method employs a
weighted combination of effect estimations obtained from multiple IVs to infer the causal
relationship between each blood lipid trait and CD or UC. Meanwhile, the multiplicative
random-effect IVW approach accommodates for the presence of heterogeneity across the
IVs [27]. Compared to the IVW approaches, the median ratio estimate can tolerate up to
50% of invalid IVs. The weighted median approach utilizes the median effect estimate
derived from multiple genetic instruments, whereas the simple median method assumes
equal weights for all instruments. On the other hand, the penalized weighted median
approach imposes penalty on large deviations from the estimated center of distribution,
rendering it useful for data having skewed distribution or outliers that could introduce bias
in the estimation of causal effect [28]. The MR-Egger method adopts a regression-based
approach to estimate the causal effect of an exposure on an outcome, taking into account
the presence of horizontal pleiotropy [29]. The random-effect IVW method was considered
as the primary analysis technique, taking into account the existence of several exposures
and outcomes. In contrast, the other analytical approaches were used for assessing the
robustness of the main findings.

Multivariable MR analysis allows the assessment of the direct effect of exposure factors
on outcomes when there is an interaction between exposure factors [30]. Then, conventional
linear multivariable MR analysis using IVW methods was performed to assess the direct
effects of blood lipid traits on CD and UC.

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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Finally, a multivariable MR approach based on Bayesian model averaging (MR-BMA)
was employed for detecting and prioritizing true risk factors of IBDs from a set of blood lipid
traits [31]. In the current study, the method considers all possible combinations of blood
lipid traits and generates posterior probabilities (PP) for each model to calculate its marginal
inclusion probability (MIP), indicating the probability of it being a causal determinant
of disease risk. We also calculated the model-averaged causal estimate (θ̂MACE), which
represents the average causal effect of the models including lipid indicators. To detect null
and influential IVs, Cochran’s Q statistic and Cook’s distance (Cd) were used to quantify
outliers and influential observations, excluding any SNV with a Q value greater than 10 or
a Cd greater than the median of the associated F-distribution [32,33].

2.5. Sensitivity Analysis

Heterogeneity of IVs was estimated using Cochran’s Q statistic [34]. The intercept
obtained from the MR-Egger regression model was employed for assessing the pleiotropy
introduced by unknown confounders [35]. To minimize the risk of obtaining false positive
results from multiple comparisons, we applied the Bonferroni correction. Following the
Bonferroni correction, p-values less than 0.00625 (0.05/8, representing 4 exposures and
2 outcomes) were considered statistically significant, while those between 0.00625 and
0.05 were deemed suggestive significant.

Data were analyzed using the TwoSampleMR (version 0.5.6) [36,37] and Mendelian
Randomization (0.6.0) [38] packages in the statistical program R (version 4.1.1; the R
Foundation for Statistical Computing). All abbreviations used in the manuscript and
supplementary tables, their detailed explanations, formula, the R packages employed, and
the relevant references for each explanation are shown in Supplementary Note S1.

3. Results
3.1. Characteristics of SNVs Used as Genetic Instruments

After significance threshold screening, LD clumping, proxy selection, and exclusion
of known pleiotropic variants, a total of 109 and 115 independent SNVs were obtained
as IVs for CD and UC, respectively (Supplementary Tables S3 and S4). The F-statistics
corresponding to individual SNV for CD and UC ranged from 11 to 450, indicating that
all SNVs were sufficiently strong (Supplementary Tables S5 and S6). Post hoc power
calculations indicated that the sample size included in the current study was large enough
(Supplementary Tables S7–S10).

3.2. Main Analysis

Our univariable MR analysis using multiplicative random-effect IVW approach de-
rived distinct results for CD and UC. The results showed no association between blood
lipid traits and CD, whereas identified TC (OR: 0.674; 95% CI: 0.554, 0.820; p < 0.00625) and
LDL-C (OR: 0.685; 95% CI: 0.546, 0.858; p < 0.00625) as protective factors for UC (Figure 2).
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Figure 2. Causal effects of blood lipid traits on CD and UC estimated by univariable MR analysis.
(A) Association of blood lipid traits and CD in univariable MR analyses. (B) Association of blood
lipid traits and UC in univariable MR analyses. The estimated ORs reflect the impact of one SD
increase in blood lipid traits on CD or UC as determined through multiplicative random-effect
inverse-variance weighted analysis. Abbreviations: BLT, blood lipid trait; CD, Crohn’s disease; MR,
Mendelian randomization; OR, odds ratio; SD, standard deviation; UC, ulcerative colitis.

The subsequent multivariable MR analysis using multiplicative random-effect IVW
approach derived consistent results. No causal factor was detected for CD in multivariable
MR analysis (Figure 3A). The result of multivariable MR for UC provided suggestive
evidence for the protective effect of TC (OR: 0.147; 95% CI: 0.025, 0.883; p < 0.05) on UC
(Figure 3B), which was directionally consistent with our univariable MR result.
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Figure 3. Causal effects of blood lipid traits on CD and UC estimated by multivariable MR analysis.
(A) Association of blood lipid traits and CD in multivariable MR analyses. (B) Association of blood
lipid traits and UC in multivariable MR analyses. The estimated ORs reflect the impact of one SD
increase in blood lipid traits on CD or UC, as determined through multiplicative random-effect
inverse-variance weighted analysis. Abbreviations: BLT, blood lipid trait; CD, Crohn’s disease; MR,
Mendelian randomization; OR, odds ratio; SD, standard deviation; UC, ulcerative colitis.

Furthermore, the non-linear MR-BMA approach was employed for detecting the best
models of CD and UC (Tables 1 and 2). TG (MIP: 0.336; θ̂MACE: −0.025; PP: 0.31; θ̂λ: −0.072)
and HDL-C (MIP: 0.254; θ̂MACE: −0.011; PP: 0.232; θ̂λ: −0.04) were prioritized as best
models for CD, whereas TC (MIP: 0.721; θ̂MACE: −0.257; PP: 0.648; θ̂λ: −0.356) and LDL-C
(MIP: 0.31; θ̂MACE: −0.095; PP: 0.256; θ̂λ: −0.344) were prioritized for UC with PP larger
than 0.02 and MIP larger than 0.25 (Table 2). The Q statistic and Cd for each IV are shown
in Supplementary Tables S11–S14.
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Table 1. Ranking of risk factors and models (sets of risk factors) for CD a.

(A) Model Averaging for Risk Factors

Ranking by MIP Risk Factor MIP θ̂MACE

1 TG 0.336 −0.025
2 HDL-C 0.254 −0.011
3 LDL-C 0.233 −0.006
4 TC 0.226 −0.006

(B) The 10 Best Individual Models

Ranking by PP Model PP θ̂λ

1 TG 0.31 −0.072
4 HDL-C 0.232 −0.04
3 LDL-C 0.209 −0.027
2 TC 0.202 −0.027

2,3 TG, LDL-C 0.011 −0.02, −0.009
1,4 TC, HDL-C 0.01 −0.129, −0.09
1,3 TG, LDL-C 0.007 −0.066, −0.014
1,2 TG, TC 0.007 −0.066, −0.015
2,4 TC, HDL-C 0.005 −0.017, −0.034
3,4 LDL-C, HDL-C 0.005 −0.023, −0.037

a Results were generated using the MR-BMA approach. A total of 4 measurable circulating lipid traits genetically
instrumented by 109 SNVs were assessed as risk factors. All risk factors and the 10 best individual models were
presented. A negative causal estimate (θ̂MACE or θ̂λ) indicates a protective effect as suggested by the model,
whereas a positive value indicates a risk factor. θ̂λ is the causal effect estimate for a specific model, and θ̂MACE is
the model averaged causal effect of a risk factor. CD, Crohn’s disease; HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; MIP, marginal inclusion probability; MR, Mendelian randomization;
MR-BMA, MR based on Bayesian model averaging; PP, posterior probability; SNV, single-nucleotide variation;
TC, total cholesterol; TG, triglycerides.

Table 2. Ranking of risk factors and models (sets of risk factors) for UC a.

(A) Model Averaging for Risk Factors

Ranking by MIP Risk Factor MIP θ̂MACE

1 TC 0.721 −0.257
2 LDL-C 0.31 −0.095
3 TG 0.033 0.003
4 HDL-C 0.031 −0.002

(B) The 10 Best Individual Models

Ranking by PP Model PP θ̂λ

2 TC 0.648 −0.356
3 LDL-C 0.256 −0.344

2,3 TC, LDL-C 0.033 −0.334, −0.025
1,2 TG, TC 0.022 0.096, −0.374
2,4 TC, HDL-C 0.016 −0.347, −0.032
3,4 LDL-C, HDL-C 0.01 −0.329, −0.118
1,3 TG, LDL-C 0.008 0.083, −0.359
4 HDL-C 0.003 −0.167

1,2,3 TG, TC, LDL-C 0.001 0.097, −0.349, −0.028
1 TG 0.001 −0.012

a a Results were generated using the MR-BMA approach. A total of 4 measurable circulating lipid traits genetically
instrumented by 115 SNVs were assessed as risk factors. All risk factors and the 10 best individual models were
presented. A negative causal estimate (θ̂MACE or θ̂λ) indicates a protective effect as suggested by the model,
whereas a positive value indicates a risk factor. θ̂λ is the causal effect estimate for a specific model, and θ̂MACE is
the model averaged causal effect of a risk factor. HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density
lipoprotein cholesterol; MIP, marginal inclusion probability; MR, Mendelian randomization; MR-BMA, MR based
on Bayesian model averaging; PP, posterior probability; SNV, single-nucleotide variation; TC, total cholesterol;
TG, triglycerides; UC, ulcerative colitis.
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3.3. Sensitivity Analysis

The PhenoScanner database was employed for known pleiotropic variants exclusion.
The phenotypes associated with the selected genetic IVs for CD and UC are shown in
Supplementary Table S15.

The fixed-effect IVW, simple median, weighted median, MR-Egger, and penalized
weighted median methods in the univariable MR analysis derived directionally consistent
results as the multiplicative random-effect IVW method (Supplementary Tables S16 and S17).

Finally, no evidence of horizontal pleiotropy was found according to the MR-Egger
regression intercept (p > 0.05) (Supplementary Tables S18 and S19). Furthermore, the
Cochran’s Q statistic indicated no heterogeneity across the IV estimates determined with
the MR-Egger and IVW methods for UC but indicated relatively high heterogeneity for CD
(Supplementary Tables S20 and S21).

4. Discussion

In this study, we performed a comprehensive MR analysis using data retrieved from
two large-scale GWAS to investigate the causal relationship between blood lipid traits and
IBDs, which fills a gap in the field. No evidence of a causal relationship between blood lipid
traits and CD was found in our MR analyses. In contrast, the causal effect of TC on UC was
identified in our univariable MR analysis and showed directional consistency across all
analytical MR approaches used in this study.

Previous studies have recognized high lipid levels and obesity were associated with
many diseases, including inflammatory bowel disease (IBDs). A meta-analysis of 255 stud-
ies demonstrated an association between dietary fat, cholesterol, fatty acids, and the risk
of IBDs [39]. An observational study involving 1598 children with IBDs indicated that
around 20% of those with CD and 33% of those with UC were overweight or obese. Obese
children with IBDs may experience a more severe disease progression [40]. These results
suggest that improper dietary lipid composition or abnormal anthropometric variables
may exacerbate IBDs.

Interestingly, patients with active chronic inflammatory diseases have lower levels
of TC, HDL-C, and LDL-C compared to the general population or patients with disease
in remission [41]. In systemic lupus erythematosus, rheumatoid arthritis, and sepsis, this
phenomenon, known as dyslipidemia, is prevalent [42–45]. Multiple studies have proposed
that patients with CD and UC have lower TC and LDL-C levels than controls [46–48]. A
case-control study found a significant association between low TC and LDL-C levels and
active UC and CD, indicating a systemic inflammatory state [46]. A retrospective study
involving 701 patients with IBDs compared to the general population found that patients
experience a decreased occurrence of TC and LDL-C and an increased incidence of HDL-C
and elevated TG. In addition, a population-based observational study examined the plasma
lipids in IBDs and found that plasma TC and LDL-C were slightly lower in IBDs patients
compared to individuals from the general population [48]. Thus, these association studies
have linked blood lipid profiles, especially TC and LDL-C to IBDs status.

Recently, in a prospective study conducted in IBDs patients using prednisone and
tofacitinib induction therapy, it was found that remission in clinical scores including the
Harvey Bradshaw Index for CD and Simple Clinical Colitis Activity Index for UC were
significantly correlated with an increase in serum TC level [49]. Other clinical investi-
gations of the efficacy of IBDs medications have also revealed that the blood cholesterol
profiles, especially TC and LDL-C, were significantly increased in IBDs patients during
and after treatment compared to before treatment, irrespective of the types of medications
used [50–53]. In a systematic review and meta-analysis involving 1663 patients across
11 studies, corticosteroid and tofacitinib induction therapy resulted in a significant increase
in TC [50]. A clinical trial showed that upadacitinib, a selective Janus kinase 1 (JAK1)
inhibitor, significantly increased TC, HDL-C, and LDL-C levels in IBDs patients who took
the medication and experienced clinical remission [51]. To sum up, the elevation of blood
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lipids, particularly TC and LDL-C, has been found to have a positive correlation with
improved clinical amelioration and better prognosis for IBDs patients.

Many observational studies on UC provide evidences of correlations between disease
severity and blood lipid profile. In a prospective study, TC was found to be significantly
elevated in UC patients with mucosal healing compared to those without mucosal heal-
ing [16]. Another meta-analysis of 3 cohorts involving 1157 UC patients showed that the
tofacitinib group had higher levels of TC, HDL-C, and LDL-C accompanied by decreased
high-sensitivity C-reactive protein (hs-CRP) level compared to the placebo group. Notably,
this reverse correlation between the cholesterol profiles and hs-CRP was observed not only
in the tofacitinib group but also in the placebo group, which may implicate a more general
pathophysiological effect [52]. The finding of these studies implicated that relatively high
levels of cholesterol profiles, especially TC and LDL-C, are related to a good prognosis. Con-
sistent with previous studies, our MR analysis further determined the causality between
blood cholesterol and UC risk.

CD studies exhibit a similar pattern of association where CD patients in remission
post-bowel resection have higher levels of TC, HDL-C, and LDL-C compared to those
with recurrent CD [54]. Additionally, the results of a study comprising of 868 CD patients
indicate high levels of TG, low levels of HDL-C, and diabetes as risk factors for CD-related
hospitalizations [55]. Although there are evidences of an association between blood lipid
profile and CD in some clinical studies, the results of this MR study did not find a significant
causal effect of blood lipid profile on CD.

Although previous observational studies have implicated the reverse correlation be-
tween systemic cholesterol and intestinal inflammation, the clues for understanding its
potential mechanism are still limited. We speculate that multiple pathways may be involved
in this process. Firstly, the intestinal enterocyte is not only the major cell for dietary choles-
terol absorption but also the secondary large source of de novo synthesized cholesterol
besides the hepatocyte. The decreased blood cholesterol level may prompt enterocyte to
accelerate the synthesis of cholesterol, leading to excessive consumption of ATP. Indeed, the
levels of cholesterol, cholesterol sulfate, and genes involved in cholesterol biosynthesis are
significantly elevated in inflamed tissues from UC patients compared to healthy controls.
Furthermore, supplementation of cholesterol sulfate alleviated dextran sulfate sodium
(DSS)-induced UC in mice [56]. Secondly, hypocholesterolemia may interfere with the
synthesis of steroid hormones and, hence, cause immune imbalance and intestinal dysfunc-
tion. Cholesterol is an important lipid that takes part in cell membrane structure formation
and is also a critical component for synthesizing numerous hormones and biomolecules
in the human body [57,58]. For example, glucocorticoids, such as cortisol, are important
steroid hormones synthesized from cholesterol and possess anti-inflammatory properties.
IBDs are common gastrointestinal disorders, and glucocorticoids are commonly used for
moderate-to-severe IBDs intervention [59]. Therefore, high blood cholesterol levels may
facilitate the physiological synthesis of glucocorticoids, which could help suppress the
occurrence and progression of IBDs. Thirdly, cholesterol can affect the bile acid metabolism,
which could further regulate gut microbiota, thereby affecting the health status of intestine.
Bile acids have become a key class of microbiota-related metabolites that are disrupted
in patients with IBDs. In recent years, metabolomics studies have shown that there is a
sustained defect in bile acid metabolism in patients with IBDs, characterized by increased
primary bile acids and decreased secondary bile acids, which suggests impaired bacte-
rial conversion of primary to secondary bile acids [60–62]. This pattern can be due to a
disruption in the gut microbiota, such as decreased levels of bacteria responsible for the con-
version of primary to secondary bile acids or an increase in bacteria that deconjugate and
dehydroxylate secondary bile acids. This may have implications for the pathogenesis and
management of IBDs. The liver requires cholesterol from the bloodstream to synthesize bile
acids, and thus, hypercholesterolemia provides sufficient substrate which plays a dual role
in promoting the absorption of fat-soluble substances in the intestine as well as influencing
the structure and function of intestinal flora either directly or indirectly [61,63]. Although
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the etiology of IBDs is unknown, current research has established that the gut microbiota
also plays a crucial role in the development and progression of ulcerative colitis [64–66].
Thus, blood cholesterol may regulate the composition of bile acids and subsequently impact
the gut microbiota, which can in turn affect the pathogenesis of IBDs. In summary, the
excessive consumption of ATP for accelerated cholesterol synthesis, the disturbance of
immune response due to the altered steroid hormones metabolism, and the disruption of
gut microbiota caused by altered composition of bile acids may collectively contribute to
the pathological development of UC. Although these hypotheses require further investiga-
tion, it highlights the multiple important functions of cholesterol in the human body and
underscores the necessity of controlling cholesterol levels in a reasonable manner.

In clinical practice, blood lipid traits serve as indicators of health status and lipid-
related diseases. Our MR analyses use both standard linear regression and non-linear
Bayesian model averaging approaches, providing the most up-to-date and thorough evi-
dence on the causal links between blood lipid traits and IBDs. The findings of this study
provide new insights into the potential use of blood lipid traits in the prevention and man-
agement of IBDs. Blood lipid traits could be used as targets for intervention in managing
IBDs as they offer a minimally invasive, cost-effective, and readily available method of
treatment. For prevention and triage, clinicians should take the serum lipid status, espe-
cially the TC or LDL-C levels, into account for UC. Gastrointestinal symptoms that occur in
patients with low levels of TC or LDL-C should be identified as they are often considered
as complaints of hepatobiliary disorders but not as an early clinical manifestation of UC.
Failure to distinguish between these conditions may lead to delay in diagnosis. For disease
management, incorporating the lipid profile test and involved appropriate intervention
for low TC and LDL-C levels as part of routine practice may help to optimize the clinical
strategy for UC and improve prognosis.

Despite the significant findings, this study has some limitations. One limitation is
that the study only included exposures related to a limited number of lipid indicator
categories. A comprehensive analysis of various exposures may lead to more interesting
findings. However, the routine blood lipid profile detected in clinical practice was included
in this study, making it more convenient for clinical application. The study was limited
to populations of European ancestry due to the availability of genetic data, which may
limit the generalizability of the results. Heterogeneity was found in the univariable MR
analysis for the causality between blood lipid traits and CD, which could also produce
false negative results. Furthermore, the findings of this study are based on the analyses
of statistics from GWAS database and have yet to be validated in population. To obtain
primary evidence, it is essential to conduct subsequent investigations, such as perspective
cohort studies or randomized controlled trials. Through these additional studies, it will be
possible to confirm the validity and generalizability of the conclusions drawn from this
study and to strengthen the overall scientific rigor of the findings.

5. Conclusions

Using MR approaches, we examined the causality between blood lipid traits and
IBDs. Our univariable MR analysis identified TC and LDL-C as protective factors of UC
(p < 0.00625). The following multivariable MR analysis produced suggestive evidence
for the protective effect of TC on UC (p < 0.05). Finally, the MR-BMA analysis further
prioritized TC and LDL-C as the top two ranked causal factors of UC and prioritized TG
and HDL-C as the top two ranked causal factors of CD. Notably, TC was the only protective
factor consistently associated with UC across all univariable MR, multivariable MR, and
MR-BMA approaches. In summary, our result provided the first evidence that genetically
determined TC is causally associated with reduced risk of UC. As serum TC level is also
associated with the risk of cardiovascular diseases, further studies are needed to clarify the
optimal range of serum TC as well as the mechanism underlying the protective effect of TC
on UC, thereby providing new insights regarding clinical strategies for IBDs prevention
and management.
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