Metabolomic Analysis in Neurocritical Care Patients
Abstract
:1. Introduction
2. Literature Search Strategy
3. Results of Literature Search
4. Discussion
4.1. Aneurysmal Subarachnoid Hemorrhage (aSAH)
4.2. Traumatic Brain Injury (TBI)
4.2.1. Identification of Diagnostic Biomarkers
4.2.2. Identification of Prognostic Biomarkers and Markers of Disease Severity
4.2.3. Treatment Optimization
4.3. Intracranial Hemorrhage (ICH)
5. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jacob, M.; Lopata, A.L.; Dasouki, M.; Abdel Rahman, A.M. Metabolomics toward personalized medicine. Mass Spectrom. Rev. 2019, 38, 221–238. [Google Scholar] [CrossRef]
- Di Minno, A.; Gelzo, M.; Stornaiuolo, M.; Ruoppolo, M.; Castaldo, G. The evolving landscape of untargeted metabolomics. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1645–1652. [Google Scholar] [CrossRef]
- Dunne, V.G.; Bhattachayya, S.; Besser, M.; Rae, C.; Griffin, J.L. Metabolites from cerebrospinal fluid in aneurysmal subarachnoid haemorrhage correlate with vasospasm and clinical outcome: A pattern-recognition 1H NMR study. NMR Biomed. 2005, 18, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Acharjee, A.; Ament, Z.; Schleicher, R.; Bevers, M.; Stapleton, C.; Patel, A.; Kimberly, W.T. Machine Learning-Driven Metabolomic Evaluation of Cerebrospinal Fluid: Insights into Poor Outcomes after Aneurysmal Subarachnoid Hemorrhage. Neurosurgery 2021, 88, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, C.J.; Acharjee, A.; Irvine, H.J.; Wolcott, Z.C.; Patel, A.B.; Kimberly, W.T. High-throughput metabolite profiling: Identification of plasma taurine as a potential biomarker of functional outcome after aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2019, 133, 1842–1849. [Google Scholar] [CrossRef] [PubMed]
- Sjoberg, R.L.; Bergenheim, T.; Moren, L.; Antti, H.; Lindgren, C.; Naredi, S.; Lindvall, P. Blood Metabolomic Predictors of 1-Year Outcome in Subarachnoid Hemorrhage. Neurocrit. Care 2015, 23, 225–232. [Google Scholar] [CrossRef]
- Li, Y.-C.; Wang, R.; Xu, M.-M.; Jing, X.-R.; A, J.-Y.; Sun, R.-B.; Na, S.-J.; Liu, T.; Ding, X.-S.; Sun, C.-Y.; et al. Aneurysmal Subarachnoid Hemorrhage Onset Alters Pyruvate Metabolism in Poor-Grade Patients and Clinical Outcome Depends on More: A Cerebrospinal Fluid Metabolomic Study. ACS Chem. Neurosci. 2019, 10, 1660–1667. [Google Scholar] [CrossRef]
- Lu, A.Y.; Damisah, E.C.; Winkler, E.A.; Grant, R.A.; Eid, T.; Bulsara, K.R. Cerebrospinal fluid untargeted metabolomic profiling of aneurysmal subarachnoid hemorrhage: An exploratory study. Br. J. Neurosurg. 2018, 32, 637–641. [Google Scholar] [CrossRef]
- Thomas, I.; Dickens, A.M.; Posti, J.P.; Mohammadian, M.; Ledig, C.; Takala, R.S.K.; Hyotylainen, T.; Tenovuo, O.; Oresic, M. Integrative Analysis of Circulating Metabolite Profiles and Magnetic Resonance Imaging Metrics in Patients with Traumatic Brain Injury. Int. J. Mol. Sci. 2020, 21, 1395. [Google Scholar] [CrossRef] [Green Version]
- Dickens, A.M.; Posti, J.P.; Takala, R.S.K.; Ala-Seppala, H.; Mattila, I.; Coles, J.P.; Frantzen, J.; Hutchinson, P.J.; Katila, A.J.; Kyllonen, A.; et al. Serum Metabolites Associated with Computed Tomography Findings after Traumatic Brain Injury. J. Neurotrauma 2018, 35, 2673–2683. [Google Scholar] [CrossRef]
- Fiandaca, M.S.; Mapstone, M.; Mahmoodi, A.; Gross, T.; Macciardi, F.; Cheema, A.K.; Merchant-Borna, K.; Bazarian, J.; Federoff, H.J. Plasma metabolomic biomarkers accurately classify acute mild traumatic brain injury from controls. PLoS ONE 2018, 13, e0195318. [Google Scholar] [CrossRef] [Green Version]
- Oresic, M.; Posti, J.P.; Kamstrup-Nielsen, M.H.; Takala, R.S.K.; Lingsma, H.F.; Mattila, I.; Jantti, S.; Katila, A.J.; Carpenter, K.L.H.; Ala-Seppala, H.; et al. Human Serum Metabolites Associate with Severity and Patient Outcomes in Traumatic Brain Injury. eBioMedicine 2016, 12, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Eiden, M.; Christinat, N.; Chakrabarti, A.; Sonnay, S.; Miroz, J.P.; Cuenoud, B.; Oddo, M.; Masoodi, M. Discovery and validation of temporal patterns involved in human brain ketometabolism in cerebral microdialysis fluids of traumatic brain injury patients. eBioMedicine 2019, 44, 607–617. [Google Scholar] [CrossRef] [Green Version]
- Bykowski, E.A.; Petersson, J.N.; Dukelow, S.; Ho, C.; Debert, C.T.; Montina, T.; Metz, G.A.S. Urinary metabolomic signatures as indicators of injury severity following traumatic brain injury: A pilot study. IBRO Neurosci. Rep. 2021, 11, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Glenn, T.C.; Hirt, D.; Mendez, G.; McArthur, D.L.; Sturtevant, R.; Wolahan, S.; Fazlollahi, F.; Ordon, M.; Bilgin-Freiert, A.; Ellingson, B.; et al. Metabolomic analysis of cerebral spinal fluid from patients with severe brain injury. Acta Neurochir. Suppl. 2013, 118, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Thomas, I.; Dickens, A.M.; Posti, J.P.; Czeiter, E.; Duberg, D.; Sinioja, T.; Krakstrom, M.; Retel Helmrich, I.R.A.; Wang, K.K.W.; Maas, A.I.R.; et al. Serum metabolome associated with severity of acute traumatic brain injury. Nat Commun. 2022, 13, 2545. [Google Scholar] [CrossRef]
- Martha, S.R.; Chen, K.F.; Lin, Y.; Thompson, H.J. Plasma Phospholipid Metabolites Associate with Functional Outcomes Following Mild Traumatic Brain Injury in Older Adults. Biol. Res. Nurs. 2021, 23, 127–135. [Google Scholar] [CrossRef]
- Dash, P.K.; Hergenroeder, G.W.; Jeter, C.B.; Choi, H.A.; Kobori, N.; Moore, A.N. Traumatic Brain Injury Alters Methionine Metabolism: Implications for Pathophysiology. Front. Syst. Neurosci. 2016, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Jiang, F.; Hu, S.; Cheng, H.; Qu, L.; Tao, Y.; Ma, B. Metabolomic analysis reveals potential biomarkers and serum metabolomic profiling in spontaneous intracerebral hemorrhage patients using UPLC/quadrupole time-of-flight MS. Biomed. Chromatogr. 2022, 36, e5241. [Google Scholar] [CrossRef]
- Martinez-Hernandez, A.; Bell, K.P.; Norenberg, M.D. Glutamine synthetase: Glial localization in brain. Science 1977, 195, 1356–1358. [Google Scholar] [CrossRef]
- Jung, C.S.; Oldfield, E.H.; Harvey-White, J.; Espey, M.G.; Zimmermann, M.; Seifert, V.; Pluta, R.M. Association of an endogenous inhibitor of nitric oxide synthase with cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2007, 107, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Zhao, Y.; Wan, G.; Zhu, A.; Wang, H. Effects of simvastatin and taurine on delayed cerebral vasospasm following subarachnoid hemorrhage in rabbits. Exp. Ther. Med. 2016, 11, 1355–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.-N.H.; Banigesh, A.; Baziani, A.; Todd, K.G.; Miyashita, H.; Eweida, M.; Shuaib, A. The role of taurine in neuronal protection following transient global forebrain ischemia. Neurochem. Res. 2000, 25, 217–223. [Google Scholar] [CrossRef]
- Schubert, G.A.; Poli, S.; Mendelowitsch, A.; Schilling, L.; Thome, C. Hypothermia reduces early hypoperfusion and metabolic alterations during the acute phase of massive subarachnoid hemorrhage: A laser-Doppler-flowmetry and microdialysis study in rats. J. Neurotrauma 2008, 25, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, R.L.; Pluta, R.M.; Zhang, J.H. Cerebral vasospasm after subarachnoid hemorrhage: The emerging revolution. Nat. Clin. Pract. Neurol. 2007, 3, 256–263. [Google Scholar] [CrossRef]
- Kasseckert, S.A.; Shahzad, T.; Miqdad, M.; Stein, M.; Abdallah, Y.; Scharbrodt, W.; Oertel, M. The mechanisms of energy crisis in human astrocytes after subarachnoid hemorrhage. Neurosurgery 2013, 72, 468–474. [Google Scholar] [CrossRef]
- Burg, M.B. Molecular basis for osmoregulation of organic osmolytes in renal medullary cells. J. Exp. Zool. 1994, 268, 171–175. [Google Scholar] [CrossRef]
- Strange, K.; Morrison, R.; Heilig, C.W.; DiPietro, S.; Gullans, S.R. Upregulation of inositol transport mediates inositol accumulation in hyperosmolar brain cells. Am. J. Physiol. -Cell Physiol. 1991, 260, C784–C790. [Google Scholar] [CrossRef]
- Maas, A.I.; Stocchetti, N.; Bullock, R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008, 7, 728–741. [Google Scholar] [CrossRef]
- Government of Canada. The National Population Health Study of Neurological Conditions. Mapping Connections: An Understanding of Neurological Conditions in Canada; Public Health Agency of Canada: Ottawa, ON, Canada, 2014.
- Hackenberg, K.; Unterberg, A. Traumatic brain injury. Der. Nervenarzt. 2016, 87, 203–214, quiz 215. [Google Scholar] [CrossRef]
- Halliwell, B. Role of free radicals in the neurodegenerative diseases. Drugs Aging 2001, 18, 685–716. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Munsaka, S.M.; Kraft-Terry, S.; Ernst, T. Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. J. Neuroimmune Pharmacol. 2013, 8, 576–593. [Google Scholar] [CrossRef] [PubMed]
- Haris, M.; Cai, K.; Singh, A.; Hariharan, H.; Reddy, R. In vivo mapping of brain myo-inositol. Neuroimage 2011, 54, 2079–2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelke, U.F.; Zijlstra, F.S.; Mochel, F.; Valayannopoulos, V.; Rabier, D.; Kluijtmans, L.A.; Perl, A.; Verhoeven-Duif, N.M.; De Lonlay, P.; Wamelink, M.M. Mitochondrial involvement and erythronic acid as a novel biomarker in transaldolase deficiency. Biochim. Et Biophys. Acta -Mol. Basis Dis. 2010, 1802, 1028–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalloh, I.; Carpenter, K.L.; Grice, P.; Howe, D.J.; Mason, A.; Gallagher, C.N.; Helmy, A.; Murphy, M.P.; Menon, D.K.; Carpenter, T.A. Glycolysis and the pentose phosphate pathway after human traumatic brain injury: Microdialysis studies using 1, 2-13C2 glucose. J. Cereb. Blood Flow Metab. 2015, 35, 111–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebert, D.; Haller, R.G.; Walton, M.E. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J. Neurosci. 2003, 23, 5928–5935. [Google Scholar] [CrossRef] [Green Version]
- Green, D.R.; Reed, J.C. Mitochondria and apoptosis. Science 1998, 281, 1309–1312. [Google Scholar] [CrossRef]
- de Assis, D.R.; de Cássia Maria, R.; Rosa, R.B.; Schuck, P.F.; Ribeiro, C.A.J.; da Costa Ferreira, G.; Dutra-Filho, C.S.; de Souza Wyse, A.T.; Wannmacher, C.M.D.; Perry, M.L.S. Inhibition of energy metabolism in cerebral cortex of young rats by the medium-chain fatty acids accumulating in MCAD deficiency. Brain Res. 2004, 1030, 141–151. [Google Scholar] [CrossRef]
- Schuck, P.F.; Ferreira, G.C.; Moura, A.P.; Busanello, E.N.; Tonin, A.M.; Dutra-Filho, C.S.; Wajner, M. Medium-chain fatty acids accumulating in MCAD deficiency elicit lipid and protein oxidative damage and decrease non-enzymatic antioxidant defenses in rat brain. Neurochem. Int. 2009, 54, 519–525. [Google Scholar] [CrossRef]
- Jenkins, P.O.; De Simoni, S.; Bourke, N.J.; Fleminger, J.; Scott, G.; Towey, D.J.; Svensson, W.; Khan, S.; Patel, M.; Greenwood, R. Dopaminergic abnormalities following traumatic brain injury. Brain 2018, 141, 797–810. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xiong, Y.; Mahmood, A.; Zhang, Z.G.; Chopp, M. Angiogenesis and functional recovery after traumatic brain injury. In Vascular Mechanisms in CNS Trauma; Springer: Berlin/Heidelberg, Germany, 2014; pp. 141–156. [Google Scholar]
- Tanianskii, D.A.; Jarzebska, N.; Birkenfeld, A.L.; O’Sullivan, J.F.; Rodionov, R.N. Beta-aminoisobutyric acid as a novel regulator of carbohydrate and lipid metabolism. Nutrients 2019, 11, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakkeren, J.; De Abreu, R.; Sengers, R.; Gabreels, F.; Maas, J.; Renier, W. Elevated urine, blood and cerebrospinal fluid levels of uracil and thymine in a child with dihydrothymine dehydrogenase deficiency. Clin. Chim. Acta 1984, 140, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.H.; Shen, C. Augmented Renal Clearance in Critical Illness: An Important Consideration in Drug Dosing. Pharmaceutics 2017, 9, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hefny, F.; Sambhi, S.; Morris, C.; Kung, J.Y.; Stuart, A.; Mahmoud, S.H. Drug Dosing in Critically Ill Adult Patients with Augmented Renal Clearance. Eur. J. Drug Metab. Pharm. 2022, 47, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Hefny, F.; Stuart, A.; Kung, J.Y.; Mahmoud, S.H. Prevalence and Risk Factors of Augmented Renal Clearance: A Systematic Review and Meta-Analysis. Pharmaceutics 2022, 14, 445. [Google Scholar] [CrossRef]
- Akkaya, H.; Kilic, E.; Eyuboglu Dinc, S.; Yilmaz, B. Postacute effects of kisspeptin-10 on neuronal injury induced by L-methionine in rats. J. Biochem. Mol. Toxicol. 2014, 28, 373–377. [Google Scholar] [CrossRef]
- Ott, L.G.; Schmidt, J.J.; Young, A.B.; Twyman, D.L.; Rapp, R.P.; Tibbs, P.A.; Dempsey, R.J.; McClain, C.J. Comparison of administration of two standard intravenous amino acid formulas to severely brain-injured patients. Sage J. 1988, 22, 763–768. [Google Scholar] [CrossRef]
- Nägeli, M.; Fasshauer, M.; Sommerfeld, J.; Fendel, A.; Brandi, G.; Stover, J.F. Prolonged continuous intravenous infusion of the dipeptide L-alanine-L-glutamine significantly increases plasma glutamine and alanine without elevating brain glutamate in patients with severe traumatic brain injury. Crit. Care 2014, 18, R139. [Google Scholar] [CrossRef] [Green Version]
- Wendel, A.; Cikryt, P. The level and half-life of glutathione in human plasma. FEBS Lett. 1980, 120, 209–211. [Google Scholar] [CrossRef] [Green Version]
- Orlowski, M.; Meister, A. The γ-glutamyl cycle: A possible transport system for amino acids. Proc. Natl. Acad. Sci. USA 1970, 67, 1248–1255. [Google Scholar] [CrossRef] [Green Version]
- An, S.J.; Kim, T.J.; Yoon, B.-W. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: An update. J. Stroke 2017, 19, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qureshi, A.I.; Tuhrim, S.; Broderick, J.P.; Batjer, H.H.; Hondo, H.; Hanley, D.F. Spontaneous intracerebral hemorrhage. N. Engl. J. Med. 2001, 344, 1450–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamurthi, R.; Feigin, V.; Forouzanfar, M.; Mensah, G.; Connor, M.; Bennett, D.; Moran, A.; Sacco, R.; Anderson, L.; Truelsen, T.; et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet Glob. Health 2013, 1, e259–e281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study | Study Design | n | Age (Years) | Females n (%) | Method of Analysis | Sample Type | Targeted/Untargeted | Metabolite Number | Sample Taken | Metabolite of Significance | Concentration | Main Findings |
---|---|---|---|---|---|---|---|---|---|---|---|---|
aSAH | ||||||||||||
Dunne et al., 2004 [3] | Prospective cohort | 16 | Range 16–68 | 11 (69) | 1H NMR | CSF | Untargeted | ~60 | 3, 4, 5, 6, 9, 10, and 12 days post-bleeding | Lactate and glutamine Glucose | Elevated Reduced | Associated with H&H, GCS, and COS |
Koch et al., 2021 [4] | Retrospective cohort | 81 | 58 ± 12 | 49 (60) | LC/MS | CSF | Untargeted | 138 | 0–5, 6–10, 11–14 days post-bleeding | Ornithine, SDMA, and DMGV | Elevated | Statistically significant association with poor mRS (3–6) at discharge and at 90 days post-SAH |
Stapleton et al., 2019 [5] | Prospective cohort | 137 | 56 ± 12 | 93 (68) | LC/MS | Plasma | Untargeted | 163 | 0–5, 6–10, and 11–14 days post-bleeding | Taurine | Elevated | Statistically significant association with favorable mRS (1–2) at 90 days post-SAH |
Sjoberg et al., 2015 [6] | Retrospective cohort | 50 | Median 59 (26–82) | 35 (70) | GC/MS | Serum | Untargeted | 59 | 1–3 and 7 days post-bleeding | Myo-inositol on day 7 | Elevated | Significantly associated with favorable GOS at 1-year follow up |
Li et al., 2019 [7] | Prospective cohort | 46 | 61 ± 11 | 28 (61) | GC-TOF MS and LC –TOF MS | CSF | Untargeted | 39 | Within the first 7 days post-bleeding | Pyruvate metabolites Amino acid levels and lipid biosynthesis | Elevated | Significantly associated with aSAH severity evaluated with H&H and WFNS scales |
Lu et al., 2018 [8] | Prospective cohort | 15 | 56 ± 17 | 11 (73) | GC-TOF MS | CSF | Untargeted | 97 | Day 0 and within the anticipated vasospasm timeframe | Six free amino acids (2-HG, Trp, Gly, Pro, Iso, and Ala) | Decreased | Significantly associated with favorable GOS at 1-year follow up |
TBI | ||||||||||||
Thomas et al., 2020 [9] | Prospective cohort | 96 | 49 ± 19 | 33 (34) | GC-TOF MS | Serum | Untargeted | 451 in 8 clusters | Within 12 h from admission | Metabolite cluster alterations Myo-inositol and erythronic acid | Alterations Elevated | Correlated with structural MRI findings Discriminated positive and negative MRI findings for TBI diagnosis |
Dickens et al., 2018 [10] | Prospective cohort | 210 | Range 18–91 | 58 (28) | GC-TOF MS | Serum | Untargeted | 36 | Within 12 h from admission | 2-aminobutyric acid acetoacetic acid, pentitol, inositol, and ribonic acid | Elevated Decreased | Metabolites were able to discriminate between patients with intracranial abnormalities on CT and patients with a normal CT |
Fiandaca et al., 2018 [11] | Prospective cohort | 62 | Range 18–23 | 31 (50) | Tandem MS/MS | Plasma | Targeted | Six-metabolite panel | Within 6 h of injury | FA C18:0, PE ae C36:4, LysoPC a C20:4 panels FA 2-OH C16:0, TUDCA, PE aa CC38:6 panels | Elevated Decreased | Help in the classification of moderate TBI from control (no injury) |
Orešič et al., 2016 [12] | Prospective cohort | 266 | Range 18–91 | 86 (32) | GC-TOF MS | Serum and brain microdialysate | Untargeted | 465 | Within 12 h from admission | Two medium-chain fatty acids (decanoic and octanoic acids) and sugar derivatives including 2,3-bisphosphoglyceric acid | Elevated | Metabolites were associated with poor outcomes at 3 months |
Eiden et al., 2019 [13] | Prospective cohort | 38 | 44 ± 17 | 23 (61) | LC-MS | Brain microdialysate | Untargeted | 40 | Samples were collected every 60 min | Metabolite patterns associated with ketometabolism | Altered | Cerebral metabolic states that were associated with GOS at 6 months |
Bykowski et al., 2021 [14] | Retrospective cohort | 8 | 45 ± 18 | 0 (0) | 1H-NMR | Urine | Untargeted | 134 | 7 days and 6 months postinjury | Homovanillate, L-methionine, and thymine | Decreased | This decrease in metabolites was associated with worse patient outcomes and TBI severity |
Glenn et al., 2013 [15] | Prospective cohort | 57 | 38 ± 15 | 12(21) | 1H-NMR | CSF | Targeted | 10 metabolite targets | NR | Propylene glycol, gluta-mine, α-glucose, and creatinine | Altered | Statistically significant increase in propylene glycol and decrease in total creatinine; propylene glycol, glutamine, α-glucose, and creatinine were predictors of changes observed in extended GOS at 6 months |
Thomas et al., 2022 [16] | Prospective cohort | 945 | Range 27–80 | 335 (35) | UHPLC-QTOF-MS | Serum | Untargeted | 30 | Within 24 h of injury | Choline phospholipids (lysophosphatidylcholines, ether phosphatidylcholines, and sphingomyelins) | Altered | Metabolites were inversely associated with TBI severity |
Martha et al., 2021 [17] | Pilot study using samples from parent prospective cohort study | 24 | 67 ± 7 | 6 (25) | LC/MS | Plasma | Untargeted | 2 | 0, 3, and 7 days and 1, 3, and 6 months postinjury | Phosphatidylcholine Phosphatidylethanolamine | Elevated Decreased | Pohosphatidylinositol-3,4,5-trisphosphate was associated with (GOS-E) at 3 and 6 months |
Dash et al., 2016 [18] | Prospective cohort | 60 | Range 14–57 | 14 (23) | LC-MS or GC-MS | Plasma | Targeted | 18 | Within 24 h of injury | Severe TBI has decreased levels of methionine, s-adenosylmethionine, betaine, and 2-methylglycine | Decreased | Metabolites associated with disease severity |
ICH | ||||||||||||
Sun et al., 2021 [19] | Prospective cohort | 60 | Range 46–72 | 22 (37) | UPLC/Q-TOF | Serum | Untargeted | 11 | NR | L-caritine and phosphatidylcholine | Altered | Metabolites were able to discriminate ICH from controls |
Marker | Level | Disease | Result | Reference |
---|---|---|---|---|
Metabolites associated with disease severity | ||||
Amino acids and lipids | ↑ | aSAH | Poor H&H and WFNS | [7] |
Choline phospholipids (lysophosphatidylcholines, ether phosphatidylcholines and sphingomyelins) | Altered | TBI | TBI severity | [16] |
FA C18:0, PE ae C36:4, LysoPC a C20:4 panels | ↑ | TBI | TBI severity classification | [11] |
FA 2-OH C16:0, TUDCA, PE aa CC38:6 panels | ↓ | TBI | TBI severity classification | [11] |
Glutamine | ↑ | aSAH | Poor H&H and GCS | [3] |
Glucose | ↓ | aSAH | Poor H&H and GCS | [3] |
Homovanillate, L-methionine, and thymine | ↓ | TBI | TBI severity | [14] |
Lactate | ↑ | aSAH | Poor H&H and GCS | [3] |
L-caritine and phosphatidylcholine | Altered | ICH | ICH severity | [19] |
methionine, s-adenosylmethionine, betaine, and 2-methylglycine | ↓ | TBI | TBI severity | [18] |
Pyruvate | ↑ | aSAH | Poor H&H and WFNS | [7] |
Metabolites association with disease outcomes (potentially prognostic) | ||||
Amino acids (2-HG, Trp, Gly, Pro, Iso, and Ala) | ↓ | aSAH | Favorable GOS | [8] |
DMGV | ↑ | aSAH | Poor mRS | [4] |
Glutamine | ↑ | aSAH | Poor COS | [3] |
Glucose | ↓ | aSAH | Poor COS | [3] |
Glutamine | Altered | TBI | Poor GOS | [15] |
Homovanillate, L-methionine, and thymine | ↓ | TBI | Poor outcome | [14] |
Lactate | ↑ | aSAH | Poor COS | [3] |
Myo-inositol | ↑ | aSAH | Favorable GOS | [6] |
medium-chain fatty acids (decanoic and octanoic acids) | ↑ | TBI | Poor outcome | [12] |
Metabolite patterns associated with ketometabolism | Altered | TBI | Poor GOS | [13] |
Ornithine | ↑ | aSAH | Poor mRS | [4] |
Propylene glycol, gluta-mine, α-glucose, and creatinine | Altered | TBI | Poor GOS | [15] |
Phosphatidylcholine | ↑ | TBI | Poor GOS | [17] |
Phosphatidylethanolamine | ↓ | TBI | Poor GOS | [17] |
Sugar derivatives as 2,3-bisphosphoglyceric acid | ↑ | TBI | Poor outcome | [12] |
SDMA | ↑ | aSAH | Poor mRS | [4] |
Taurine | ↑ | aSAH | Favorable mRS | [5] |
Metabolites association with imaging findings (potentially diagnostic) | ||||
2-aminobutyric acid | ↑ | TBI | CT | [10] |
acetoacetic acid, pentitol, inositol and ribonic acid | ↓ | TBI | CT | [10] |
Metabolite clusters | Altered | TBI | MRI | [9] |
Myo-inositol and erythronic acid | ↑ | TBI | MRI | [9] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharouba, M.; Patel, D.D.; Jaber, R.H.; Mahmoud, S.H. Metabolomic Analysis in Neurocritical Care Patients. Metabolites 2023, 13, 745. https://doi.org/10.3390/metabo13060745
Kharouba M, Patel DD, Jaber RH, Mahmoud SH. Metabolomic Analysis in Neurocritical Care Patients. Metabolites. 2023; 13(6):745. https://doi.org/10.3390/metabo13060745
Chicago/Turabian StyleKharouba, Maged, Dimple D. Patel, Rami H. Jaber, and Sherif Hanafy Mahmoud. 2023. "Metabolomic Analysis in Neurocritical Care Patients" Metabolites 13, no. 6: 745. https://doi.org/10.3390/metabo13060745
APA StyleKharouba, M., Patel, D. D., Jaber, R. H., & Mahmoud, S. H. (2023). Metabolomic Analysis in Neurocritical Care Patients. Metabolites, 13(6), 745. https://doi.org/10.3390/metabo13060745