White Matter Metabolite Ratios Predict Cognitive Outcome in Pediatric Traumatic Brain Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. MR Acquisition
2.4. Metabolite Quantification
2.5. Generation of Metabolite Maps
2.6. Spectroscopy Linear Regression
2.7. Clinical and Neuropsychological Outcome Assessments
2.8. Quality Control and Statistical Analysis
3. Results
3.1. Clinical Demographics
3.2. Magnetic Resonance Spectroscopic Group and Longitudinal Analysis
3.3. Correlation of Metabolite Ratios to Clinical Variables and NP Outcomes
3.4. Predictive Accuracy of Metabolite Ratios on NP Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruff, R. Two Decades of Advances in Understanding of Mild Traumatic Brain Injury. J. Head Trauma Rehabil. 2005, 20, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Büki, A.; Povlishock, J.T. All Roads Lead to Disconnection?—Traumatic Axonal Injury Revisited. Acta Neurochir. 2006, 148, 181–193, discussion 193–194. [Google Scholar] [CrossRef]
- Büki, A.; Siman, R.; Trojanowski, J.Q.; Povlishock, J.T. The Role of Calpain-Mediated Spectrin Proteolysis in Traumatically Induced Axonal Injury. J. Neuropathol. Exp. Neurol. 1999, 58, 365–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennis, E.L.; Babikian, T.; Giza, C.C.; Thompson, P.M.; Asarnow, R.F. Neuroimaging of the Injured Pediatric Brain: Methods and New Lessons. Neuroscientist 2018, 24, 652–670. [Google Scholar] [CrossRef] [PubMed]
- Shenton, M.E.; Hamoda, H.M.; Schneiderman, J.S.; Bouix, S.; Pasternak, O.; Rathi, Y.; Vu, M.-A.; Purohit, M.P.; Helmer, K.; Koerte, I.; et al. A Review of Magnetic Resonance Imaging and Diffusion Tensor Imaging Findings in Mild Traumatic Brain Injury. Brain Imaging Behav. 2012, 6, 137–192. [Google Scholar] [CrossRef]
- Kirov, I.I.; Tal, A.; Babb, J.S.; Lui, Y.W.; Grossman, R.I.; Gonen, O. Diffuse Axonal Injury in Mild Traumatic Brain Injury: A 3D Multivoxel Proton MR Spectroscopy Study. J. Neurol. 2013, 260, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Bartnik-Olson, B.L.; Alger, J.R.; Babikian, T.; Harris, A.D.; Holshouser, B.; Kirov, I.I.; Maudsley, A.A.; Thompson, P.M.; Dennis, E.L.; Tate, D.F.; et al. The Clinical Utility of Proton Magnetic Resonance Spectroscopy in Traumatic Brain Injury: Recommendations from the ENIGMA MRS Working Group. Brain Imaging Behav. 2021, 15, 504–525. [Google Scholar] [CrossRef] [PubMed]
- Gasparovic, C.; Yeo, R.; Mannell, M.; Ling, J.; Elgie, R.; Phillips, J.; Doezema, D.; Mayer, A.R. Neurometabolite Concentrations in Gray and White Matter in Mild Traumatic Brain Injury: An 1H-Magnetic Resonance Spectroscopy Study. J. Neurotrauma 2009, 26, 1635–1643. [Google Scholar] [CrossRef]
- Pouwels, P.J.; Brockmann, K.; Kruse, B.; Wilken, B.; Wick, M.; Hanefeld, F.; Frahm, J. Regional Age Dependence of Human Brain Metabolites from Infancy to Adulthood as Detected by Quantitative Localized Proton MRS. Pediatr. Res. 1999, 46, 474–485. [Google Scholar] [CrossRef] [Green Version]
- Hattingen, E.; Raab, P.; Franz, K.; Lanfermann, H.; Setzer, M.; Gerlach, R.; Zanella, F.E.; Pilatus, U. Prognostic Value of Choline and Creatine in WHO Grade II Gliomas. Neuroradiology 2008, 50, 759–767. [Google Scholar] [CrossRef]
- Maudsley, A.A.; Govind, V.; Saigal, G.; Gold, S.G.; Harris, L.; Sheriff, S. Longitudinal MR Spectroscopy Shows Altered Metabolism in Traumatic Brain Injury. J. Neuroimaging 2017, 27, 562–569. [Google Scholar] [CrossRef]
- Holshouser, B.A.; Tong, K.A.; Ashwal, S. Proton MR Spectroscopic Imaging Depicts Diffuse Axonal Injury in Children with Traumatic Brain Injury. AJNR Am. J. Neuroradiol. 2005, 26, 1276–1285. [Google Scholar]
- Ashwal, S.; Babikian, T.; Gardner-Nichols, J.; Freier, M.-C.; Tong, K.A.; Holshouser, B.A. Susceptibility-Weighted Imaging and Proton Magnetic Resonance Spectroscopy in Assessment of Outcome after Pediatric Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2006, 87, S50–S58. [Google Scholar] [CrossRef]
- Sager, T.N.; Fink-Jensen, A.; Hansen, A.J. Transient Elevation of Interstitial N-Acetylaspartate in Reversible Global Brain Ischemia. J. Neurochem. 1997, 68, 675–682. [Google Scholar] [CrossRef]
- Tallan, H.H. Studies on the Distribution of N-Acetyl-L-Aspartate Acid in Brain. J. Biol. Chem. 1956, 224, 41–45. [Google Scholar] [CrossRef]
- Moffett, J.R.; Ross, B.; Arun, P.; Madhavarao, C.N.; Namboodiri, A.M.A. N-Acetylaspartate in the CNS: From Neurodiagnostics to Neurobiology. Prog. Neurobiol. 2007, 81, 89–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, G.; Mekala, P.; Yahya, D.; Wu, G.; Ledeen, R.W. Intraneuronal N-Acetylaspartate Supplies Acetyl Groups for Myelin Lipid Synthesis: Evidence for Myelin-Associated Aspartoacylase. J. Neurochem. 2001, 78, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Cady, E.B.; Penrice, J.; Amess, P.N.; Lorek, A.; Wylezinska, M.; Aldridge, R.F.; Franconi, F.; Wyatt, J.S.; Reynolds, E.O. Lactate, N-Acetylaspartate, Choline and Creatine Concentrations, and Spin-Spin Relaxation in Thalamic and Occipito-Parietal Regions of Developing Human Brain. Magn. Reson. Med. 1996, 36, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R.J.; van der Heide, S.; Carter, E.L.; Jalloh, I.; Menon, D.K.; Hutchinson, P.J.; Carpenter, K.L.H. Extracellular N-Acetylaspartate in Human Traumatic Brain Injury. J. Neurotrauma 2016, 33, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, B.; Rampakakis, E.; Gilbert, G.; Fezoua, A.; Wintermark, P. Myelination May Be Impaired in Neonates Following Birth Asphyxia. Neuroimage Clin. 2021, 31, 102678. [Google Scholar] [CrossRef]
- Ariza, M.; Junqué, C.; Mataró, M.; Poca, M.A.; Bargalló, N.; Olondo, M.; Sahuquillo, J. Neuropsychological Correlates of Basal Ganglia and Medial Temporal Lobe NAA/Cho Reductions in Traumatic Brain Injury. Arch. Neurol. 2004, 61, 541–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, W.M.; Stidley, C.A.; Petropoulos, H.; Jung, R.E.; Weers, D.C.; Friedman, S.D.; Barlow, M.A.; Sibbitt, W.L., Jr.; Yeo, R.A. Metabolic and Cognitive Response to Human Traumatic Brain Injury: A Quantitative Proton Magnetic Resonance Study. J. Neurotrauma 2000, 17, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.D.; Brooks, W.M.; Jung, R.E.; Hart, B.L.; Yeo, R.A. Proton MR Spectroscopic Findings Correspond to Neuropsychological Function in Traumatic Brain Injury. AJNR Am. J. Neuroradiol. 1998, 19, 1879–1885. [Google Scholar] [PubMed]
- Holshouser, B.; Pivonka-Jones, J.; Nichols, J.G.; Oyoyo, U.; Tong, K.; Ghosh, N.; Ashwal, S. Longitudinal Metabolite Changes after Traumatic Brain Injury: A Prospective Pediatric Magnetic Resonance Spectroscopic Imaging Study. J. Neurotrauma 2019, 36, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Walz, N.C.; Cecil, K.M.; Wade, S.L.; Michaud, L.J. Late Proton Magnetic Resonance Spectroscopy Following Traumatic Brain Injury during Early Childhood: Relationship with Neurobehavioral Outcomes. J. Neurotrauma 2008, 25, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Babikian, T.; Marion, S.D.; Copeland, S.; Alger, J.R.; O’Neill, J.; Cazalis, F.; Mink, R.; Giza, C.C.; Vu, J.A.; Hilleary, S.M.; et al. Metabolic Levels in the Corpus Callosum and Their Structural and Behavioral Correlates after Moderate to Severe Pediatric TBI. J. Neurotrauma 2010, 27, 473–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govind, V.; Gold, S.; Kaliannan, K.; Saigal, G.; Falcone, S.; Arheart, K.L.; Harris, L.; Jagid, J.; Maudsley, A.A. Whole-Brain Proton MR Spectroscopic Imaging of Mild-to-Moderate Traumatic Brain Injury and Correlation with Neuropsychological Deficits. J. Neurotrauma 2010, 27, 483–496. [Google Scholar] [CrossRef] [Green Version]
- Babikian, T.; Alger, J.R.; Ellis-Blied, M.U.; Giza, C.C.; Dennis, E.; Olsen, A.; Mink, R.; Babbitt, C.; Johnson, J.; Thompson, P.M.; et al. Whole Brain Magnetic Resonance Spectroscopic Determinants of Functional Outcomes in Pediatric Moderate/Severe Traumatic Brain Injury. J. Neurotrauma 2018, 35, 1637–1645. [Google Scholar] [CrossRef]
- Hoch, S.E.; Kirov, I.I.; Tal, A. When Are Metabolic Ratios Superior to Absolute Quantification? A Statistical Analysis. NMR Biomed. 2017, 30, e3710. [Google Scholar] [CrossRef]
- Rice, S.A.; Blackman, J.A.; Braun, S.; Linn, R.T.; Granger, C.V.; Wagner, D.P. Rehabilitation of Children with Traumatic Brain Injury: Descriptive Analysis of a Nationwide Sample Using the WeeFIM. Arch. Phys. Med. Rehabil. 2005, 86, 834–836. [Google Scholar] [CrossRef]
- Tal, A.; Kirov, I.I.; Grossman, R.I.; Gonen, O. The Role of Gray and White Matter Segmentation in Quantitative Proton MR Spectroscopic Imaging. NMR Biomed. 2012, 25, 1392–1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davitz, M.S.; Gonen, O.; Tal, A.; Babb, J.S.; Lui, Y.W.; Kirov, I.I. Quantitative Multivoxel Proton MR Spectroscopy for the Identification of White Matter Abnormalities in Mild Traumatic Brain Injury: Comparison between Regional and Global Analysis. J. Magn. Reson. Imaging 2019, 50, 1424–1432. [Google Scholar] [CrossRef]
- Signoretti, S.; Marmarou, A.; Tavazzi, B.; Lazzarino, G.; Beaumont, A.; Vagnozzi, R. N-Acetylaspartate Reduction as a Measure of Injury Severity and Mitochondrial Dysfunction Following Diffuse Traumatic Brain Injury. J. Neurotrauma 2001, 18, 977–991. [Google Scholar] [CrossRef] [PubMed]
- Visual Display Interface (VDI). Available online: http://www.vdisoftware.net (accessed on 15 February 2023).
- Torrado-Carvajal, A.; Albrecht, D.S.; Lee, J.; Andronesi, O.C.; Ratai, E.-M.; Napadow, V.; Loggia, M.L. Inpainting as a Technique for Estimation of Missing Voxels in Brain Imaging. Ann. Biomed. Eng. 2021, 49, 345–353. [Google Scholar] [CrossRef]
- Arambula, S.E.; Reinl, E.L.; El Demerdash, N.; McCarthy, M.M.; Robertson, C.L. Sex Differences in Pediatric Traumatic Brain Injury. Exp. Neurol. 2019, 317, 168–179. [Google Scholar] [CrossRef]
- Ashwal, S.; Holshouser, B.A.; Tong, K.A. Use of Advanced Neuroimaging Techniques in the Evaluation of Pediatric Traumatic Brain Injury. Dev. Neurosci. 2006, 28, 309–326. [Google Scholar] [CrossRef]
- Chen, A.M.; Gerhalter, T.; Dehkharghani, S.; Peralta, R.; Gajdošík, M.; Gajdošík, M.; Tordjman, M.; Zabludovsky, J.; Sheriff, S.; Ahn, S.; et al. Replicability of Proton MR Spectroscopic Imaging Findings in Mild Traumatic Brain Injury: Implications for Clinical Applications. Neuroimage Clin. 2023, 37, 103325. [Google Scholar] [CrossRef]
- Signoretti, S.; Vagnozzi, R.; Tavazzi, B.; Lazzarino, G. Biochemical and Neurochemical Sequelae Following Mild Traumatic Brain Injury: Summary of Experimental Data and Clinical Implications. Neurosurg. Focus 2010, 29, E1. [Google Scholar] [CrossRef] [PubMed]
- Banoei, M.M.; Casault, C.; Metwaly, S.M.; Winston, B.W. Metabolomics and Biomarker Discovery in Traumatic Brain Injury. J. Neurotrauma 2018, 35, 1831–1848. [Google Scholar] [CrossRef]
- Wu, Y.W.; Monsell, S.E.; Glass, H.C.; Wisnowski, J.L.; Mathur, A.M.; McKinstry, R.C.; Bluml, S.; Gonzalez, F.F.; Comstock, B.A.; Heagerty, P.J.; et al. How Well Does Neonatal Neuroimaging Correlate with Neurodevelopmental Outcomes in Infants with Hypoxic-Ischemic Encephalopathy? Pediatr. Res. 2023. [Google Scholar] [CrossRef]
- Bujang, M.A.; Sa’at, N.; Sidik, T.M.I.T.A.B.; Joo, L.C. Sample Size Guidelines for Logistic Regression from Observational Studies with Large Population: Emphasis on the Accuracy Between Statistics and Parameters Based on Real Life Clinical Data. Malays. J. Med. Sci. 2018, 25, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Ashwal, S.; Holshouser, B.A.; Shu, S.K.; Simmons, P.L.; Perkin, R.M.; Tomasi, L.G.; Knierim, D.S.; Sheridan, C.; Craig, K.; Andrews, G.H.; et al. Predictive Value of Proton Magnetic Resonance Spectroscopy in Pediatric Closed Head Injury. Pediatr. Neurol. 2000, 23, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Kolb, B.; Gibb, R. Brain Plasticity and Behaviour in the Developing Brain. J. Can. Acad. Child Adolesc. Psychiatry 2011, 20, 265–276. [Google Scholar] [PubMed]
Control (n = 66) | cMild/Moderate TBI (n = 31) | Severe TBI (n = 29) | p-Value | |
---|---|---|---|---|
Age (years) at initial study (range, median) | 12.69 ± 3.34 (5.5–18.4, 13.4) | 11.75 ± 3.46 (5.2–17.2, 12.2) | 12.15 ± 3.49 (5.8–17.8, 12.9) | 0.421 |
Sex | 33M/33F | 24M/7F | 20M/9F | 0.015 |
Time (days) to MRI after injury (range, median) | NA | 11.45 ± 3.10 (6–17, 11) | 10.90 ± 3.37 (6–18, 10) | 0.509 |
Time (months) to follow up MRI (range, median) | 12.76 ± 1.08 (11.0–16.7, 12.62) | 12.06 ± 0.93 (10.7–14.5, 11.9) | 12.17 ± 0.64 (10.8–13.3, 12.2) | 0.002 |
Average GCS score | NA | 13.77 ± 1.86 | 4.45 ± 1.86 | 0.000 |
Accident Type | NA | 11 falls, 6 MVA, 6 hit by MV, 5 sports, 2 ATV, 1 fight | 3 falls, 8 MVA, 15 hit by MV, 2 ATV, 1 boating | |
Days in coma | NA | 0.65 ± 0.55 | 5.28 ± 5.84 | <0.001 |
Days on ventilator | NA | 0.00 ± 0.0 | 4.90 ± 4.42 | <0.001 |
Days in hospital | NA | 6.00 ± 2.96 | 16.55 ± 9.94 | <0.001 |
Seizures (epilepsy) | NA | 4 (0) | 8 (2) | 0.1554 |
Loss of consciousness (none, <24 h, >24 h) | NA | (12, 18, 1) | (0,13,16) | <0.001 |
PCPCS @ 12 months | 1.00 ± 0.0 | 1.06 ± 0.25 | 1.43 ± 0.50 | <0.001 |
TEA-Ch-G @ 12 months | 11.22 ± 3.14 | 11.72 ± 2.99 | 9.12 ± 3.94 | 0.010 |
TEA-Ch-C @ 12 months | 10.92 ± 2.97 | 11.07 ± 2.99 | 8.15 ± 3.85 | 0.002 |
Combined Memory Z Score @ 12 months | 1.19 ± 1.00 | 0.81 ± 1.08 | −0.36 ± 1.61 | <0.001 |
FSIQ @ 12 months | 108.88 ± 15.20 | 96.10 ± 14.43 | 91.34 ± 14.54 | <0.001 |
PIQ @ 12 months | 108.35 ± 15.29 | 99.52 ± 15.72 | 94.48 ±15.47 | <0.001 |
VIQ @ 12 months | 108.12 ± 14.46 | 93.77 ± 15.72 | 90.00 ± 14.97 | <0.001 |
NAA/Cr | ||||
Group | Acute | 12 Month | p-Value | |
WM | Control (n = 45) | 2.66 ± 0.32 | 2.64 ± 0.27 | 0.790 |
cMild/Moderate (n = 15) | 2.49 ± 0.34 | 2.66 ± 0.38 | 0.118 | |
Severe † (n = 17) | 2.22 ± 0.37 | 2.48 ± 0.24 | 0.000 | |
GM | Control (n = 45) | 2.50 ± 0.28 | 2.48 ± 0.41 | 0.826 |
cMild/Moderate (n = 15) | 2.36 ± 0.36 | 2.57 ± 0.29 | 0.115 | |
Severe † (n = 17) | 2.24 ± 0.44 | 2.42 ± 0.29 | 0.055 | |
NAA/Cho | ||||
Group | Acute | 12 Month | p-Value | |
WM | Control (n = 45) | 2.30 ± 0.35 | 2.33 ± 0.29 | 0.459 |
cMild/Moderate (n = 15) | 2.07 ± 0.30 | 2.26 ± 0.26 | 0.040 | |
Severe (n = 17) | 1.83 ± 0.29 | 2.04 ± 0.41 | 0.006 | |
GM | Control (n = 45) | 2.39 ± 0.33 | 2.36 ± 0.34 | 0.660 |
cMild/Moderate (n = 15) | 2.19 ± 0.45 | 2.34 ± 0.28 | 0.284 | |
Severe † (n = 17) | 1.97 ± 0.44 | 2.30 ± 0.34 | 0.010 | |
Cho/Cr | ||||
Group | Acute | 12 Month | p-Value | |
WM | Control (n = 45) | 1.18 ± 0.14 | 1.16 ± 0.11 | 0.298 |
cMild/Moderate (n = 15) | 1.24 ± 0.16 | 1.21 ± 0.10 | 0.470 | |
Severe (n = 17) | 1.24 ± 0.16 | 1.25 ± 0.19 | 0.710 | |
GM | Control (n = 45) | 1.25 ± 0.15 | 1.24 ± 0.13 | 0.737 |
cMild/Moderate (n = 15) | 1.35 ± 0.22 | 1.33 ± 0.17 | 0.654 | |
Severe † (n = 17) | 1.57 ± 0.93 | 1.33 ± 0.20 | 0.238 |
WM NAA/Cr | WM NAA/Cho | GM NAA/Cr | GM NAA/Cho | |||||
---|---|---|---|---|---|---|---|---|
r | q | r | q | r | q | r | q | |
GCS | 0.497 | <0.001 | 0.535 | <0.001 | 0.419 | 0.002 | 0.455 | 0.001 |
Days in coma | −0.536 | <0.001 | −0.558 | <0.001 | −0.561 | <0.001 | −0.569 | <0.001 |
Days on ventilator | −0.533 | <0.001 | −0.583 | <0.001 | −0.578 | <0.001 | −0.624 | <0.001 |
Days in hospital | −0.599 | <0.001 | −0.619 | <0.001 | −0.566 | <0.001 | −0.605 | <0.001 |
Combined Memory Z Score | 0.495 | <0.001 | 0.345 | <0.001 | 0.468 | <0.001 | 0.448 | <0.001 |
FSIQ | 0.471 | <0.001 | 0.387 | <0.001 | 0.411 | <0.001 | 0.355 | <0.001 |
PIQ | 0.399 | <0.001 | 0.308 | 0.001 | 0.461 | <0.001 | 0.363 | <0.001 |
VIQ | 0.429 | <0.001 | 0.351 | <0.001 | 0.289 | 0.004 | 0.278 | <0.001 |
TEA-Ch-G | 0.371 | <0.001 | 0.279 | 0.01 | 0.456 | <0.001 | 0.292 | 0.007 |
TEA-Ch-C | 0.471 | <0.001 | 0.369 | <0.001 | 0.551 | <0.001 | 0.367 | <0.001 |
12 Month Dichotomized Outcomes | Percent Sensitivity | Percent Specificity | Overall Percent Accuracy | p Value for Model | Percent of Variance Explained |
---|---|---|---|---|---|
Combined Memory Z Score | |||||
NAA/Cr WM | 37.5 | 95.1 | 85.7 | 0.001 | 32.3 |
NAA/Cr GM | 12.5 | 97.6 | 83.7 | 0.018 | 18.4 |
NAA/Cho WM | 12.5 | 100 | 85.7 | 0.045 | 12.4 |
NAA/Cho GM | 12.5 | 100 | 85.7 | 0.040 | 14 |
Cho/Cr WM | 0 | 100 | 83.7 | 0.129 | 7.8 |
Cho/Cr GM | 0 | 100 | 83.7 | 0.650 | 0.7 |
TEA-Ch-G Attention | |||||
NAA/Cr WM | 20 | 95.1 | 87 | <0.001 | 47.8 |
NAA/Cr GM | 0 | 100 | 89.1 | 0.030 | 19.5 |
NAA/Cho WM | 20 | 97.6 | 89.1 | 0.004 | 33.8 |
NAA/Cho GM | 0 | 100 | 89.1 | 0.078 | 13.1 |
Cho/Cr WM | 0 | 100 | 89.1 | 0.721 | 0.6 |
Cho/Cr GM | 0 | 100 | 89.1 | 0.571 | 1.4 |
FSIQ | |||||
NAA/Cr WM | 16.7 | 100 | 90.2 | 0.010 | 23.8 |
NAA/Cr GM | 0 | 100 | 88.2 | 0.022 | 18.9 |
NAA/Cho WM | 0 | 100 | 88.2 | 0.043 | 15 |
NAA/Cho GM | 0 | 100 | 88.2 | 0.062 | 12.8 |
Cho/Cr WM | 0 | 100 | 88.2 | 0.490 | 1.8 |
Cho/Cr GM | 0 | 100 | 88.2 | 0.624 | 0.9 |
PCPCS | |||||
NAA/Cr WM | 61.5 | 94.6 | 86 | <0.001 | 53 |
NAA/Cr GM | 46.2 | 91.9 | 80 | <0.001 | 47.1 |
NAA/Cho WM | 61.5 | 89.2 | 82 | <0.001 | 52.6 |
NAA/Cho GM | 53.8 | 89.2 | 80 | <0.001 | 41.3 |
Cho/Cr WM | 0 | 100 | 74 | 0.965 | 0 |
Cho/Cr GM | 0 | 100 | 74 | 0.605 | 0.8 |
VIQ2 | |||||
NAA/Cr WM | 30.8 | 94.7 | 78.4 | 0.003 | 23.1 |
NAA/Cr GM | 15.4 | 97.4 | 76.5 | 0.054 | 10.3 |
NAA/Cho WM | 7.7 | 97.4 | 74.5 | 0.106 | 7.4 |
NAA/Cho GM | 15.4 | 100 | 78.4 | 0.019 | 15.1 |
Cho/Cr WM | 7.7 | 94.7 | 72.5 | 0.031 | 12.8 |
Cho/Cr GM | 7.7 | 100 | 76.5 | 0.271 | 3.5 |
PIQ2 | |||||
NAA/Cr WM | 16.7 | 100 | 90.2 | 0.008 | 24.6 |
NAA/Cr GM | 33.3 | 100 | 92.2 | 0.012 | 22.8 |
NAA/Cho WM | 16.7 | 100 | 90.2 | 0.023 | 18.7 |
NAA/Cho GM | 0 | 100 | 88.2 | 0.046 | 14.6 |
Cho/Cr WM | 0 | 100 | 88.2 | 0.679 | 0.6 |
Cho/Cr GM | 0 | 100 | 88.2 | 0.437 | 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berger, L.; Holshouser, B.; Nichols, J.G.; Pivonka-Jones, J.; Ashwal, S.; Bartnik-Olson, B. White Matter Metabolite Ratios Predict Cognitive Outcome in Pediatric Traumatic Brain Injury. Metabolites 2023, 13, 778. https://doi.org/10.3390/metabo13070778
Berger L, Holshouser B, Nichols JG, Pivonka-Jones J, Ashwal S, Bartnik-Olson B. White Matter Metabolite Ratios Predict Cognitive Outcome in Pediatric Traumatic Brain Injury. Metabolites. 2023; 13(7):778. https://doi.org/10.3390/metabo13070778
Chicago/Turabian StyleBerger, Luke, Barbara Holshouser, Joy G. Nichols, Jamie Pivonka-Jones, Stephen Ashwal, and Brenda Bartnik-Olson. 2023. "White Matter Metabolite Ratios Predict Cognitive Outcome in Pediatric Traumatic Brain Injury" Metabolites 13, no. 7: 778. https://doi.org/10.3390/metabo13070778
APA StyleBerger, L., Holshouser, B., Nichols, J. G., Pivonka-Jones, J., Ashwal, S., & Bartnik-Olson, B. (2023). White Matter Metabolite Ratios Predict Cognitive Outcome in Pediatric Traumatic Brain Injury. Metabolites, 13(7), 778. https://doi.org/10.3390/metabo13070778