Chemical Constituents of Euphorbia stracheyi Boiss (Euphorbiaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Materials
2.2. Extraction and Separation
2.3. X-ray Crystallographic Analyses
2.4. In Vitro Cytotoxic Activity Screening of Cells with HL-60, A-549, SMMC-7721, MCF-7, SW-480
- Cell inoculation: A single cell suspension was obtained from a culture medium (DMEM or RMPI1640) containing 10% fetal bovine serum, and 3000–15,000 cells per well were inoculated onto a 96-well flat-bottomed microtiter plate at a volume of 100 μL per well. The cells were inoculated 12–24 h in advance for culture.
- Addition of compounds to be tested: Dimethyl sulfoxide (DMSO) solutions containing different concentrations of the tested compound (diluted from 40 μM) were added to a final volume of 200 μL per well, and three replicates were set for each group of treatments.
- Color development: After incubation at 37 °C for 48 h, the culture solution was discarded for adherent cells, and 20 μL of MTS solution and 100 μL of culture solution were added to each well, respectively; 100 μL of culture supernatant was discarded for suspended cells and 20 μL of MTS solution was added to each well. Incubation was continued for 2~4 h. Then, to measure the light absorption values, 3 blank controls (120 μL of the mixture of MTS solution and culture solution) were set.
- Colorimetric: A wavelength of 492 nm was selected, and the light absorption value of each well was read by MULTISKAN FC. The results were recorded, and the data were processed and plotted against the compound number as the horizontal coordinate and the cell inhibition rate as the vertical coordinate.
- Positive control compounds: Two positive compounds, DDP and Taxol, were used in each experiment, and the cell growth curves were plotted with the concentration as the horizontal coordinate and the cell survival rate as the vertical coordinate.
3. Results
3.1. Structure Identification
3.2. Cytotoxicity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ernst, M.; Grace, O.M.; Saslis-Lagoudakis, C.H.; Nilsson, N.; Simonsen, H.T.; Rønsted, N. Global medicinal uses of Euphorbia L. (Euphorbiaceae). J. Ethnopharmacol. 2015, 176, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.W.; Su, X.H.; Kiyota, H. Chemical and pharmacological research of the plants in genus Euphorbia. Chem. Rev. 2008, 108, 4295–4327. [Google Scholar] [CrossRef] [PubMed]
- Vasas, A.; Hohmann, J. Euphorbia diterpenes: Isolation, structure, biological activity, and synthesis (2008–2012). Chem. Rev. 2014, 114, 8579–8612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasas, A.; Rédei, D.; Csupor, D.; Molnár, J.; Hohmann, J. Diterpenes from European Euphorbia species serving as prototypes for natural-product-based drug discovery. Eur. J. Org. Chem. 2012, 2012, 5115–5130. [Google Scholar] [CrossRef]
- Li, C.Y.; Yang, L.; Liu, Y.; Xu, Z.G.; Gao, J.; Huang, Y.B.; Xu, J.J.; Fan, H.; Kong, Y.; Wei, Y.K.; et al. The sage genome provides insight into the evolutionary dynamics of diterpene biosynthesis gene cluster in plants. Cell Rep. 2022, 40, 111236. [Google Scholar] [CrossRef]
- Song, J.J.; Fang, X.; Li, C.Y.; Jiang, Y.; Li, J.X.; Wu, S.; Guo, J.; Liu, Y.; Fan, H.; Huang, Y.B.; et al. A 2-oxoglutarate-dependent dioxygenase converts dihydrofuran to furan in Salvia diterpenoids. Plant Physiol. 2022, 188, 1496–1506. [Google Scholar] [CrossRef]
- Editorial Committee of the Flora of China, Chinese Academy of Sciences. Flora of China; Science Press: Beijing, China, 1997. [Google Scholar]
- Zhang, B.Y.; Wang, H.; Luo, X.D.; Du, Z.Z.; Shen, J.W.; Zeng, L.F.; Zhang, X.F. Chemical constituents from Euphorbia stracheyi. Chin. Tradit. Herb. Drugs 2012, 43, 1496–1498. [Google Scholar]
- Ma, Z.k.; Dai, Y.; Zhang, B.B.; Liao, Z.X. Study on chemical constituents of Euphorbia stracheyi Boiss. Northwest Pharm. J. 2012, 27, 1–4. [Google Scholar]
- Yang, D.S.; Peng, W.B.; Li, Z.L.; Wang, X.; Wei, J.G.; He, Q.X.; Yang, Y.P.; Liu, K.C.; Li, X.L. Chemical constituents from Euphorbia stracheyi and their biological activities. Fitoterapia 2014, 97, 211–218. [Google Scholar] [CrossRef]
- Liu, T.; Liang, Q.; Xiong, N.N.; Dai, L.F.; Wang, J.M.; Ji, X.H.; Xu, W.H. A new ent-kaurane diterpene from Euphorbia sttacheyi Boiss. Nat. Prod. Res. 2017, 31, 233–238. [Google Scholar] [CrossRef]
- Liu, T.; Liang, Q.; Zhang, X.M.; Su, X.M.; Qin, J.C.; Li, G.Q.; Xu, W.H. Chemical constituents from Euphorbia stracheyi Boiss. Biochem. Syst. Ecol. 2019, 84, 52–54. [Google Scholar] [CrossRef]
- Ye, Y.; Liu, G.H.; Dawa, D.; Ding, L.S.; Cao, Z.X.; Zhou, Y. Cytotoxic diterpenoids from the roots of Euphorbia stracheyi. Phytochem. Lett. 2020, 36, 183–187. [Google Scholar] [CrossRef]
- Yuan, F.Y.; Pan, Y.H.; Yin, A.P.; Li, W.; Huang, D.; Yan, X.L.; Wu, S.Q.; Tang, G.H.; Pu, R.; Yin, S. Euphorstranoids A and B, two highly rearranged ingenane diterpenoids from Euphorbia stracheyi: Structural elucidation, chemical transformation, and lipid-lowering activity. Org. Chem. Front. 2022, 9, 775–780. [Google Scholar] [CrossRef]
- Su, J.C.; Cheng, W.; Song, J.G.; Zong, Y.L.; Huang, X.J.; Jiang, R.W.; Li, Y.L.; Li, M.M.; Ye, W.C.; Wang, Y. Macrocyclic diterpenoids form Euphorbia helioscopia and their potential anti-inflammatory activity. J. Nat. Prod. 2019, 82, 2818–2827. [Google Scholar] [CrossRef]
- Adolf, W.; KÖhler, I.; Hecker, E. Lathyrane type diterpene esters from Euphorbia lathyris. Phytochemistry 1984, 23, 1461–1463. [Google Scholar] [CrossRef]
- Kim, Y.M.; Ahn, J.; Chae, H.S.; Choi, Y.H.; Kim, J.; Chin, Y.-W. Two new lathyrane-type diterpenoid glycosides with IL-6 production inhibitory activity from the roots of Euphorbia kansui. Bioorg. Med. Chem. Lett. 2018, 28, 1207–1210. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.N.; Ding, X.; Lu, Q.Y.; Li, D.M.; Li, B.T.; Liu, S.; Yang, L.; Zhang, Y.; Di, Y.T.; Fang, X.; et al. Macrocyclic diterpenoids from the seeds of Euphorbia peplus with potential activity in inducing lysosomal biogenesis. Bioorg. Chem. 2020, 105, 104464. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, L.; Li, Z.J.; Yan, X.J.; Yang, Y.J.; Tang, Y.P.; Cao, Y.D.; Ding, A.W. Bio-Guided isolation of the cytotoxic terpenoids from the roots of Euphorbia kansui against human normal cell lines L-O2 and GES-1. Int. J. Mol. Sci. 2012, 13, 11247–11259. [Google Scholar] [CrossRef] [Green Version]
- Teng, R.-W.; McManus, D.; Aylward, J.; Ogbouren, S.; Armstrong, D.; Mau, S.-L.; Johns, J.; Bacic, A. Biotransformation of ingenol-3-angelate in four plant cell suspension cultures. Biocatal. Biotransform. 2009, 27, 186–194. [Google Scholar] [CrossRef]
- Borghi, D.; Baumer, L.; Ballabio, M.; Arlandini, E.; Perellino, N.C.; Minghetti, A.; Vincieri, F.F. Structure elucidation of Helioscopinolide-D and Helioscopinolide-E from Euphorbia calyptrata cell cultures. J. Nat. Prod. 1991, 54, 1503–1508. [Google Scholar] [CrossRef]
- Chen, Y.N.; Lu, Q.Y.; Li, D.M.; Li, Y.Y.; Pu, X.X.; Li, B.T.; Tang, X.H.; Tang, H.Y.; Liu, S.; Yang, L.; et al. Three new diterpenoids from Euphorbia peplus. Nat. Prod. Res. 2021, 35, 3901–3907. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Lee, K.H.; Choi, S.U.; Kim, Y.H.; Lee, K.R. Terpene and phenolic constituents of Lactuca indica L. Arch. Pharmacal Res. 2008, 31, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, E.E.; Livingston, N.J.; Abrams, S.R.; Rose, P.A. Structure-activity relationships of ABA analogs based on their effects on the gas exchange of clonal white spruce (Picea glauca) emblings. Physiol. Plant. 1999, 105, 246–256. [Google Scholar] [CrossRef]
- Itoh, T.; Ninomiya, M.; Yasuda, M.; Koshikawa, K.; Deyashiki, Y.; Nozawa, Y.; Akao, Y.; Koketsu, M. Inhibitory effects of flavonoids isolated from Fragaria ananassa Duch on IgE-mediated degranulation in rat basophilic leukemia RBL-2H3. Bioorg. Med. Chem. 2009, 17, 5374–5379. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.H.; Chun, W.; Choi, Y.J.; Kwon, Y.S. Cytotoxic constituents from the bark of Salix hulteni. Arch. Pharmacal Res. 2008, 31, 978–982. [Google Scholar] [CrossRef]
- Horn, J.W.; van Ee, B.W.; Morawetz, J.J.; Riina, R.; Steinmann, V.W.; Berry, P.E.; Wurdack, K.J. Phylogenetics and the evolution of major structural characters in the giant genus Euphorbia L. (Euphorbiaceae). Mol. Phylogenet. Evol. 2012, 63, 305–326. [Google Scholar] [CrossRef]
- Appendino, G.; Jakupovic, S.; Tron, G.C.; Jakupovic, J.; Milon, V.; Ballero, M. Macrocyclic diterpenoids from Euporbia semiperfoliata. J. Nat. Prod. 1998, 61, 749–756. [Google Scholar] [CrossRef]
- Fattahian, M.; Ghanadian, M.; Ali, Z.; Khan, I.A. Jatrophane and rearranged jatrophane-type diterpenes: Biogenesis, structure, isolation, biological activity and SARs (1984–2019). Phytochem. Rev. 2020, 19, 265–336. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, M.; Wang, D.; Liu, X.; Ye, X.; Wang, G.; Lin, T.; Sun, C.; Ding, R.; Tian, W.; et al. Jatrophane Diterpenoids from Euphorbia peplus as Multidrug Resistance Modulators with Inhibitory Effects on the ATR-Chk-1 Pathway. J. Nat. Prod. 2021, 84, 339–351. [Google Scholar] [CrossRef]
- Chen, Y.N.; Ding, X.; Li, D.M.; Lu, Q.Y.; Liu, S.; Li, Y.Y.; Di, Y.T.; Fang, X.; Hao, X.J. Jatrophane diterpenoids from the seeds of Euphorbia peplus with potential bioactivities in lysosomal-autophagy pathway. Nat. Prod. Bioprospect. 2021, 11, 357–364. [Google Scholar] [CrossRef]
- Czechowski, T.; Forestier, E.; Swamidatta, S.H.; Gilday, A.D.; Cording, A.; Larson, T.R.; Harvey, D.; Li, Y.; He, Z.; King, A.J.; et al. Gene discovery and virus-induced gene silencing reveal branched pathways to major classes of bioactive diterpenoids in Euphorbia peplus. Proc. Natl. Acad. Sci. USA 2022, 119, e2203890119. [Google Scholar] [CrossRef] [PubMed]
- Avalos, J.; Carmen, L.M. Biological roles of fungal carotenoids. Curr. Genet. 2015, 61, 309–324. [Google Scholar] [CrossRef] [PubMed]
Carbon Position | δH | δC | Carbon Position | δH | δC |
---|---|---|---|---|---|
1α | 2.44 (1H, m) | 35.5 | 11 | 0.49 (1H, ddd, J = 12.5, 7.5, 5.0 Hz) | 22.6 |
1β | 2.91 (1H, m) | 12α | 1.37 (1H, ddd, J = 12.5, 7.5, 5.0 Hz) | 26.4 | |
2 | 2.46 (1H, m) | 39.9 | 12β | 1.02 (1H, m) | |
3 | 210.1 | 13 | 1.98 (1H, m) | 37.1 | |
4 | 136.7 | 14 | 4.94 (1H, t, J = 5.0 Hz) | 70.9 | |
5 | 6.05 (1H, s) | 114.6 | 15 | 177.4 | |
6 | 145.3 | 16 | 1.23 (3H, d, J = 7.0 Hz) | 16.4 | |
7 | 4.40 (1H, d, J = 5.5 Hz) | 73.1 | 17 | 1.53 (3H, br d) | 17.8 |
8α | 2.12 (1H, ddd, J = 14.5, 5.5, 1.0 Hz) | 29.0 | 18 | 1.08 (3H, s) | 29.1 |
8β | 1.01 (1H, m) | 19 | 0.81 (3H, s) | 15.7 | |
9 | 0.93 (1H, m) | 20.0 | 20 | 0.99 (3H, d, J = 7.0 Hz) | 14.9 |
10 | 16.2 | 14-OH | 1.61 (1H, d, J = 5.0 Hz) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Ren, X.; Huang, Y.; Su, T.; Yang, L. Chemical Constituents of Euphorbia stracheyi Boiss (Euphorbiaceae). Metabolites 2023, 13, 852. https://doi.org/10.3390/metabo13070852
Zhu H, Ren X, Huang Y, Su T, Yang L. Chemical Constituents of Euphorbia stracheyi Boiss (Euphorbiaceae). Metabolites. 2023; 13(7):852. https://doi.org/10.3390/metabo13070852
Chicago/Turabian StyleZhu, Hui, Xiangxiang Ren, Yanbo Huang, Tao Su, and Lei Yang. 2023. "Chemical Constituents of Euphorbia stracheyi Boiss (Euphorbiaceae)" Metabolites 13, no. 7: 852. https://doi.org/10.3390/metabo13070852
APA StyleZhu, H., Ren, X., Huang, Y., Su, T., & Yang, L. (2023). Chemical Constituents of Euphorbia stracheyi Boiss (Euphorbiaceae). Metabolites, 13(7), 852. https://doi.org/10.3390/metabo13070852