Comparative Antihyperglycemic and Antihyperlipidemic Effects of Lawsone Methyl Ether and Lawsone in Nicotinamide-Streptozotocin-Induced Diabetic Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drugs and Chemicals
2.2. Experimental Animals
2.3. Induction of Obesity, Hyperlipidemia, and Insulin Resistance
2.4. Standardization of STZ Dose for the Induction of DM
2.5. Experimental Design
- Group 1: normal control rats receiving cosolvent only.
- Groups 2, 3, and 4: normal control rats receiving 15, 30, and 45 mg/kg of LME, respectively.
- Groups 5,6, and 7: normal control rats receiving 15, 30, and 45 mg/kg of lawsone, respectively.
- Group 8: diabetic control rats receiving cosolvent only.
- Groups 9, 10, and 11: diabetic rats receiving 15, 30, and 45 mg/kg of LME, respectively.
- Groups 12, 13, and 14: diabetic rats receiving 15, 30, and 45 mg/kg of lawsone, respectively.
- Group 15: diabetic rats receiving 0.6 mg/kg of glibenclamide.
2.6. Determination of Body Weight, Food and Water Intake, and FBG
2.7. Measurement of HbA1c and Insulin Levels
2.8. Determination of Insulin Resistance and β-Cell Functioning Indices
2.9. Measurement of Biochemical Indices for Lipid Profiles, Liver, and Kidney Functions
2.10. Histopathological Findings of Pancreas
2.11. Statistical Analysis
3. Results and Discussion
3.1. Determination of a Non-Toxic Dose for LME and Lawsone
3.2. Induction of Obesity, Hyperlipidemia, and Insulin Resistance
3.3. Effects of LME and Lawsone on Body Weights, Food, and Water Consumptions
3.4. Effects of LME and Lawsone on FBG, HbA1c, and Insulin Levels
3.5. Effects of LME and Lawsone on HOMA-IR and HOMA-β
3.6. Effects of LME and Lawsone on Lipid Profiles
3.7. Effects of LME and Lawsone on Liver and Kidney Function Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Available online: https://www.who.int (accessed on 8 July 2023).
- Saeedi, P.; Salpea, P.; Karuranga, S.; Petersohn, I.; Malanda, B.; Gregg, E.W.; Unwin, N.; Wild, S.H.; Williams, R. Mortality Attributable to Diabetes in 20–79 Years Old Adults, 2019 Estimates: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 2020, 162, 108086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between Insulin Resistance and the Development of Cardiovascular Disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamberlain, J.J.; Rhinehart, A.S.; Shaefer, C.F., Jr.; Neuman, A. Diagnosis and Management of Diabetes: Synopsis of the 2016 American Diabetes Association Standards of Medical Care in Diabetes. Ann. Intern. Med. 2016, 164, 542–552. [Google Scholar] [CrossRef]
- Jeyabalan, S.; Palayan, M. Antihyperlipidemic Activity of Sapindus emarginatus in Triton WR-1339 Induced Albino Rats. Res. J. Pharm. Technol. 2009, 2, 319–323. [Google Scholar]
- Sharma, A.; Khanijau, M.R.; Agarwal, M.R. Hyperlipidemia: A Review Article. Soc. Sci. Rev. 2019, 5, 11–22. [Google Scholar]
- Hung, H.-Y.; Qian, K.; Morris-Natschke, S.L.; Hsu, C.-S.; Lee, K.-H. Recent Discovery of Plant-Derived Anti-Diabetic Natural Products. Nat. Prod. Rep. 2012, 29, 580–606. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.R.; Mohamed, G.A.; Banjar, Z.M.; Kamal, H.K. Natural Antihyperlipidemic Agents: Current Status and Future Perspectives. Phytopharmacology 2013, 4, 492–531. [Google Scholar]
- Arya, N.; Kharjul, M.D.; Shishoo, C.J.; Thakare, V.N.; Jain, K.S. Some Molecular Targets for Antihyperlipidemic Drug Research. Eur. J. Med. Chem. 2014, 85, 535–568. [Google Scholar] [CrossRef]
- Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. 2017, 8, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, E.J.; Wu, P.; Chong, G.; Ghement, I.; Singh, S.; Akl, E.A.; Eyawo, O.; Guyatt, G.; Berwanger, O.; Briel, M. Efficacy and Safety of Statin Treatment for Cardiovascular Disease: A Network Meta-Analysis of 170 255 Patients from 76 Randomized Trials. QJM Int. J. Med. 2011, 104, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Pattis, P.; Wiedermann, C.J. Ezetimibe-Associated Immune Thrombocytopenia. Ann. Pharmacother. 2008, 42, 430–433. [Google Scholar] [CrossRef]
- Navitha, A.; Helen Sheeba, D.A.; Ramesh, C.; Sartaj Banu, M. Hypoglycemic and Anti-Diabetic Activity of Ethanolic Extract of Catharanthus pusillus (Murray) G. Don. IOSR J. Pharm. 2012, 2, 17–21. [Google Scholar]
- Ahangarpour, A.; Sayahi, M.; Sayahi, M. The Antidiabetic and Antioxidant Properties of Some Phenolic Phytochemicals: A Review Study. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 854–857. [Google Scholar] [CrossRef]
- Gwon, S.Y.; Ahn, J.Y.; Jung, C.H.; Moon, B.K.; Ha, T.Y. Shikonin Suppresses ERK 1/2 Phosphorylation during the Early Stages of Adipocyte Differentiation in 3T3-L1 Cells. BMC Complement. Altern. Med. 2013, 13, 207. [Google Scholar] [CrossRef] [Green Version]
- Yong, R.; Chen, X.-M.; Shen, S.; Vijayaraj, S.; Ma, Q.; Pollock, C.A.; Saad, S. Plumbagin Ameliorates Diabetic Nephropathy via Interruption of Pathways That Include NOX4 Signalling. PLoS ONE 2013, 8, e73428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, M.A.; Reanmongkol, W.; Radenahmad, N.; Khalil, R.; Ul-Haq, Z.; Panichayupakaranant, P. Anti-Hyperglycemic and Anti-Hyperlipidemic Effects of Rhinacanthins-Rich Extract from Rhinacanthus nasutus Leaves in Nicotinamide-Streptozotocin Induced Diabetic Rats. Biomed. Pharmacother. 2019, 113, 108702. [Google Scholar] [CrossRef]
- Oda, Y.; Nakashima, S.; Kondo, E.; Nakamura, S.; Yano, M.; Kubota, C.; Masumoto, Y.; Hirao, M.; Ogawa, Y.; Matsuda, H. Comparison of Lawsone Contents among Lawsonia inermis Plant Parts and Neurite Outgrowth Accelerators from Branches. J. Nat. Med. 2018, 72, 890–896. [Google Scholar] [CrossRef]
- Khan, M.; Shah, M.A.; Bibi, S.; Panichayupakaranant, P. Inhibitory effects of lawsone methyl ether and lawsone and their synergistic interactions with acarbose against α-glucosidase: In silico and in vitro studies. In Proceedings of the 7th Current Drug Development International Conference 2023 & 1st World Kratom Conference (CDD2023 & WKC2023), Phuket, Thailand, 22–25 August 2023. [Google Scholar]
- Meah, M.S.; Lertcanawanichakul, M.; Pedpradab, P.; Lin, W.; Zhu, K.; Li, G.; Panichayupakaranant, P. Synergistic Effect on Anti-Methicillin-Resistant Staphylococcus aureus among Combinations of α-Mangostin-Rich Extract, Lawsone Methyl Ether and Ampicillin. Lett. Appl. Microbiol. 2020, 71, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Ahn, H.; Park, Y.K. High Dietary Fructose Intake on Cardiovascular Disease Related Parameters in Growing Rats. Nutrients 2016, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Shirwaikar, A.; Rajendran, K.; Barik, R. Effect of Aqueous Bark Extract of Garuga pinnata Roxb. in Streptozotocin-Nicotinamide Induced Type-II Diabetes Mellitus. J. Ethnopharmacol. 2006, 107, 285–290. [Google Scholar] [CrossRef]
- Alotaibi, M.R.; Fatani, A.J.; Almnaizel, A.T.; Ahmed, M.M.; Abuohashish, H.M.; Al-Rejaie, S.S. In Vivo Assessment of Combined Effects of Glibenclamide and Losartan in Diabetic Rats. Med. Princ. Pract. 2019, 28, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Elmalí, E.; Altan, N.; Bukan, N. Effect of the Sulphonylurea Glibenclamide on Liver and Kidney Antioxidant Enzymes in Streptozocin-Induced Diabetic Rats. Drugs R D 2004, 5, 203–208. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and β-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Elangovan, A.; Subramanian, A.; Durairaj, S.; Ramachandran, J.; Lakshmanan, D.K.; Ravichandran, G.; Nambirajan, G.; Thilagar, S. Antidiabetic and Hypolipidemic Efficacy of Skin and Seed Extracts of Momordica cymbalaria on Alloxan Induced Diabetic Model in Rats. J. Ethnopharmacol. 2019, 241, 111989. [Google Scholar] [CrossRef]
- OECD Test No. 423; Acute Oral Toxicity—Acute Toxic Class Method. Organisation for Economic Co-Operation and Development: Paris, France, 2002.
- Hartmann, E.; Strauss, V.; Eiben, R.; Freyberger, A.; Kaufmann, W.; Loof, I.; Reissmueller, E.; Rinke, M.; Ruehl-Fehlert, C.; Schorsch, F. ESTP Comments on the Draft Updated OECD Test Guideline 407. Exp. Toxicol. Pathol. 2008, 59, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Vessby, B.; Uusitupa, M.; Hermansen, K.; Riccardi, G.; Rivellese, A.A.; Tapsell, L.C.; Nälsén, C.; Berglund, L.; Louheranta, A.; Rasmussen, B.M. Substituting Dietary Saturated for Monounsaturated Fat Impairs Insulin Sensitivity in Healthy Men and Women: The KANWU Study. Diabetologia 2001, 44, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Risérus, U.; Willett, W.C.; Hu, F.B. Dietary Fats and Prevention of Type 2 Diabetes. Prog. Lipid Res. 2009, 48, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Isken, F.; Klaus, S.; Petzke, K.-J.; Loddenkemper, C.; Pfeiffer, A.F.; Weickert, M.O. Impairment of Fat Oxidation under High-vs. Low-Glycemic Index Diet Occurs before the Development of an Obese Phenotype. Am. J. Physiol.-Endocrinol. Metab. 2010, 298, E287–E295. [Google Scholar] [CrossRef] [PubMed]
- Cloete, L. Diabetes Mellitus: An Overview of the Types, Symptoms, Complications and Management. Nurs. Stand. R. Coll. Nurs. Great Br. 2021, 37, 61–66. [Google Scholar] [CrossRef]
- Frier, B.C.; Noble, E.G.; Locke, M. Diabetes-Induced Atrophy Is Associated with a Muscle-Specific Alteration in NF-ΚB Activation and Expression. Cell Stress Chaperones 2008, 13, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Lenzen, S. The Mechanisms of Alloxan-and Streptozotocin-Induced Diabetes. Diabetologia 2008, 51, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Reanmongkol, W.; Subhadhirasakul, S.; Panichayupakaranant, P.; Kim, K.-M. Anti-Allergic and Antioxidative Activities of Some Compounds from Thai Medicinal Plants. Pharm. Biol. 2003, 41, 592–597. [Google Scholar] [CrossRef]
- Alqahtani, N.; Khan, W.; Alhumaidi, M.; Ahmed, Y.A. Use of Glycated Hemoglobin in the Diagnosis of Diabetes Mellitus and Pre-Diabetes and Role of Fasting Plasma Glucose, Oral Glucose Tolerance Test. Int. J. Prev. Med. 2013, 4, 1025. [Google Scholar]
- Chinchansure, A.A.; Korwar, A.M.; Kulkarni, M.J.; Joshi, S.P. Recent Development of Plant Products with Anti-Glycation Activity: A Review. RSC Adv. 2015, 5, 31113–31138. [Google Scholar] [CrossRef]
- Basit, A.; Riaz, M.; Fawwad, A. Glimepiride: Evidence-Based Facts, Trends, and Observations. Vasc. Health Risk Manag. 2012, 8, 463–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, N. A Review on Insulin-Producing Beta Cell: Regenerative Role of Drugs Acting on DYRK1A, GLP-1 and DPP-4 Receptors. Ph.D. Thesis, Brac University, Dhaka, Bangladesh, 2021. [Google Scholar]
- Kaur, N.; Kishore, L.; Singh, R. Attenuating Diabetes: What Really Works? Curr. Diabetes Rev. 2016, 12, 259–278. [Google Scholar] [CrossRef] [PubMed]
- Bosenberg, L.H.; Van Zyl, D.G. The Mechanism of Action of Oral Antidiabetic Drugs: A Review of Recent Literature. J. Endocrinol. Metab. Diabetes S. Afr. 2008, 13, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, A.; Tohidi, M.; Derakhshan, A.; Hasheminia, M.; Azizi, F.; Hadaegh, F. Cut-off Points of Homeostasis Model Assessment of Insulin Resistance, Beta-Cell Function, and Fasting Serum Insulin to Identify Future Type 2 Diabetes: Tehran Lipid and Glucose Study. Acta Diabetol. 2015, 52, 905–915. [Google Scholar] [CrossRef]
- Paneni, F.; Costantino, S.; Cosentino, F. Insulin Resistance, Diabetes, and Cardiovascular Risk. Curr. Atheroscler. Rep. 2014, 16, 419. [Google Scholar] [CrossRef]
- Schofield, J.D.; Liu, Y.; Rao-Balakrishna, P.; Malik, R.A.; Soran, H. Diabetes Dyslipidemia. Diabetes Ther. 2016, 7, 203–219. [Google Scholar] [CrossRef] [Green Version]
- Rafieian-Kopaei, M.; Setorki, M.; Doudi, M.; Baradaran, A.; Nasri, H. Atherosclerosis: Process, Indicators, Risk Factors and New Hopes. Int. J. Prev. Med. 2014, 5, 927. [Google Scholar]
- Eidi, A.; Mortazavi, P.; Bazargan, M.; Zaringhalam, J. Hepatoprotective Activity of Cinnamon Ethanolic Extract against CCI4-Induced Liver Injury in Rats. Excli J. 2012, 11, 495. [Google Scholar]
- Darvin, S.S.; Esakkimuthu, S.; Toppo, E.; Balakrishna, K.; Paulraj, M.G.; Pandikumar, P.; Ignacimuthu, S.; Al-Dhabi, N.A. Hepatoprotective Effect of Lawsone on Rifampicin-Isoniazid Induced Hepatotoxicity in in vitro and in vivo Models. Environ. Toxicol. Pharmacol. 2018, 61, 87–94. [Google Scholar] [CrossRef]
- Cade, W.T. Diabetes-Related Microvascular and Macrovascular Diseases in the Physical Therapy Setting. Phys. Ther. 2008, 88, 1322–1335. [Google Scholar] [CrossRef] [Green Version]
- Ikewuchi, C.C.; Ikewuchi, J.C.; Ifeanacho, M.O. Restoration of Plasma Markers of Liver and Kidney Functions/Integrity in Alloxan-Induced Diabetic Rabbits by Aqueous Extract of Pleurotus tuberregium Sclerotia. Biomed. Pharmacother. 2017, 95, 1809–1814. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-L.; Makinde, E.A.; Shah, M.A.; Olatunji, O.J.; Panichayupakaranant, P. Rhinacanthins-Rich Extract and Rhinacanthin C Ameliorate Oxidative Stress and Inflammation in Streptozotocin-Nicotinamide-Induced Diabetic Nephropathy. J. Food Biochem. 2019, 43, e12812. [Google Scholar] [CrossRef] [PubMed]
Parameters | Before Diet Intervention | After 10 Weeks of Diet Intervention | ||
---|---|---|---|---|
NFD | HFFD | NFD | HFFD | |
Weight (g) | 132.8 ± 3.9 a | 125.7 ± 4.3 a | 193.9 ± 6.2 b | 214.1 ± 6.0 c |
BWG (g) | N/A | N/A | 61.7 ± 6.0 | 88.6 ± 6.9 |
TC (mg/dL) | 78.6 ± 5.1 a | 84.3 ± 5.9 a | 89.1 ± 4.3 a | 113.3 ± 7.8 b |
TG (mg/dL) | 57.9 ± 3.7 a | 60.6 ± 5.5 a | 68.4 ± 6.0 a | 97.1 ± 6.2 b |
HDL (mg/dL) | 28.3 ± 2.6 ab | 32.9 ± 3.0 b | 34.8 ± 3.3 b | 21.4 ± 1.9 a |
LDL (mg/dL) | 8.5 ± 1.0 a | 11.9 ± 0.9 a | 12.3 ± 1.3 a | 18.9 ± 2.1 b |
FBG (mg/dL) | 82.8 ± 4.6 a | 89.6 ± 4.1 ab | 91.4 ± 5.1 ab | 103 ± 5.6 b |
Insulin (µIU/mL) | 9.9 ± 0.7 a | 11.3 ± 0.4 a | 12.0 ± 0.8 a | 10.8 ± 1.2 a |
Group | Compound Dose | Parameters | ||||
---|---|---|---|---|---|---|
Initial BW (g) | Final BW (g) | BWG (g) | Food/day (g) | H2O/day (mL) | ||
Normal | Control | 197.6 ± 5.1 b | 233.7 ± 7.7 bc | 36.1 | 31.1 ± 3.1 ab | 22.1 ± 1.9 a |
LME—15 mg/kg | 189.4 ± 4.6 ab | 216.9 ± 7.5 ab | 27.5 | 28.6 ± 2.7 a | 19.9 ± 1.5 a | |
LME—30 mg/kg | 189.5 ± 5.0 ab | 221.3 ± 6.6 b | 31.8 | 31.9 ± 3.4 ab | 21.2 ± 1.4 a | |
LME—45 mg/kg | 199.6 ± 5.6 b | 238.4 ± 8.1 bc | 38.8 | 38.1 ± 4.2 b | 24.2 ± 1.8 ab | |
Lawsone—15 mg/kg | 198.8 ± 4.9 b | 225.1 ± 6.7 b | 26.2 | 30.1 ± 2.9 ab | 20.3 ± 1.6 a | |
Lawsone—30 mg/kg | 178.5 ± 3.6 a | 211.7 ± 6.1 ab | 33.2 | 33.4 ± 3.3 ab | 23.1 ± 2.1 ab | |
Lawsone—45 mg/kg | 203.9 ± 6.1 abc | 241.3 ± 8.7 bc | 37.4 | 37 ± 3.9 b | 24.9 ± 2.0 ab | |
Diabetic | Control | 218.9 ± 6.3 c | 194.1 ± 6.1 a | −24.8 | 64.9 ± 4.8 d | 40.9 ± 3.7 c |
LME—15 mg/kg | 213.3 ± 7.0 bc | 227.9 ± 7.3 b | 14.6 | 50.1 ± 4.5 cd | 35.3 ± 2.9 bc | |
LME—30 mg/kg | 208.4 ± 4.5 bc | 234.5 ± 7.9 bc | 26.1 | 45.3 ± 3.9 c | 30.8 ± 3.3 abc | |
LME—45 mg/kg | 221.1 ± 7.1 c | 257.8 ± 8.9 c | 36.7 | 40.8 ± 3.4 bc | 29.9 ± 2.7 abc | |
Lawsone—15 mg/kg | 209.4 ± 5.1 bc | 222.3 ± 4.9 b | 12.9 | 53.7 ± 4.2 cd | 39.1 ± 3.5 c | |
Lawsone—30 mg/kg | 217.1 ± 6.5 bc | 239.2 ± 8.1 bc | 22.1 | 46.9 ± 4.5 bc | 38.2 ± 2.9 c | |
Lawsone—45 mg/kg | 205.7 ± 5.6 bc | 238.1 ± 7.3 bc | 32.4 | 41.3 ± 3.0 bc | 30.8 ± 3.1 abc | |
Glb—0.6 mg/kg | 219.2 ± 6.9 c | 257.1 ± 9.1 c | 37.9 | 39.9 ± 3.6 bc | 29.7 ± 2.8 abc |
Group | Compound Dose | Parameters | |
---|---|---|---|
HOMA Insulin Resistance | HOMA β-Cells Function | ||
Normal | Control | 2.7 ± 0.1 a | 126.1 ± 7.5 f |
LME—15 mg/kg | 2.2 ± 0.2 a | 172.3 ± 5.6 h | |
LME—30 mg/kg | 2.1 ± 0.2 a | 164.9 ± 4.8 g | |
LME—45 mg/kg | 2.5 ± 0.1 a | 137.3 ± 4.6 f | |
Lawsone—15 mg/kg | 2.4 ± 0.3 a | 125.4 ± 7.9 f | |
Lawsone—30 mg/kg | 2.5 ± 0.1 a | 144.4 ± 8.6 g | |
Lawsone—45 mg/kg | 2.4 ± 0.2 a | 184.6 ± 6.9 h | |
Diabetic | Control | 9.9 ± 0.5 d | 13.9 ± 0.9 a |
LME—15 mg/kg | 4.5 ± 0.6 c | 21.1 ± 1.0 ab | |
LME—30 mg/kg | 3.5 ± 0.3 bc | 40.8 ± 5.3 c | |
LME—45 mg/kg | 2.9 ± 0.3 b | 67.6 ± 4.1 e | |
Lawsone—15 mg/kg | 4.9 ± 0.6 c | 17.5 ± 1.4 a | |
Lawsone—30 mg/kg | 3.8 ± 0.5 bc | 31.9 ± 2.9 b | |
Lawsone—45 mg/kg | 3.2 ± 0.1 bc | 51.5 ± 3.4 cd | |
Glb—0.6 mg/kg | 3.0 ± 0.4 b | 69. 4 ± 3.9 e |
Group | Compound Dose | Parameters (mg/dL) | |||
---|---|---|---|---|---|
TC | TG | HDL | LDL | ||
Normal | Control | 92.6 ± 5.2 ab | 76.2 ± 6.1 ab | 50.8 ± 6.1 bc | 11.2 ± 1.2 a |
LME—15 mg/kg | 94.8 ± 5.9 ab | 68.6 ± 5.0 a | 48.6 ± 5.0 bc | 10.6 ± 1.4 a | |
LME—30 mg/kg | 97.8 ± 6.9 ab | 71.6 ± 5.4 a | 50.6 ± 4.8 bc | 10.7 ± 0.8 a | |
LME—45 mg/kg | 88.9 ± 4.3 a | 78.2 ± 4.9 ab | 49.8 ± 5.1 bc | 11.9 ± 1.1 a | |
Lawsone—15 mg/kg | 94.9 ± 4.8 ab | 74.8 ± 4.2 ab | 47.9 ± 4.0 bc | 11.5 ± 1.4 a | |
Lawsone—30 mg/kg | 101.2 ± 6.8 ab | 81.2 ± 5.1 ab | 54.7 ± 3.9 c | 12.1 ± 0.9 a | |
Lawsone—45 mg/kg | 89.0 ± 6.5 a | 80 ± 6.9 ab | 45.9 ± 3.8 abc | 10.3 ± 1.2 a | |
Diabetic | Control | 201 ± 11.1 f | 168.4 ± 8.2 e | 28.6 ± 4.7 a | 71.8 ± 5.9 g |
LME—15 mg/kg | 167.8 ± 9.5 de | 147.2 ± 7.4 e | 35.1 ± 4.2 ab | 50.8 ± 5.6 ef | |
LME—30 mg/kg | 122.6 ± 7.9 bc | 113.2 ± 5.4 cd | 42.2 ± 3.8 abc | 31.6 ± 3.4 cd | |
LME—45 mg/kg | 109 ± 5.7 ab | 95.4 ± 4.9 bc | 50.5 ± 5.7 bc | 16.5 ± 2.2 ab | |
Lawsone—15 mg/kg | 184.4 ± 8.9 ef | 145.9 ± 6.9 e | 34.8 ± 3.9 ab | 57.8 ± 4.4 f | |
Lawsone—30 mg/kg | 151.8 ± 7.1 cd | 119.4 ± 6.3 d | 40.8 ± 5.0 abc | 38.9 ± 4.3 de | |
Lawsone—45 mg/kg | 121.2 ± 6.4 b | 89.4 ± 4.9 ab | 45.4 ± 4.7 abc | 27.6 ± 2.2 bcd | |
Glb—0.6 mg/kg | 116.2 ± 5.1 ab | 96. 2 ± 5.4 bc | 48.6 ± 5.1 bc | 19.8 ± 1.6 abc |
Group | Compound Dose | Atherogenicity Indicators | ||
---|---|---|---|---|
AI | AC | CRI | ||
Normal | Control | 0.82 ± 0.1 a | 0.22 ± 0.02 a | 1.82 ± 0.2 a |
LME—15 mg/kg | 0.95 ± 0.1 a | 0.21 ± 0.03 a | 1.95 ± 0.1 a | |
LME—30 mg/kg | 0.93 ± 0.2 a | 0.2 ± 0.01 a | 1.93 ± 0.2 a | |
LME—45 mg/kg | 0.81 ± 0.1 a | 0.23 ± 0.02 a | 1.78 ± 0.2 a | |
LAW—15 mg/kg | 0.98 ± 0.2 a | 0.24 ± 0.03 a | 1.98 ± 0.3 a | |
LAW—30 mg/kg | 0.85 ± 0.09 a | 0.18 ± 0.01 a | 1.85 ± 0.2 a | |
LAW—45 mg/kg | 0.93 ± 0.1 a | 0.22 ± 0.03 a | 1.93 ± 0.1 a | |
Diabetic | Control | 6.1 ± 0.9 e | 2.51 ± 0.3 e | 7.02 ± 1.0 d |
LME—15 mg/kg | 3.8 ± 0.4 cd | 1.44 ± 0.1 d | 4.78 ± 0.3 c | |
LME—30 mg/kg | 1.9 ± 0.2 ab | 0.74 ± 0.05 bc | 2.9 ± 0.3 ab | |
LME—45 mg/kg | 1.15 ± 0.1 ab | 0.32 ± 0.04 ab | 2.1 ± 0.2 a | |
LAW—15 mg/kg | 4.3 ± 0.5 d | 1.66 ± 0.2 d | 5.29 ± 0.5 c | |
LAW—30 mg/kg | 2.7 ± 0.3 bc | 0.95 ± 0.1 c | 3.72 ± 0.4 bc | |
LAW—45 mg/kg | 1.66 ± 0.2 ab | 0.6 ± 0.07 abc | 2.66 ± 0.2 ab | |
GLB—0.6 mg/kg | 1.39 ± 0.2 ab | 0.4 ± 0.06 ab | 2.39 ± 0.3 ab |
Group | Compound Dose | Parameters (mg/dL) | |||
---|---|---|---|---|---|
AST (IU/dL) | ALT (IU/dL) | Cr (mg/dL) | BUN (mg/dL) | ||
Normal | Control | 88.6 ± 6.0 a | 44.0 ± 3.6 ab | 0.39 ± 0.06 a | 28.1 ± 3.2 a |
LME—15 mg/kg | 90.9 ± 5.7 ab | 39.8 ± 3.0 a | 0.38 ± 0.04 a | 26.9 ± 3.0 a | |
LME—30 mg/kg | 88.4 ± 6.6 a | 41.8 ± 5.1 ab | 0.40 ± 0.06 a | 30.9 ± 3.7 abc | |
LME—45 mg/kg | 92.3 ± 5.4 ab | 38.6 ± 4.1 a | 0.41 ± 0.05 a | 31.6 ± 4.3 abc | |
Lawsone—15 mg/kg | 89.3 ± 6.1 a | 47.9 ± 4.7 ab | 0.45 ± 0.06 ab | 28.6 ± 3.2 ab | |
Lawsone—30 mg/kg | 99.0 ± 7.6 abc | 51.1 ± 4.3 ab | 0.37 ± 0.03 a | 33.8 ± 2.9 abc | |
Lawsone—45 mg/kg | 100.8 ± 7.3 abc | 40.3 ± 63.5 a | 0.40 ± 0.05 ab | 30.8 ± 4.0 abc | |
Diabetic | Control | 169.8 ± 11.1 f | 98.4 ± 6.0 g | 1.1 ± 0.09 e | 61.9 ± 5.1 e |
LME—15 mg/kg | 157.8 ± 7.3 ef | 89.1 ± 5.4 fg | 0.85 ± 0.06 cd | 53.4 ± 4.3 de | |
LME—30 mg/kg | 136.6 ± 5.3 de | 75.6 ± 6.0 cdef | 0.61 ± 0.03 abc | 45.6 ± 4.0 cde | |
LME—45 mg/kg | 118.9 ± 5.7 bcd | 60.1 ± 3.6 abcd | 0.39 ± 0.04 a | 33.8 ± 3.0 abc | |
Lawsone—15 mg/kg | 153.9 ± 7.6 ef | 85.3 ± 4.6 efg | 0.86 ± 0.09 d | 54.9 ± 5.1 de | |
Lawsone—30 mg/kg | 139.6 ± 5.3 de | 79.9 ± 5.4 defg | 0.73 ± 0.07 bcd | 45.0 ± 4.3 bcd | |
Lawsone—45 mg/kg | 117.8 ± 7.5 bcd | 54.2 ± 4.5 abc | 0.51 ± 0.05 ab | 41.9 ± 3.7 abcd | |
Glb—0.6 mg/kg | 120.2 ± 6.5 cd | 63. 6 ± 5.5 bcde | 0.42 ± 0.04 a | 35.1 ± 4.1 abc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.; Shah, M.A.; Kamal, M.; Ola, M.S.; Ali, M.; Panichayupakaranant, P. Comparative Antihyperglycemic and Antihyperlipidemic Effects of Lawsone Methyl Ether and Lawsone in Nicotinamide-Streptozotocin-Induced Diabetic Rats. Metabolites 2023, 13, 863. https://doi.org/10.3390/metabo13070863
Khan M, Shah MA, Kamal M, Ola MS, Ali M, Panichayupakaranant P. Comparative Antihyperglycemic and Antihyperlipidemic Effects of Lawsone Methyl Ether and Lawsone in Nicotinamide-Streptozotocin-Induced Diabetic Rats. Metabolites. 2023; 13(7):863. https://doi.org/10.3390/metabo13070863
Chicago/Turabian StyleKhan, Muhammad, Muhammad Ajmal Shah, Mustafa Kamal, Mohammad Shamsul Ola, Mehboob Ali, and Pharkphoom Panichayupakaranant. 2023. "Comparative Antihyperglycemic and Antihyperlipidemic Effects of Lawsone Methyl Ether and Lawsone in Nicotinamide-Streptozotocin-Induced Diabetic Rats" Metabolites 13, no. 7: 863. https://doi.org/10.3390/metabo13070863
APA StyleKhan, M., Shah, M. A., Kamal, M., Ola, M. S., Ali, M., & Panichayupakaranant, P. (2023). Comparative Antihyperglycemic and Antihyperlipidemic Effects of Lawsone Methyl Ether and Lawsone in Nicotinamide-Streptozotocin-Induced Diabetic Rats. Metabolites, 13(7), 863. https://doi.org/10.3390/metabo13070863