Metabolomics Analysis Reveals Altered Metabolic Pathways and Response to Doxorubicin in Drug-Resistant Triple-Negative Breast Cancer Cells
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
4.1. Chemical Reagents
4.2. Cell Culture and Establishment of Doxorubicin Resistance
4.3. Doxorubicin Treatment and Metabolite Extraction
4.4. UHPLC-HRMS Metabolomics Data Acquisition and Preprocessing
4.5. Compound Identification/Annotation
4.6. Multivariate, Univariate, and Pathway Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Zagami, P.; Carey, L.A. Triple negative breast cancer: Pitfalls and progress. Breast Cancer 2022, 8, 95. [Google Scholar] [CrossRef]
- Echeverria, G.V.; Ge, Z.; Seth, S.; Zhang, X.; Jeter-jones, S.; Zhou, X.; Cai, S.; Tu, Y.; Mccoy, A.; Peoples, M.; et al. Resistance to neoadjuvant chemotherapy in triple negative breast cancer mediated by a reversible drug-tolerant state. Sci. Transl. Med. 2019, 11, eaav0936. [Google Scholar] [CrossRef]
- Lips, E.H.; Michaut, M.; Hoogstraat, M.; Mulder, L.; Besselink, N.J.M.; Koudijs, M.J.; Cuppen, E.; Voest, E.E.; Bernards, R.; Nederlof, P.M.; et al. Next generation sequencing of triple negative breast cancer to find predictors for chemotherapy response. Breast Cancer Res. 2015, 17, 134. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.H.; Sabrina Sapari, N.; Miao, H.; Hartman, M.; Loh, M.; Chng, W.J.; Iau, P.; Ahmad Buhari, S.; Soong, R.; Lee, S.C. High-throughput mutation profiling changes before and 3 weeks after chemotherapy in newly diagnosed breast cancer patients. PLoS ONE 2015, 10, e0142466. [Google Scholar] [CrossRef] [PubMed]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef]
- Furlanetto, J.; Loibl, S. Optimal Systemic Treatment for Early Triple-Negative Breast Cancer. Breast Care 2020, 15, 217–226. [Google Scholar] [CrossRef]
- Mirzaei, S.; Gholami, M.H.; Hashemi, F.; Zabolian, A.; Farahani, M.V.; Hushmandi, K.; Zarrabi, A.; Goldman, A.; Ashrafizadeh, M.; Orive, G. Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov. Today 2022, 27, 436–455. [Google Scholar] [CrossRef]
- Huang, J.F.; Wen, C.J.; Zhao, G.Z.; Dai, Y.; Li, Y.; Wu, L.X.; Zhou, H.H. Overexpression of ABCB4 contributes to acquired doxorubicin resistance in breast cancer cells in vitro. Cancer Chemother. Pharmacol. 2018, 82, 199–210. [Google Scholar] [CrossRef]
- Barata, I.S.; Gomes, B.C.; Rodrigues, A.S.; Rueff, J.; Kranendonk, M.; Esteves, F. The Complex Dynamic of Phase I Drug Metabolism in the Early Stages of Doxorubicin Resistance in Breast Cancer Cells. Genes 2022, 13, 1977. [Google Scholar] [CrossRef]
- Nedeljkovi, M.; Damjanovic, A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer—How We Can Rise to the Challenge. Cell 2019, 8, 957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.R.; Lu, D.Y.; Lin, H.Y.; Yeh, W.L. Mesenchymal stem cell-induced doxorubicin resistance in triple negative breast cancer. Biomed Res. Int. 2014, 2014, 532161. [Google Scholar] [CrossRef] [Green Version]
- Zaal, E.A.; Berkers, C.R. The influence of metabolism on drug response in cancer. Front. Oncol. 2018, 8, 500. [Google Scholar] [CrossRef] [Green Version]
- DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016, 2, e1600200. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Butler, E.B.; Tan, M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013, 4, e532. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Bao, C.; Jiang, L.; Wang, S.; Wang, K.; Lu, C.; Fang, H. When cancer drug resistance meets metabolomics (bulk, single-cell and/or spatial): Progress, potential, and perspective. Front. Oncol. 2023, 12, 1054233. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.; Eustace, A.J.; Busschots, S.; Breen, L.; Crown, J.; Clynes, M.; O’Donovan, N.; Stordal, B. In vitro development of chemotherapy and targeted therapy drug-resistant cancer cell lines: A practical guide with case studies. Front. Oncol. 2014, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Kuo, M.T.; Chen, H.H.W.; Feun, L.G.; Savaraj, N. Targeting the proline–glutamine–asparagine–arginine metabolic axis in amino acid starvation cancer therapy. Pharmaceuticals 2021, 14, 72. [Google Scholar] [CrossRef]
- Hatem, E.; El Banna, N.; Huang, M.E. Multifaceted Roles of Glutathione and Glutathione-Based Systems in Carcinogenesis and Anticancer Drug Resistance. Antioxid. Redox Signal. 2017, 27, 1217–1234. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.C.; Han, J.M. Amino acid metabolism in cancer drug resistance. Cells 2022, 11, 140. [Google Scholar] [CrossRef]
- Pandurangan, M.; Enkhtaivan, G.; Mistry, B.; Patel, R.V.; Moon, S.; Kim, D.H. β-Alanine intercede metabolic recovery for amelioration of human cervical and renal tumors. Amino Acids 2017, 49, 1373–1380. [Google Scholar] [CrossRef]
- Dambrova, M.; Makrecka-Kuka, M.; Kuka, J.; Vilskersts, R.; Nordberg, D.; Attwood, M.M.; Smesny, S.; Sen, Z.D.; Guo, A.C.; Oler, E.; et al. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol. Rev. 2022, 74, 506–551. [Google Scholar] [CrossRef] [PubMed]
- Melone, M.A.B.; Valentino, A.; Margarucci, S.; Galderisi, U.; Giordano, A.; Peluso, G. The carnitine system and cancer metabolic plasticity review-article. Cell Death Dis. 2018, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Koves, T.R.; Ussher, J.R.; Noland, R.C.; Slentz, D.; Mosedale, M.; Ilkayeva, O.; Bain, J.; Stevens, R.; Dyck, J.R.B.; Newgard, C.B.; et al. Mitochondrial Overload and Incomplete Fatty Acid Oxidation Contribute to Skeletal Muscle Insulin Resistance. Cell Metab. 2008, 7, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Muoio, D.M.; Neufer, P.D. Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metab. 2012, 15, 595–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rushing, B.R.; Wiggs, A.; Molina, S.; Schroder, M.; Sumner, S. Metabolomics Analysis Reveals Novel Targets of Chemosensitizing Polyphenols and Omega-3 Polyunsaturated Fatty Acids in Triple Negative Breast Cancer Cells. Int. J. Mol. Med. 2023, 24, 4406. [Google Scholar] [CrossRef]
- Wajner, M.; Amaral, A.U. Mitochondrial dysfunction in fatty acid oxidation disorders: Insights from human and animal studies. Biosci. Rep. 2016, 36, e00281. [Google Scholar] [CrossRef] [Green Version]
- Furuno, T.; Kanno, T.; Arita, K.; Asami, M.; Utsumi, T.; Doi, Y.; Inoue, M.; Utsumi, K. Roles of long chain fatty acids and carnitine in mitochondrial membrane permeability transition. Biochem. Pharmacol. 2001, 62, 1037–1046. [Google Scholar] [CrossRef]
- Nicoletto, R.E.; Ofner, C.M. Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemother. Pharmacol. 2022, 89, 285–311. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Wu, P. 5′-Methylthioadenosine and Cancer: Old Molecules, New Understanding. J. Cancer 2019, 10, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Bigaud, E.; Corrales, F.J. Methylthioadenosine (MTA) regulates liver cells proteome and methylproteome: Implications in liver biology and disease. Mol. Cell. Proteom. 2016, 15, 1498–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rushing, B.R.; Schroder, M.; Sumner, S.C.J. Comparison of Lysis and Detachment Sample Preparation Methods for Cultured Triple-Negative Breast Cancer Cells Using UHPLC–HRMS-Based Metabolomics. Metabolites 2022, 12, 168. [Google Scholar] [CrossRef]
- Rushing, B.R.; Tilley, S.; Molina, S.; Schroder, M.; Sumner, S. Commonalities in Metabolic Reprogramming between Tobacco Use and Oral Cancer. Int. J. Environ. Res. Public Health 2022, 19, 10261. [Google Scholar] [CrossRef]
- Rushing, B.R.; Fogle, H.M.; Sharma, J.; You, M.; Mccormac, J.P.; Molina, S.; Sumner, S.; Krupenko, N.I.; Krupenko, S.A. Exploratory Metabolomics Underscores the Folate Enzyme ALDH1L1 as a Regulator of Glycine and Methylation Reactions. Molecules 2022, 27, 8394. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Rushing, B.; Schroder, M.; Sumner, S.; Kay, C.D. Exploring the Contribution of (Poly)phenols to the Dietary Exposome Using High Resolution Mass Spectrometry Untargeted Metabolomics. Mol. Nutr. Food Res. 2022, 66, 2100922. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Rushing, B.R.; Harris, S.E.; McRitchie, S.L.; Jones, J.C.; Dominguez, D.; Sumner, S.J.; Dohlman, H.G. Multi-omics analysis of glucose-mediated signaling by a moonlighting Gβ protein Asc1/RACK1. PLoS Genet. 2021, 17, e1009640. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Rushing, B.R.; Hall, M.S.; Helke, K.L.; McRitchie, S.L.; Krupenko, N.I.; Sumner, S.J.; Krupenko, S.A. Sex-Specific Metabolic Effects of Dietary Folate Withdrawal in Wild-Type and Aldh1l1 Knockout Mice. Metabolites 2022, 12, 454. [Google Scholar] [CrossRef]
- Välikangas, T.; Suomi, T.; Elo, L.L. A systematic evaluation of normalization methods in quantitative label-free proteomics. Brief. Bioinform. 2018, 19, 1–11. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; De Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, 388–396. [Google Scholar] [CrossRef]
- Bender, R.; Lange, S. Adjusting for multiple testing—When and how? J. Clin. Epidemiol. 2001, 54, 343–349. [Google Scholar] [CrossRef]
Metabolite (Name_Ontology Level_Retention Time_Mass) | MDA-MB-231 | DOX-RES-50 | DOX-RES-100 | |||
---|---|---|---|---|---|---|
Correlation | p-Value | Correlation | p-Value | Correlation | p-Value | |
Methylthioadenosine_OL1_4.92_297.0893 n | −0.81 | 0.00001554 | −0.72 | 0.0003888 | −0.68 | 0.0010676 |
N-Acetylmethionine_OL1_4.71_191.0610 n | −0.77 | 0.00007602 | −0.50 | 0.023791 | −0.33 | 0.15296 |
Anthranilate_OL1_5.84_137.0474 n | −0.76 | 0.00009184 | 0.15 | 0.53421 | −0.27 | 0.24814 |
12-Hydroxydodecanoic Acid_OL2b_5.12_261.1439 m/z | −0.76 | 0.00011148 | −0.30 | 0.19307 | 0.29 | 0.21246 |
2-Octenedioic Acid_OL2b_1.44_137.0594 m/z | −0.74 | 0.00019629 | −0.31 | 0.17985 | −0.37 | 0.11085 |
Indoleacrylic Acid_OL2b_4.34_187.0632 n | −0.74 | 0.00020622 | −0.35 | 0.13308 | −0.50 | 0.023743 |
2-Aminocaprylic Acid_OL1_6.37_160.1329 m/z | −0.72 | 0.00037329 | −0.39 | 0.088065 | −0.49 | 0.029253 |
Adenosine 2′,3′-Cyclic Phosphate_OL2b_2.91_330.0592 m/z | 0.71 | 0.00047735 | 0.21 | 0.37223 | 0.83 | 0.00000680 |
Trans-3-Hydroxycinnamate_OL2b_1.56_164.0473 n | −0.70 | 0.00053789 | −0.42 | 0.062772 | −0.44 | 0.051265 |
Pyridoxine_OL1_1.27_169.0735 n | −0.70 | 0.00054082 | 0.09 | 0.70269 | 0.06 | 0.79124 |
Spermidine_OL2b_3.42_146.1649 m/z | −0.68 | 0.00099902 | −0.14 | 0.54993 | 0.16 | 0.5026 |
Cytidine_OL1_0.69_243.0848 n | 0.67 | 0.0013015 | 0.18 | 0.44717 | 0.16 | 0.50397 |
Threonine_OL2a_0.67_158.0211 m/z | −0.66 | 0.0015141 | −0.47 | 0.037284 | −0.37 | 0.10919 |
2-Octenedioic Acid_OL2b_3.72_172.0730 n | −0.66 | 0.0016946 | −0.34 | 0.13976 | 0.30 | 0.19228 |
5-Hydroxyindoleacetate_OL2b_2.91_191.0575 n | −0.66 | 0.001717 | −0.28 | 0.23609 | −0.20 | 0.38949 |
Indoleacetaldehyde_OL1_4.34_160.0754 m/z | −0.65 | 0.0017981 | −0.15 | 0.5315 | −0.26 | 0.27521 |
N-Acetylaspartate_OL2a_0.83_198.0368 m/z | 0.65 | 0.0018161 | 0.27 | 0.2445 | 0.43 | 0.059134 |
Leucine_OL1_1.70_131.0944 n | −0.65 | 0.0019876 | −0.38 | 0.097942 | −0.41 | 0.071259 |
Hydroxyphenyllactate_OL1_4.59_205.0468 m/z | −0.65 | 0.0020371 | −0.23 | 0.33412 | −0.44 | 0.05153 |
Indoleacetaldehyde_OL2b_2.46_159.0682 n | −0.63 | 0.0030782 | 0.06 | 0.78868 | 0.06 | 0.78725 |
Octanoyl-L-Carnitine_OL1_9.20_288.2162 m/z | −0.63 | 0.0031425 | −0.42 | 0.067438 | −0.25 | 0.29713 |
Isoleucyl-Leucine_OL2b_5.43_245.1852 m/z | −0.62 | 0.0035538 | −0.66 | 0.0016847 | −0.08 | 0.73277 |
L-Tryptophan_OL1_4.34_204.0897 n | −0.62 | 0.0036778 | −0.24 | 0.30013 | −0.38 | 0.1017 |
L-Phenylalanine_OL1_3.22_165.0787 n | −0.61 | 0.0042322 | −0.48 | 0.033566 | −0.54 | 0.014204 |
Deoxyadenosine_OL2b_3.57_252.1084 m/z | −0.60 | 0.0048732 | −0.20 | 0.39106 | −0.29 | 0.22223 |
L-Methionine_OL2a_1.07_172.0400 m/z | −0.59 | 0.0057758 | −0.37 | 0.11265 | −0.25 | 0.28305 |
Pantothenate_OL1_4.04_219.1102 n | −0.58 | 0.0068454 | 0.12 | 0.60768 | 0.24 | 0.31459 |
Trans-Cinnamic Acid_OL2b_3.24_148.0522 n | −0.58 | 0.0069352 | −0.35 | 0.12974 | −0.42 | 0.063941 |
Pyridoxal_OL2b_2.81_150.0548 m/z | −0.58 | 0.0079745 | 0.22 | 0.36202 | 0.07 | 0.77067 |
Leucyl-Leucine_OL1_5.89_245.1852 m/z | −0.57 | 0.0083982 | −0.34 | 0.14013 | −0.28 | 0.23375 |
Indole-3-Aldehyde_OL2b_4.34_146.0599 m/z | −0.56 | 0.0094943 | −0.24 | 0.31034 | −0.33 | 0.15284 |
2-Octenedioic Acid_OL2a_6.83_195.0622 m/z | 0.56 | 0.010025 | −0.17 | 0.47878 | −0.38 | 0.093781 |
N-Acetylaspartate_OL1_1.11_175.0478 n | 0.54 | 0.013375 | 0.61 | 0.0046458 | 0.50 | 0.025329 |
Spermidine_OL2a_0.65_145.1575 n | −0.54 | 0.013553 | −0.14 | 0.56286 | 0.05 | 0.82905 |
Phenylacetylglycine_OL1_5.92_193.0737 n | −0.54 | 0.014787 | 0.16 | 0.48874 | 0.15 | 0.5273 |
Dodecenoylcarnitine_OL1_11.80_342.2630 m/z | −0.53 | 0.015577 | −0.39 | 0.087782 | −0.09 | 0.70138 |
Indole-3-Ethanol_OL2b_4.34_144.0806 m/z | −0.52 | 0.017664 | −0.22 | 0.34956 | −0.26 | 0.26126 |
Guanine_OL2b_3.62_152.0563 m/z | −0.51 | 0.020217 | −0.21 | 0.36735 | −0.18 | 0.45806 |
L-Tyrosine_OL2b_3.37_182.0807 m/z | −0.51 | 0.020866 | −0.09 | 0.70388 | −0.20 | 0.40599 |
Threonine_OL1_1.07_102.0548 m/z | −0.51 | 0.021699 | 0.14 | 0.56117 | −0.14 | 0.56762 |
Butenylcarnitine_OL2a_2.71_262.1642 m/z | −0.51 | 0.022923 | 0.17 | 0.47043 | 0.35 | 0.126 |
Creatine_OL2a_0.51_263.1455 m/z | −0.50 | 0.024141 | 0.39 | 0.093473 | 0.85 | 0.00000202 |
5-Oxoproline_OL2b_0.77_129.0424 n | −0.49 | 0.026792 | −0.10 | 0.68462 | −0.04 | 0.85349 |
S-Adenosylhomocysteine_OL1_2.09_384.1212 n | −0.48 | 0.030318 | 0.21 | 0.38359 | −0.07 | 0.75567 |
Propionyl-L-Carnitine_OL1_2.09_218.1387 m/z | −0.48 | 0.033559 | 0.34 | 0.1442 | 0.15 | 0.52079 |
Trigonelline_OL2b_5.41_138.0546 m/z | 0.47 | 0.035034 | −0.35 | 0.12744 | −0.02 | 0.93339 |
Creatine_OL2a_0.49_132.0766 m/z | −0.47 | 0.036563 | 0.43 | 0.055497 | 0.82 | 0.00000987 |
L-Phenylalanine_OL2a_3.22_331.1643 m/z | −0.47 | 0.0368 | −0.38 | 0.10306 | −0.51 | 0.022902 |
N-Acetylhistidine_OL2b_2.24_198.0872 m/z | −0.46 | 0.039432 | 0.28 | 0.23266 | −0.02 | 0.92921 |
Spermidine_OL2a_0.49_73.5862 m/z | −0.46 | 0.040849 | 0.10 | 0.66657 | 0.22 | 0.35548 |
Pantetheine_OL2b_9.30_261.1260 m/z | 0.46 | 0.041443 | −0.08 | 0.74182 | 0.18 | 0.43803 |
Acetyl-Dl-Carnitine_OL1_1.01_204.1229 m/z | −0.46 | 0.041794 | −0.16 | 0.49485 | 0.13 | 0.57551 |
1-Aminocyclopropanecarboxylic Acid_OL2a_0.77_84.0443 m/z | −0.46 | 0.043552 | −0.02 | 0.93018 | 0.00 | 0.99278 |
Hexanoylcarnitine_OL1_6.23_260.1850 m/z | −0.45 | 0.047391 | −0.24 | 0.2993 | 0.19 | 0.4278 |
4-Acetamidobutanoic Acid_OL2b_3.37_146.0809 m/z | −0.41 | 0.075098 | 0.51 | 0.020527 | 0.38 | 0.099942 |
Hexanoylcarnitine_OL1_6.53_260.1850 m/z | −0.40 | 0.079541 | −0.33 | 0.15004 | −0.55 | 0.011742 |
Maleic Acid_OL2a_1.11_134.0445 m/z | 0.39 | 0.087469 | 0.52 | 0.017879 | 0.41 | 0.074901 |
Glutamyl-Valine_OL2b_3.72_247.1284 m/z | −0.39 | 0.090678 | 0.39 | 0.090925 | 0.53 | 0.016339 |
2-Hydroxytetradecanoic Acid_OL2a_14.99_227.1998 m/z | 0.38 | 0.099925 | −0.06 | 0.81747 | 0.51 | 0.021926 |
Acetyl-DL-Carnitine_OL1_0.71_203.1156 n | −0.36 | 0.11621 | 0.46 | 0.039795 | 0.00 | 0.99876 |
Butanoylcarnitine_OL1_3.64_231.1467 n | −0.34 | 0.14514 | 0.41 | 0.072478 | 0.48 | 0.032961 |
Glycoursodeoxycholic Acid_OL2b_14.05_449.3136 n | −0.32 | 0.16414 | 0.47 | 0.037037 | −0.09 | 0.71422 |
Sorbitol_OL1_0.65_182.0786 n | 0.30 | 0.19459 | −0.07 | 0.78117 | 0.47 | 0.037825 |
Betaine_OL2a_0.67_140.0680 m/z | −0.30 | 0.20182 | −0.56 | 0.01107 | −0.03 | 0.90492 |
Cadaverine_OL2a_0.83_102.1150 m/z | −0.30 | 0.20579 | 0.16 | 0.49012 | 0.55 | 0.011389 |
2-Methylbutyroylcarnitine_OL1_4.84_246.1696 m/z | −0.28 | 0.23419 | 0.55 | 0.012568 | 0.38 | 0.095206 |
Tetradecenoyl-L-Carnitine_OL1_12.82_370.2941 m/z | −0.27 | 0.24147 | −0.61 | 0.0043994 | 0.00 | 0.99629 |
Creatinine_OL1_0.67_136.0479 m/z | 0.27 | 0.24167 | 0.20 | 0.38662 | 0.45 | 0.046976 |
Citric Acid_OL2a_0.98_176.0083 m/z | −0.27 | 0.25513 | 0.27 | 0.24076 | −0.45 | 0.048451 |
Spermine_OL2b_1.97_202.2156 n | −0.25 | 0.27928 | 0.17 | 0.48187 | 0.49 | 0.028223 |
7-Ketodeoxycholic Acid_OL2b_15.51_406.2712n | 0.25 | 0.28049 | −0.22 | 0.34463 | −0.47 | 0.038013 |
Indolelactic Acid_OL1_7.14_205.0735 n | −0.25 | 0.28598 | −0.26 | 0.26977 | −0.68 | 0.00088093 |
2-Hydroxytetradecanoic Acid_OL2a_15.04_283.1663 m/z | 0.25 | 0.29295 | −0.12 | 0.60035 | 0.55 | 0.012847 |
Glutarate_OL1_2.66_115.0388 m/z | −0.24 | 0.30605 | 0.52 | 0.018071 | 0.55 | 0.011919 |
Cytosine_OL1_1.04_112.0503 m/z | 0.22 | 0.34136 | 0.83 | 0.00000607 | 0.61 | 0.0043897 |
B-Nicotinamide Adenine Dinucleotide_OL2a_3.06_333.5691 m/z | −0.18 | 0.44516 | 0.06 | 0.81435 | 0.51 | 0.02153 |
Cadaverine_OL2a_0.40_102.1150 m/z | −0.18 | 0.4511 | 0.21 | 0.36841 | 0.59 | 0.0061138 |
Xanthine_OL1_1.54_153.0403 m/z | −0.15 | 0.52016 | 0.69 | 0.0007609 | 0.28 | 0.23164 |
Creatine_OL1_0.69_131.0693 n | 0.04 | 0.8519 | 0.25 | 0.27987 | 0.46 | 0.039218 |
Docosatrienoic Acid_OL2a_16.73_299.2728 m/z | 0.00 | 0.99386 | −0.58 | 0.0073867 | 0.26 | 0.27377 |
Metabolite (Name_Ontology Level_Retention Time_Mass) | MDA-MB-231 | DOX-RES-50 | DOX-RES-100 | |||
---|---|---|---|---|---|---|
Correlation | p-Value | Correlation | p-Value | Correlation | p-Value | |
Cytosine_OL1_1.04_112.0503 m/z | 0.84937 | 0.00000217 | 0.59474 | 0.0056768 | 0.67691 | 0.001046 |
Methylthioadenosine_OL1_4.92_297.0893 n | −0.79527 | 0.0000278 | −0.87672 | 0.000000396 | −0.79282 | 3.06 × 10−5 |
Malic Acid_OL2a_0.86_157.0103 m/z | 0.58391 | 0.0068684 | 0.0039314 | 0.98688 | −0.020673 | 0.93106 |
Threonine_OL1_1.07_102.0548 m/z | 0.56734 | 0.009083 | 0.29776 | 0.2023 | −0.040839 | 0.86426 |
Butanoylcarnitine_OL1_3.64_231.1467 n | 0.56564 | 0.0093398 | 0.015986 | 0.94667 | 0.16808 | 0.47874 |
Xanthine_OL1_1.54_153.0403 m/z | 0.55436 | 0.011196 | 0.43665 | 0.054237 | 0.41854 | 0.066265 |
N-Methyl-D-Aspartic Acid_OL2a_0.65_147.0526 n | −0.54143 | 0.013681 | −0.25443 | 0.27903 | 0.39605 | 0.083868 |
Glutarate_OL2b_4.07_115.0388 m/z | 0.53065 | 0.016078 | 0.32205 | 0.16614 | −0.20547 | 0.38482 |
Indoleacetaldehyde_OL1_4.34_160.0754 m/z | 0.52999 | 0.016234 | 0.094866 | 0.69075 | 0.10551 | 0.65797 |
3-(Carbamoylamino)Propanoic Acid_OL2a_1.07_177.0240 m/z | −0.52048 | 0.018636 | 0.4759 | 0.033922 | −0.045774 | 0.84803 |
N-Acetylserine_OL2a_1.16_148.0600 m/z | −0.51527 | 0.020066 | −0.1719 | 0.46865 | 0.0052969 | 0.98232 |
12-Hydroxydodecanoic Acid_OL2b_5.12_261.1439 m/z | 0.51409 | 0.020401 | −0.23781 | 0.31268 | −0.064887 | 0.78579 |
Indoleacetaldehyde_OL2b_2.46_159.0682 n | 0.50304 | 0.02377 | −0.21828 | 0.35521 | −0.22613 | 0.33773 |
Nicotinamide_OL1_1.23_123.0551 m/z | 0.48868 | 0.028787 | 0.10396 | 0.66271 | −0.20153 | 0.39419 |
Fructose_OL2a_0.88_113.0206 m/z | −0.48047 | 0.03201 | −0.22229 | 0.34621 | −0.037041 | 0.87679 |
L-Phenylalanine_OL2a_3.22_331.1643 m/z | 0.47757 | 0.033214 | 0.32444 | 0.16283 | 0.28265 | 0.22724 |
Pantothenate_OL1_4.04_219.1102 n | 0.46838 | 0.037262 | 0.082628 | 0.7291 | 0.0097354 | 0.96751 |
7-Ketodeoxycholic Acid_OL2b_15.51_406.2712 n | −0.45131 | 0.045786 | −0.59553 | 0.0055969 | −0.61972 | 0.003564 |
Glutamyl-Valine_OL2b_3.72_247.1284 m/z | 0.44907 | 0.047004 | 0.061125 | 0.79795 | −0.076558 | 0.74836 |
1-Methyl-L-Histidine_OL2a_0.58_192.0737 m/z | 0.44537 | 0.049076 | −0.25272 | 0.28237 | 0.10562 | 0.65765 |
Creatinine_OL1_0.65_114.0661 m/z | 0.39497 | 0.084797 | 0.051977 | 0.82772 | −0.47478 | 0.034403 |
Sphinganine_OL2b_17.24_284.2941 m/z | 0.38174 | 0.096742 | 0.44605 | 0.048695 | 0.14411 | 0.54441 |
Guanine_OL2b_3.62_152.0563 m/z | −0.29382 | 0.20862 | −0.49466 | 0.026606 | −0.37563 | 0.10266 |
Prostaglandin B2_OL2b_15.92_357.2030 m/z | 0.2713 | 0.24726 | −0.44964 | 0.046693 | 0.18064 | 0.44597 |
Histidine_OL1_0.58_155.0693 n | −0.18863 | 0.42576 | 0.61221 | 0.0041156 | 0.20709 | 0.381 |
Arginine_OL1_0.58_175.1188 m/z | −0.14538 | 0.54083 | 0.58944 | 0.0062371 | 0.40546 | 0.076132 |
Deoxyadenosine_OL2b_3.57_252.1084 m/z | −0.087792 | 0.71284 | −0.44602 | 0.048709 | −0.32382 | 0.16369 |
L-Carnitine_OL2a_0.69_144.1017 m/z | 0.080419 | 0.73609 | 0.016996 | 0.9433 | 0.47174 | 0.035739 |
Lysine_OL1_0.51_146.1053 n | −0.079963 | 0.73754 | 0.40311 | 0.078011 | 0.56567 | 0.009334 |
2-Hydroxypyridine_OL2b_1.23_96.0443 m/z | −0.034015 | 0.88679 | 0.56715 | 0.0091119 | 0.28764 | 0.21879 |
Pipecolate_OL1_0.51_130.0861 m/z | −0.0041201 | 0.98625 | 0.42884 | 0.059206 | 0.51643 | 0.019741 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rushing, B.R.; Molina, S.; Sumner, S. Metabolomics Analysis Reveals Altered Metabolic Pathways and Response to Doxorubicin in Drug-Resistant Triple-Negative Breast Cancer Cells. Metabolites 2023, 13, 865. https://doi.org/10.3390/metabo13070865
Rushing BR, Molina S, Sumner S. Metabolomics Analysis Reveals Altered Metabolic Pathways and Response to Doxorubicin in Drug-Resistant Triple-Negative Breast Cancer Cells. Metabolites. 2023; 13(7):865. https://doi.org/10.3390/metabo13070865
Chicago/Turabian StyleRushing, Blake R., Sabrina Molina, and Susan Sumner. 2023. "Metabolomics Analysis Reveals Altered Metabolic Pathways and Response to Doxorubicin in Drug-Resistant Triple-Negative Breast Cancer Cells" Metabolites 13, no. 7: 865. https://doi.org/10.3390/metabo13070865
APA StyleRushing, B. R., Molina, S., & Sumner, S. (2023). Metabolomics Analysis Reveals Altered Metabolic Pathways and Response to Doxorubicin in Drug-Resistant Triple-Negative Breast Cancer Cells. Metabolites, 13(7), 865. https://doi.org/10.3390/metabo13070865