Novel In Vitro Assay of the Effects of Kampo Medicines against Intra/Extracellular Advanced Glycation End-Products in Oral, Esophageal, and Gastric Epithelial Cells
Abstract
:1. Introduction
2. Components in Kampo Medicines and Their Digestion, Absorption, and Metabolism
3. Novel In Vitro Assay of Kampo Medicines Effects
3.1. Effects of Kampo Medicine Extracts and Other Natural Products on Dermal, Adipose, and Cardiac Cells In Vitro
3.2. Effects of Kampo Medicine Extracts on Oral Epithelial Cells In Vitro
3.3. Effects of Natural Product Extracts on Esophageal Epithelial Cells In Vitro
3.4. Effects of Natural Product Extracts on Gastric Epithelial Cells In Vitro
3.5. Application of the Novel In Vitro Assay Using Oral, Esophageal, and Gastric Epithelial Cells to Assess the Effects of Kampo Medicines
4. Use of the Novel In Vitro Assay to Assess the Effects of Kampo Medicines against Intracellular AGEs
4.1. Various Intracellular AGEs
4.2. Use of the Assay to Assess the Effects of Kampo Medicines against Rapidly Generated Intracellular AGEs
5. Use of the Novel In Vitro Assay to Assess the Effects of Kampo Medicines against Extracellular AGEs
5.1. Extracellular AGEs Released from Organs and Ingested from Foods and Beverages
5.2. Using the Novel In Vitro Assay with Oral, Esophageal, and Gastric Epithelial Cells to Assess the Effects of Kampo Medicines against Extracellular AGEs
5.3. Potential of the Novel Assay
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AGEs | Advanced glycation end-products |
CEL | Nε-(carboxyethyl)-lysine |
CML | Nε-(carboxymethyl)-lysine |
ESI | Electrospray ionization |
ESI-MS | ESI-mass spectrometry |
GA | Glyceraldehyde |
GC | Gas chromatography |
GC-MS | GS-mass spectrometry |
GLAP | GA-derived pyridinium |
HG-M1 | Nδ-(5-hydro-5-methyl-4-imizazolon-2yl)-ornithine |
HPLC | High-performance liquid chromatography |
MALDI | Matrix-associated laser desorption/ionization |
MGO | Methylglyoxal |
MS | Mass spectrometry |
References
- Motoo, Y.; Seki, T.; Tsutani, K. Traditional Japanese medicine, Kampo: Its history and current status. Clin. J. Integr. Med. 2011, 17, 85–87. [Google Scholar] [CrossRef]
- Arai, I.; Kawabata, N. Kampo pharmaceutical products in the Japanese health-care system: Legar status and quality assurance. Trad. Kampo. Med. 2019, 6, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Arai, I. Clinical studies of traditional Japanese herbal medicines (Kampo): Need for evidence by modern scientific methodology. Integr. Med. Res. 2021, 10, 100722. [Google Scholar] [CrossRef] [PubMed]
- Motoo, Y.; Cameron, S. Kampo medicines for supportive care of patients with cancer: A brief review. Integr. Med. Res. 2022, 11, 100839. [Google Scholar] [CrossRef] [PubMed]
- Motoo, Y.; Arai, I.; Tsutani, K. Use of Kampo Diagnosis in Randomized Controlled Trials of Kampo Products in Japan: A Systematic Review. PLoS ONE 2014, 9, e104422. [Google Scholar] [CrossRef]
- Motoo, Y.; Arai, I.; Kogure, T.; Tsutani, K. Review of the first 20 years Evidence-Based Medicine Committee of the Japan Society for Oriental Medicine. Tradit. Kampo Med. 2021, 8, 123–139. [Google Scholar] [CrossRef]
- Motoo, Y. Role of Kampo Medicine in Modern Cancer Therapy: Towards Completion of Standard Treatment. J. Nippon Med. Sch. 2022, 89, 139–144. [Google Scholar] [CrossRef]
- Kishida, Y.; Kagawa, S.; Arimitsu, J.; Nakanishi, M.; Sakashita, N.; Otsuka, S.; Yoshikawa, H.; Hagihara, K. Go-sha-jinki-Gan (GJG), a traditional Japanese herbal medicine, protects against in senescence-accelarated mice. Phytomedicine 2015, 22, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Nakahisi, M.; Nake, A.; Kishida, Y.; Baba, K.; Sakashita, N.; Shibata, M.; Yoshikawa, H.; Hagihara, K. Go-sha-jinki-Gan (GJG) ameliorates allodynia in chronic constriction injury model mice via suppression of TNF-α expression in the spinal cord. Mol. Pain. 2016, 12, 1744806916656382. [Google Scholar]
- Hosogi, S.; Ohsawa, M.; Kato, I.; Kuwahara, A.; Inui, T.; Marunaka, Y. Improvement of Diabetes Mellitus Symptoms by Intake of Ninjin’yoeito. Front. Nutr. 2018, 5, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.; Uchiyama, M.; Zhang, Q.; Harada, T.; Otsuka, K.; Shimokawa, T.; Niimi, M. Effect of 4 Kinds of Traditional Japanese Herbal Medicines on Prolongation of Cardiac Allograft Survival. Transplant. Proc. 2014, 46, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, Y.; Fujii, H.; Hayakawa, Y.; Sakukawa, R.; Yamamura, T.; Sakamoto, T.; Tsukada, K.; Fujimaki, M.; Nunome, S.; Komatsu, Y.; et al. Oral Administration of Kampo (Japanese Herbal) Medicine Juzen-taiho-to Inhibits Liver Metastastics of Colon 26-L5 Carcinoma Cells. Jpn. J. Cancer. Res. 1998, 89, 206–213. [Google Scholar] [CrossRef]
- Sameshima-Uto, N.; Amitani, H.; Atobe, Y.; Sameshima, Y.; Sakaki, M.; Rokot, N.; Ataka, K.; Inui, A. Herbal Medicine Ninjin’yoeito in the Treatment of Sarcopenia and Frailty. Front. Nutr. 2018, 5, 126. [Google Scholar]
- Takagi, K.; Sugihiara, T.; Kitamura, M.; Kawai, M.; Mituguchi, Y.; Tsukamoto, K.; Nakanishi, H.; Makino, T. Inhitibotry effect of Bofutushosan (Fangfengtongshengsan) extract on the absorption of fructose in rats and mice. J. Nat. Med. 2023, 77, 533–543. [Google Scholar] [CrossRef]
- Suzuki, T.; Yamamoto, A.; Ohsawa, M.; Motoo, Y.; Mizukami, H.; Makino, T. Effect of ninjin’yoeito and ginseng extracts on oxliplation-induced neuropathies in micie. J. Nat. Med. 2017, 71, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Motoo, Y.; Tomosugi, M. Effect of Saikokeishito, a Kampo medicine, on hydrogen peroxide-induced premature senescence of normal human dermal fibroblasts. J. Integr. Med. 2014, 12, 495–503. [Google Scholar] [CrossRef]
- Mark, R.; Bermejo, J.M.; Blerhaus, A.; Plinkert, P.K.; Angel, P.; Hess, J. The receptor for advanced glycation end products is dispensable in a mouse model of oral and sophageal carsinogenesis. Histol. Histopathol. 2013, 28, 1583–1594. [Google Scholar]
- Tancharoen, S.; Gando, S.; Binita, S.; Nagasato, T.; Kikuchi, K.; Nawa, Y.; Dararat, P.; Yamamoto, M.; Narkpinit, S.; Maruyama, I. HMGB-1 Promotes Intraoral Palatal Wound Healing trhough RAGE-Dependent Mechanisms. Int. J. Mol. Sci. 2016, 17, 1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurokawa, H.; Ito, H.; Matano, D.; Terasaki, M.; Matsui, H. Acetic acid enhances the effect of phostodynamic therapy in gastric cancer cells via production of reactive oxygen species. J. Clin. Biochem. Nutr. 2022, 71, 206–211. [Google Scholar] [CrossRef]
- Kuzan, A. Toxicity of advanced glycation end products (Review). Biol. Rep. 2021, 14, 46. [Google Scholar] [CrossRef]
- Chen, J.; Radijiazadeh, D.; Medina-Gomez, C.; Voortman, T.; van Merus, J.B.; Ikram, M.A.; Uitterlinden, A.G.; Kraaij, R.; Zillikens, C. Advanced Glycation End Products (AGEs) in Diet and Skin in Relation to Stool Microbaita: The Rotterdam Study. Nutrients 2023, 15, 2567. [Google Scholar] [CrossRef]
- Lan, K.; Peng, P.; Chnag, T.; Liu, S. Resveratorol Alleviated Advanced Glycation End-Products-Related Renal Dysfunction in D-Galactose-Induced Aging Mice. Metabolites 2023, 13, 655. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Hemmler, D.; Schmitt-Kopplin, P. HILIC-MS for Untargetes Profilig of the Free Glycation Product Diversity. Metabolites 2022, 12, 1179. [Google Scholar] [CrossRef]
- Katuta, N.; Takahashi, H.; Sugawa, H.; Nagai, R. Changes in S-(2-duccinyl)cysteine and advanced glycation end-products levels in mouse tissues associated with aging. Amino Acids. 2022, 54, 653–661. [Google Scholar] [CrossRef]
- van Heijist, J.W.J.; Niessen, H.W.M.; Musters, R.J.; van Hinsbergh, V.W.M.; Hoekman, K.; Schalkwijik, C.G. Argpyrimidine-modified Heat Shock Protein 27 in human non-small cell lung cancer: A possible mechanism foe evasion of apoptosis. Cancer Lett. 2006, 24, 309–319. [Google Scholar] [CrossRef] [PubMed]
- LeWinter, M.M.; Taatjes, D.; Ashikaga, T.; Palmer, B.; Bishop, N.; van Buren, P.; Bell, S.; Donaldson, C.; Meyer, M.; Margulies, K.B. Abundance, licatization, and functional correlates of the advanced glycation end-product carboxymethyl lysine in human myocardium. Physiol. Rep. 2017, 5, e13462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Meana, M.; Minguet, M.; Bou-Teen, D.; Micro-Casas, E.; Castans, C.; Castellano, J.; Bonzon-Kulichenko, E.; Igual, A.; Rodrigues-Lecoq, R.; Vázquez, J. Ryanodine Receptor Glycation Favors Mitochondrial Damage in the Senescent Heart. Circulation 2019, 139, 949–964. [Google Scholar] [CrossRef]
- Papadaki, M.; Holewinski, R.J.; Previs, S.B.; Martin, T.G.; Stachowski, M.J.; Li, A.; Blair, C.A.; Moravec, C.S.; van Eyk, J.E.; Campbell, K.S.; et al. Diabetes with heart failure increases methylglyoxal modification in the sarcomere, which inhibit function. JCI Insight. 2018, 3, e121264. [Google Scholar] [CrossRef] [Green Version]
- Mastrocoola, R.; Collino, M.; Nigro, D.; Chiazza, F.; D’Antona, G.; Aragno, M.; Minetto, M.A. Accumulation of Advanced Glycation End-Products and Activation of the SCAP/SREBP Lipogenetic Pathway Occur in Diet-Induced Obese Mouse Skeletal Muscle. PLoS ONE 2015, 10, e119587. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, S.; Mera, K.; Ichikawa, H.; Shimasaki, S.; Nagai, M.; Taga, Y.; Iijima, K.; Hattori, S.; Fujiwara, Y.; Shirakawa, J.; et al. Nω-(Carboxymethyl) arginine is One of the Dominant Advanced Glycation End-Products in Glycated Collagens and Mouse Tissues. Oxid. Med. Cell Longer. 2019, 2019, 9073451. [Google Scholar] [CrossRef] [Green Version]
- Kehm, R.; Rückriemen, J.; Weber, D.; Deubel, S.; Grune, T.; Höhn, A. Endogenous advanced glycation end products in pancreatic islets after short-term carbohydrate investigation in obese, diabetes-prone mice. Nutr. Diabetes 2019, 9, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senavirathna, L.; Ma, C.; Chen, R.; Pan, S. Proteomic Investigation of Glyceraldehyde-Derived Intracellular AGEs and Their Potential Influence on Pancreatic Ductal Cells. Cells 2021, 10, 1005. [Google Scholar] [CrossRef] [PubMed]
- Nokin, M.; Durieux, F.; Peixoto, P.; Chiavarina, B.; Peulen, O.; Blomme, A.; Turtoi, A.; Costanza, B.; Smargiasso, N.; Baiwir, D. Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis. Elife 2016, 19, e19375. [Google Scholar] [CrossRef] [PubMed]
- Oya-Ito, T.; Naito, Y.; Takagi, T.; Hanada, O.; Matsui, H.; Yamada, M.; Shima, K.; Yoshikawa, T. Heat-shock protein 27 (Hsp27) as a target of methylglyoxal in gastrointestinal cancer. Biochem. Biophys. Acta. 2011, 1812, 769–781. [Google Scholar] [CrossRef]
- Singh, V.; Shingh, A.K. Oral mucositis. Nat. J. Maxillofac. Surg. 2020, 11, 159–168. [Google Scholar] [CrossRef]
- Diaz, P.; Valderrama, M.V.; Bravo, J.; Quest, A.F.G. Helicobactoer pyrori and Gastric Cancer: Adaptive Cellular Mechanisms Involved in Disease Progression. Front. Microbiol. 2018, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Kido, R.; Hiroshima, Y.; Kido, J.; Ikuta, T.; Sakamoto, E.; Inagaki, Y.; Naruishi, K.; Yumoto, H. Advanced glycation end-products lipocalin 2 expression in human oral epithelial cells. J. Periodontal. Res. 2020, 55, 539–550. [Google Scholar] [CrossRef]
- Ji, M.; Sun, J.; Zhao, J. Verbascoside represses malignant phenotypes of esophageal squamous cell carcinoma cells by inhibiting CDC42/via the HMGB1/RAGE axis. Hum. Exp. Toxicol. 2020, 41, 96032712217429. [Google Scholar] [CrossRef]
- Rojas, A.; Linder, C.; Schneider, I.; González, I.; Morales, M.A. Contributions of the receptor for advanced glycation end products axis activation gastric cancer. World J. Gastroenterol. 2023, 29, 997–1010. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, W.; Liu, L.; Li, W.; Li, B. ENO1 Promotes OSCC Migration and Investigation by Orchestrating IL-6 Secretion from Macrophages via a Positive Feedback Loop. Int. J. Mol. Sci. 2023, 24, 737. [Google Scholar] [CrossRef]
- Nadatani, Y.; Huo, X.; Zhang, X.; Yu, C.; Cheng, E.; Zhang, Q.; Dunbar, K.B.; Theiss, A.; Pharm, T.H.; Wang, D.H.; et al. NOD-Like Receptor Protein 3 Inflammasome Priming and Activation in Barrett’s Epithelial Cells. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 439–453. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Huang, J.; Xu, C. Lipopolysaccharide-induced DC-SIGN/TLR4 crosstalk activates NLRP3 inflammasomes via My88-independent signaling in gastric epithelial cells. Exp. Cell Res. 2020, 396, 112292. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.K.; Park, S.; Kim, H.R.; Ryu, Y.; Kim, Y.H.; Kim, J. Advanced Glycation End Products Increases Salivary Gkand Hypofunction in D-Galactose-Induced Aging Rats and Its Prevention by Physical Exercise. Curr. Issues. Mol. Biol. 2021, 43, 2059–2067. [Google Scholar] [CrossRef]
- Matsui, T.; Joo, H.D.; Lee, J.M.; Ju, S.M.; Tao, W.H.; Higashimoto, Y.; Fukami, K.; Yamagishi, S. Development of a monoclonal antibody-based ELISA system for glyceraldehyde-derived advanced glycation end products. Immunol. Lett. 2015, 167, 141–146. [Google Scholar] [CrossRef]
- Chanu, K.D.; Sharma, N.; Kshetrimayum, V.; Chaudahary, S.K.; Ghosh, S.; Haldar, P.K.; Mukherjee, P.K. Ageratina adenophora (Spreng.) King & H. Rob. Standardized leaf extract as an antidiabetic agent for type 2 diabetes: An in vitro and in vivo evaluation. Front. Pharmacol. 2023, 14, 1178904. [Google Scholar] [PubMed]
- Matsuda, H.; Hirata, N.; Kawaguchi, Y.; Naruto, S.; Takata, T.; Oyama, M.; Iinuma, M.; Kubo, M. Melanognesis Stimulation in Murine B16 Melanoma Cells by Kava (Piper methysticum) Rhizome Extract and Kavalactones. Biol. Pharma. Bull. 2006, 29, 834–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamakawa, J.; Ishigaki, Y.; Takano, F.; Takahashi, T.; Yoshida, J.; Morita, J.; Takata, T.; Tatsuno, T.; Sasaki, K.; Ohta, T.; et al. The Kampo Medicines Orengedokuto, Bofutsushosan and Boiogito Have Different Activities to Regulate Gene Expressions in Differenteated Rat White Adipocytes: Comprehensive Analysis of Genetic Profiles. Biol. Pharma. Bull. 2008, 31, 2083–2089. [Google Scholar] [CrossRef] [Green Version]
- Poindexter, B.J.; Allison, A.W.; Bick, R.J.; Dasgupta, A. Ginseng: Cardiotonic in adult rat cardiomyocytes, cardiotoxic in neonatal rat cardiomyocytes. Life Sci. 2006, 79, 2337–2344. [Google Scholar] [CrossRef]
- Miyano, K.; Hasegawa, S.; Asai, N.; Uzu, M.; Yatsuoka, W.; Ueno, T.; Nonaka, M.; Fujii, H.; Uezono, Y. The Japanese Herbal Medicine Hangeshashinto Induces Oral Kerationocyte Migration by Mediating the Expression of CXCL12 Through the Activation of Extrracellular Signal-Regulated Kinase. Front. Pharmacol. 2021, 12, 695039. [Google Scholar] [CrossRef]
- Hsu, P.; Chen, J.; Kuo, S.; Wang, W.; Jan, F.; Yang, S.; Yang, C. San-Zhhong-Kui-Jian-Tang Exerts Antitumor Effects Associated With Decreased Cell Proliferation and Metastasis by Targeting ERK and the Epithelial Mesenchymal Transition Pathway in Oral Cavity Squamous Cell. Integr. Cancer Ther. 2022, 21, 15347354221134921. [Google Scholar] [CrossRef]
- Kresty, L.A.; Weh, K.M.; Zeyzus-Johns, B.; Perez, L.N.; Howell, A.B. Granberry proanthocyanidins inhibit esophageal adenocarcinoma in vitro and in vivo through pleitropic cell death induction and PI3K/AKT/mTOR inactivation. Oncotarget 2015, 6, 33438–33455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesfaye, S.; Braun, H.; Asres, K.; Engidawork, E.; Belete, A.; Muhammad, I.; Schulze, C.; Schultze, N.; Guenther, S.; Bednarski, P. Ethiopian Medicinal Plants Traditionally Used for the Treatment of Cancer; Part 3; Selective Cytotoxic Activity of 22 plants against Human Cancer Cell Lines. Molecules 2021, 26, 3658. [Google Scholar] [CrossRef] [PubMed]
- Matsuhashi, T.; Otaka, M.; Odashima, M.; Jin, M.; Komatsu, K.; Wada, I.; Horikawa, Y.; Ohba, R.; Oyake, J.; Hatakeyama, N.; et al. Protective Effect of Novel Rice Extract Against Ethanol-Induced Gastric Mucosal Injury in Rat. Dig. Dis. Sci. 2007, 52, 434–441. [Google Scholar] [CrossRef]
- Wang, G.; Chen, S.; Chen, Y.; Hong, C.; Hsu, Y.; Yen, G. Protective effect of rosmarinic acid-rich trichodesma khasianum Clarke leaves against ethanol-induced gastric mucosal injury in vitro and in vivo. Phytomedicine 2021, 80, 153382. [Google Scholar] [CrossRef]
- Choucry, H.A.; Shalabi, A.A.; Halawany, A.M.; EI-Sakhaway, F.S.; Zaiter, A.; Morita, H.; Chaimbault, P.; Abdel-Sttar, E. New Pregnane Glucoside Isolated from Caralluma hexagona Lavanos as Inhibitors of α-Glucosidase, Pancreatic Lipase, and Advanced Glycation End Products Formation. ACS Omega 2021, 6, 18881–18889. [Google Scholar] [CrossRef] [PubMed]
- Obata, M.; Ishihara, E.; Hirohara, S. Effect of tertiary amino group in the hydrophobic segment of an ampiphilic bloc copolymer on zinc phathalocyanine encapsulation and photodynamic activity. RSC Adv. 2022, 12, 18144–18153. [Google Scholar] [CrossRef] [PubMed]
- Usui, T.; Hayase, F. Isolation and Identification of the 3-Hydroxy-5-hydroxymethyl-pyridinium Compounds as a Novel Advanced Glycation End Products on Glyceraldehyde-related Maillard Reaction. Biosci. Biotechnol. Biochem. 2003, 67, 930–932. [Google Scholar] [CrossRef]
- Usui, T.; Shimohira, K.; Watanabe, H.; Hayase, F. Detection and Determination of Glyceraldehyde-Derived Pyridinium-Type Advanced Glycation End Products in Streptozotocin Diabetic Rats. Biosci. Biotechnol. Biochem. 2007, 71, 442–448. [Google Scholar] [CrossRef]
- Usui, T.; Watanabe, H.; Hayase, F. Isolation and Identification of 5-Methyl-imidazolin-4-one Derivative as Glyceraldehyde-Derived Advanced Glycation End Product. Biosci. Biotechnol. Biochem. 2006, 70, 1496–1498. [Google Scholar] [CrossRef] [Green Version]
- Usui, T.; Ohguchi, M.; Watanabe, H.; Hayase, F. The Formation of Argpyrimidine in Glyceraldehyde-Related Glycation. Biosci. Biotechnol. Biochem. 2008, 72, 568–571. [Google Scholar] [CrossRef]
- Wang, X.; Lau, W.; Yuan, Y.; Wang, Y.; Yi, W.; Chritopher, T.A.; Lopez, B.L.; Liu, H.; Ma, X. Methylglyoxal increases cardiomyocyte ischemia-reprefusion injury via glycative inhibition of thioredoxin activity. Am. J. Physiol. Endocrinol. 2010, 299, E207–E214. [Google Scholar] [CrossRef] [Green Version]
- Baskal, S.; Tsikas, D. Free L-Lysine and Its Ester React with Glyoxal and Methyglyoxal in Phosphate Buffer (100 mM, pH 7.4) to Form Nε-Carboxymethyl-Lysine, Nε-Carboxyethyl-Lysine and Nε-Hydroxymethyl-Lysine. Int. J. Mol. Sci. 2022, 23, 3446. [Google Scholar] [CrossRef] [PubMed]
- Litwinowicz, K.; Waszczuk, E.; Kuzan, A.; Bronowicka-Szydełko, A.; Gostomaska-Pampuch, K.; Naporowaski, P.; Gamian, A. Alcoholic Liver Disease Is Associated with Elevated Plasma Levels of Novel Advanced Glycation End-Products; A Preliminary Study. Nutrients 2022, 14, 5266. [Google Scholar] [CrossRef]
- Tesseir, F.J.; Nonnier, V.M.; Sayre, L.M.; Kornfield, J.A. Triosines: Novel Maillard rection products and cross-links from the reaction of thiose sugars with lysine and arginine residures. Biochem. J. 2003, 364, 703–719. [Google Scholar]
- Fujimoto, S.; Murakami, Y.; Miyake, H.; Hayase, F.; Watanabe, H. Identification of a novel advanced glycation end products derived form lactalydehyde. Biosci. Biotechnol. Biochem. 2019, 83, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Takata, T. Is the Novel Slot Blot a Useful Method for Quantification of Intracellular Advanced Glycation End-Products? Metabolites 2023, 13, 564. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Ueda, T.; Sakasa-Sakai, A.; Takeuchi, M. Generation of glyceraldehyde-derived advanced glycation end-products in pancreatic cells and the potential of tumor promotion. World J. Gastroenterol. 2017, 23, 4910–4919. [Google Scholar] [CrossRef]
- Bronowicka-Szydełko, A.; Kryzsteck-Korpacka, M.; Kuzan, A.; Gostomaska-Pampuch, K.; Gacka, M.; Jakobsche-Policht, U.; Adamiec, R.; Gamian, A. Non-standard AGE4 epitopes that predict polyneurophathy independently of obesity can be detected by slot-blot immunoassay. Adv. Clin. Exp. 2020, 29, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Tominaga, Y.; Sugawa, H.; Hirabayashi, K.; Ikeda, T.; Hoshi, Y.; Nagai, R. Drosera tokainesis extract containing multiple phenolic copounds inhibits the formation of advanced glycation end-products. Arch. Biochem. Biophys. 2020, 693, 108586. [Google Scholar] [CrossRef]
- Ban, H.; Sugawa, H.; Nagai, R. Protein Modification with Ribose Generates Nδ-(5-hydro-5-methyl-1,4-imidazolone-2-yl)-ornithine. Int. J. Mol. Sci. 2022, 23, 1224. [Google Scholar] [CrossRef]
- Suh, K.S.; Choi, E.; Jung, W.; Kim, Y.; Hong, S.; Park, S.; Rhee, S.Y.; Chon, S. Deoxyactein protects pancreatic β-cells against methylglyoxal-induced oxidative cell damage by the upregulation of mitochondrial biogenesis. Int. J. Mol. Med. 2017, 40, 539–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Cocklin, R.R.; Bidasee, K.R.; Wang, M. Rapid Determination of Advanced Glycation End Prodcuts of Proteins Using MALDI-TOF-MS and PERL Script Peptide Searching Algorithm. J. Biol. Tech. 2003, 14, 224–230. [Google Scholar]
- Ohno, R.; Ichimaru, K.; Tanaka, S.; Sugawa, H.; Katsuta, N.; Sakake, S.; Tomninaga, Y.; Ba, I.; Shirakawa, J.; Yamaguchi, Y. Glucoselysine is derived from fructose and accumulates in the eye lens of diabetic rats. J. Biol. Chem. 2019, 294, 17326–17338. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Fujiwara, Y.; Saito, M.; Arakawa, S.; Shirakawa, J.; Yamakawa, M.; Komohara, Y.; Marumo, K.; Nagai, R. Intracellular Accumulation of Advanced Glycation End Products Induces Osteoblast Apoptosis Via Endoplasmic Reticulum Stress. J. Bone Miner Res. 2020, 35, 1992–2003. [Google Scholar] [CrossRef]
- Kato, S.; Sugawara, H.; Tabe, K.; Ito, K.; Nakashima, H.; Nagai, R. Rapid pretreatment for multi-sample analysis of advanced glycation end products and their role in nephropathy. J. Clin. Biohem. Nutr. 2022, 70, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Bellier, J.; Nokin, M.; Lardé, E.; Karoyan, P.; Peulen, O.; Castronova, V.; Bellachcène, A. Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. Diabetes Res. Clin. Pract. 2019, 148, 200–211. [Google Scholar] [CrossRef]
- Damasiewicz0Bodzek, A.; Łabuz-Rozak, B.; Kumaszaka, B.; Tadeusiak, B.; Tyrpień-Golder, K. The Assessment of Serum Concentrations of AGEs and Their Solubule Recepotor (sRAGE) in Multiple Sclerosis Patients. Brain Sci. 2021, 11, 1021. [Google Scholar] [CrossRef]
- Kashiwabara, S.; Hosoe, H.; Ohno, R.; Nagai, R.; Shiraki, M. Development and Evaluation of Novel ELISA for Determination of Urinary Pentosidine. J. Nutr. Sci. Vitaminol. 2019, 65, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Wada, K.; Nakahima, Y.; Yamakawa, M.; Hori, A.; Seishima, M.; Tanabashi, S.; Matsushita, S.; Tokimitsu, N.; Nagata, C. Dietary advanced glycation end-products and cancer risk in Japan: From the Takayama Study. Cancer Sci. 2022, 113, 2839–2848. [Google Scholar] [CrossRef]
- Phung-Nguyen, K.; McNeill, B.A.; Aston-Mourney, K.; Rivera, L.R. Advanced Glycation End-Products and Their Effects on Gut Health. Nutrients 2023, 15, 405. [Google Scholar] [CrossRef]
- Hayashi, K.; Sato, K.; Ochi, S.; Kawano, S.; Munesue, S.; Harashima, A.; Oshima, Y.; Kimura, K.; Kyoi, T.; Yamamoto, Y. Inhibitory Effects of Saururus Chinensis Extract on Receptor for Advanced Glycation End-Products-Depenedent Inflammation and Diabetes-Induced Dysregulation of Vasodilation. Int. J. Mol. Sci. 2022, 23, 5757. [Google Scholar] [CrossRef] [PubMed]
- González-Guerrero, D.E.; Lazo-de-laVega-Monroy, M.; Gómez-Ojeda, A.; Luévano-Contreras, C.; Rojias-Rubio, A.; Garay-Sevilla, M.E. Polymorphisms-374 T/A and -429 T/C of Receptor for Advanced Glycation End-Products (RAGE) and Serum Levels of RAGE (sRAGE) Are Associated with Metabolic Syndrome. Metabolites 2023, 13, 521. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Du, H.; Ma, Y.; Wang, T.; Zhu, H.; Zhu, L.; Pan, S.; Min, N.; Wang, X.; Liu, Z. Matrine inhibits advanced glycation end products induced macrophage M1 polarization by reducing DNMT3a/b-mediated DNA methylation of GPX1 promoter. Eur. J. Pharmacol. 2022, 926, 175039. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Yang, J.; Park, C.; Son, K.; Byun, K. Dieckol Attenuated Glucocorticoid-Induced Muscle Atrophy by Decreasing NLR3 Inflammasome and Pyroptosis. Int. J. Mol. Sci. 2021, 22, 8057. [Google Scholar] [CrossRef]
- Lin, K.; Deng, T.; Qu, H.; Ou, H.; Huang, Q.; Gao, B.; Li, X.; Wei, N. Gastric protective effect of Alpinia officinarum flavonoids: Mediating TLR4/NF-ĸB and TRPV1 signaling pathways and gastric mucosal healing. Pharm. Biol. 2023, 61, 50–60. [Google Scholar] [CrossRef]
- Naito, Y.; Takagi, T.; Oya-Ito, T.; Okada, H.; Suzuki, T.; Hirata, I.; Hirai, M.; Uchiyama, K.; Handa, O.; Uchida, K.; et al. Impaired Gastric Ulcer Healing In Diabetic Mice: Role of Methylglyoxal. J. Physiol. Pharmacol. 2009, 60, 123–130. [Google Scholar]
- Takagi, T.; Naito, Y.; Oya-Ito, T.; Yoshikawa, T. The Role of Methylglyoxal-Modified Proteins in Gastric Ulcer Healing. Curr. Mol. Chem. 2012, 19, 137–144. [Google Scholar] [CrossRef]
- Tang, S.; Chen, H.; Cheng, Y.; Nasir, M.A.; Kemper, N.; Bao, E. The interactive association between heat shock factor 1 and heat shock protein in primary myocardial cells subjected to heat stress. Int. J. Mol. Med. 2016, 37, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Bouaouiche, S.; Ghione, S.; Sghaier, R.; Burgy, O.; Racoeur, C.; Derangère, V.; Bettaib, A.; Plenchette, S. Nitric Oxide-Releasing Drug Glyceryl Trinitrate Targets JAK2/STAT3 Signaling, Migration and Invasion of Triple-Negative Breast Cancer Cells. Int. J. Mol. Sci. 2021, 22, 8499. [Google Scholar] [CrossRef]
- Takata, T.; Ishigaki, Y.; Shimasaki, T.; Tsuchida, H.; Motoo, Y.; Hayashi, A.; Tomosugi, N. Chracterization of proteins secreted by pancreatic cancer cells with anticancer drug treatment in vitro. Oncol. Rep. 2012, 28, 1968–1976. [Google Scholar] [CrossRef] [Green Version]
- Risha, Y.; Minic, Z.; Ghobadioo, S.M.; Berrezoski, M.V. The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers. Sci. Rep. 2020, 10, 23572. [Google Scholar] [CrossRef]
- Liu, Y.; Chang, C.; Matsui, H.; Chao, J.C.J. C-Phycocyanin and Lycium barbarum Polysaccharides Protect against Aspirin-Induced Inflammation and Apoptosis in Gastric RGM-1 Cells. Nutrients 2022, 14, 5113. [Google Scholar] [CrossRef] [PubMed]
- Pellerin, G.; Bazinet, L.; Grenier, D. Effect of cranberry juice deacidification on its antibacterial activity against periodontal pathogens and its anti-inflammatory properties in an oral epithelial cell model. Food Funct. 2021, 12, 10470–10483. [Google Scholar] [CrossRef] [PubMed]
- Vigani, B.; Rossi, S.; Gentile, M.; Sandri, G.; Bonferoni, M.C.; Cavalloro, V.; Martino, E.; Collina, S.; Ferrari, F. Development of Mucoadhesive and an in Situ Gelling Formulation Based on ĸ-Carrageenan for Application on Oral Mucosa and Esophageus Walls. II. Loading of a Bioactive Hydroalchoholic Extract. Mar. Drug. 2019, 17, 153. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Ma, L.; Kim, E.; Yi, J.; Huang, H.; Kim, H.; Raza, M.A.; Park, S.; Jang, S.; Kim, K.; et al. Rhein Induces Oral Cancer Cell Apoptosis and ROS via Suppresse AKT/mTOR Signaling Pathway In Vitro and In Vivo. Int. J. Mol. Sci. 2023, 24, 8507. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xie, W.; Zhao, G.; Shuai, Q. Efficient pH-Responsive Nano-Drug Delivery System Based on Dynamic Boronic Acid/Ester Transformation. Molecules 2023, 28, 4461. [Google Scholar] [CrossRef]
- Cheung, T.K.; Lee, C.; Bayer, E.P.; McCoy, A.; Kuser, B.; Rose, C.M. Defining the carrier proteome limit for single-cell proteomics. Nat. Methods 2021, 18, 76–83. [Google Scholar] [CrossRef]
- Nolan, J.P.; Duggan, E. Analysis of Individual Extracellular Vesicles by Flow Cytometry. Methods Mol. Biol. 2018, 1678, 79–92. [Google Scholar]
- Reichard, A.; Asosingh, K. Best Practices for Preparing a Single Cell Suspension from Solid Tissues for Flow Cytometry. Cytom. A 2019, 95, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, R.; Horita, S.; Ono, Y.; Hagihara, K.; Shimizu, M.; Maejima, Y.; Shimomura, K. Goshajinkigan, a Traditional Japanese Medicine, Suppresses Voltage-Gated Sodium Channel Nav1.4 Currents in C2C12 Cells. Biores. Open Access 2020, 9, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Sadda, R.R.E.; Elshahawy, Z.R.; Saas, E.A. Biochemical and pathophysiological improvements in rats with thioacetamide induced-hepatocellular carcinoma using aspirin plus vitamin C. BMC Cancer 2023, 23, 175. [Google Scholar] [CrossRef]
- Strawa, J.W.; Jakimiuk, K.; Szoka, Ł.; Brzezinski, K.; Drozdzai, P.; Pałka, J.A.; Tomczyk, M. New Polymethoxyflavones from Hottonia palustris Evoke DNA Biosynthesis-Inhibitory Activity in An Oral Squamous Carcinoma (SCC-25) Cell Line. Molecules 2022, 27, 4415. [Google Scholar] [CrossRef]
- Baikhi, S.E.; Chaslot, M.; Picard, N.; Dulaurent, S.; Delage, M.; Mathicu, O.; Saint-Marcoux, F. Characterization and identification of eight designer benzodiazepine metabolites by incubation with human liver microsomes and analysis by triple quadrupole mass spectrometer. Int. J. Legal. Med. 2017, 131, 979–988. [Google Scholar]
- Yang, D.; Wang, Y.; Jiang, M.; Deng, A.; Pe, Z.; Li, F.; Xia, K.; Zhu, L.; Yang, T.; Chen, M. Downregulation of Profilin-1 Expression Attenuates Cardiomyocytes Hypertrophy and Apoptosis Induced by Advanced Glycation End Products in H9c2 Cells. Biomed. Res. Int. 2017, 2017, 9716087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, P.; Zhou, H.; Lu, M.; Dou, L.; Wu, G.B.; Wu, J.; Huang, S. Autophagy Plays a Protective Role in Advanced Glycation End Product-Induced Apoptosis in Cardiomyocytes. Cell Physiol. Biochem. 2015, 37, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Usui, T.; Shizuuchi, S.; Watanabe, H.; Hayase, F. Cytotoxicity and Oxidative Induced by the Glyceraldehyde-related Maillard Reaction Products for HL-60 Cells. Biosci. Biotechnol. Biochem. 2004, 68, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takata, T.; Motoo, Y. Novel In Vitro Assay of the Effects of Kampo Medicines against Intra/Extracellular Advanced Glycation End-Products in Oral, Esophageal, and Gastric Epithelial Cells. Metabolites 2023, 13, 878. https://doi.org/10.3390/metabo13070878
Takata T, Motoo Y. Novel In Vitro Assay of the Effects of Kampo Medicines against Intra/Extracellular Advanced Glycation End-Products in Oral, Esophageal, and Gastric Epithelial Cells. Metabolites. 2023; 13(7):878. https://doi.org/10.3390/metabo13070878
Chicago/Turabian StyleTakata, Takanobu, and Yoshiharu Motoo. 2023. "Novel In Vitro Assay of the Effects of Kampo Medicines against Intra/Extracellular Advanced Glycation End-Products in Oral, Esophageal, and Gastric Epithelial Cells" Metabolites 13, no. 7: 878. https://doi.org/10.3390/metabo13070878
APA StyleTakata, T., & Motoo, Y. (2023). Novel In Vitro Assay of the Effects of Kampo Medicines against Intra/Extracellular Advanced Glycation End-Products in Oral, Esophageal, and Gastric Epithelial Cells. Metabolites, 13(7), 878. https://doi.org/10.3390/metabo13070878