Influence of Maternal Immune Activation and Stressors on the Hippocampal Metabolome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Experiments
2.2. Metabolomic Sample Preparation and Analysis
2.3. Statistical Analysis
3. Results
3.1. Analysis of Prenatal and Postnatal Challenges
3.2. Pathway Enrichment
3.2.1. Overrepresented Pathways
3.2.2. Metabolites in Overrepresented Pathways
3.3. Metabolites Presenting Maternal Immune Activation and Stress Effects
3.3.1. Interaction between MIA and Stress at 60 Days of Age
3.3.2. Metabolites Affected by Maternal Immune Activation or Stress
3.3.3. Canonical Discriminant Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Neill, L.A.; Kishton, R.J.; Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 2016, 16, 553–565. [Google Scholar] [CrossRef] [Green Version]
- Loftus, R.M.; Finlay, D.K. Immunometabolism: Cellular Metabolism Turns Immune Regulator. J. Biol. Chem. 2016, 291, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Britt, E.C.; Lika, J.; Giese, M.A.; Schoen, T.J.; Seim, G.L.; Huang, Z.; Lee, P.Y.; Huttenlocher, A.; Fan, J. Switching to the cyclic pentose phosphate pathway powers the oxidative burst in activated neutrophils. Nat. Metab. 2022, 4, 389–403. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, L.A.; Pearce, E.J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 2015, 213, 15–23. [Google Scholar] [CrossRef]
- Antonioli, L.; Fornai, M.; Blandizzi, C.; Pacher, P.; Haskó, G. Adenosine signaling and the immune system: When a lot could be too much. Immunol. Lett. 2019, 205, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, S.; Contri, C.; Borea, P.A.; Vincenzi, F.; Varani, K. Adenosine and Inflammation: Here, There and Everywhere. Int. J. Mol. Sci. 2021, 22, 7685. [Google Scholar] [CrossRef]
- Usuda, K.; Kawase, T.; Shigeno, Y.; Fukuzawa, S.; Fujii, K.; Zhang, H.; Tsukahara, T.; Tomonaga, S.; Watanabe, G.; Jin, W.; et al. Hippocampal metabolism of amino acids by L-amino acid oxidase is involved in fear learning and memory. Sci. Rep. 2018, 8, 11073. [Google Scholar] [CrossRef] [Green Version]
- Leuner, B.; Gould, E. Structural Plasticity and Hippocampal Function. Annu. Rev. Psychol. 2010, 61, 111–140. [Google Scholar] [CrossRef] [Green Version]
- Maynard, T.; Sikich, L.; Lieberman, J.A.; LaMantia, A.-S. Neural Development, Cell-Cell Signaling, and the “Two-Hit” Hypothesis of Schizophrenia. Schizophr. Bull. 2001, 27, 457–476. [Google Scholar] [CrossRef] [Green Version]
- Tingley, D.; McClain, K.; Kaya, E.; Carpenter, J.; Buzsáki, G. A metabolic function of the hippocampal sharp wave-ripple. Nature 2021, 597, 82–86. [Google Scholar] [CrossRef]
- Lumertz, F.S.; Kestering-Ferreira, E.; Orso, R.; Creutzberg, K.C.; Tractenberg, S.G.; Stocchero, B.A.; Viola, T.W.; Grassi-Oliveira, R. Effects of early life stress on brain cytokines: A systematic review and meta-analysis of rodent studies. Neurosci. Biobehav. Rev. 2022, 139, 104746. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.A.; Bales, N.J.; Myers, S.A.; Bautista, A.I.; Roueinfar, M.; Hale, T.M.; Handa, R.J. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Front. Behav. Neurosci. 2020, 14, 256. [Google Scholar] [CrossRef]
- Bellavance, M.-A.; Rivest, S. The HPA – Immune Axis and the Immunomodulatory Actions of Glucocorticoids in the Brain. Front. Immunol. 2014, 5, 136. [Google Scholar] [CrossRef] [Green Version]
- Leone, P.; Mincheva, G.; Balzano, T.; Malaguarnera, M.; Felipo, V.; Llansola, M. Rifaximin Improves Spatial Learning and Memory Impairment in Rats with Liver Damage-Associated Neuroinflammation. Biomedicines 2022, 10, 1263. [Google Scholar] [CrossRef]
- Odorizzi, P.M.; Feeney, M.E. Impact of In Utero Exposure to Malaria on Fetal T Cell Immunity. Trends Mol. Med. 2016, 22, 877–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prins, J.R.; Eskandar, S.; Eggen, B.J.; Scherjon, S.A. Microglia, the missing link in maternal immune activation and fetal neurodevelopment; and a possible link in preeclampsia and disturbed neurodevelopment? J. Reprod. Immunol. 2018, 126, 18–22. [Google Scholar] [CrossRef]
- Poletto, R.; Steibel, J.; Siegford, J.; Zanella, A. Effects of early weaning and social isolation on the expression of glucocorticoid and mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase 1 and 2 mRNAs in the frontal cortex and hippocampus of piglets. Brain Res. 2006, 1067, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Han, V.X.; Patel, S.; Jones, H.F.; Dale, R.C. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat. Rev. Neurol. 2021, 17, 564–579. [Google Scholar] [CrossRef]
- Boulanger-Bertolus, J.; Pancaro, C.; Mashour, G.A. Increasing Role of Maternal Immune Activation in Neurodevelopmental Disorders. Front. Behav. Neurosci. 2018, 12, 230. [Google Scholar] [CrossRef] [Green Version]
- Bayer, T.A.; Falkai, P.; Maier, W. Genetic and non-genetic vulnerability factors in schizophrenia: The basis of the “Two hit hypothesis”. J. Psychiatr. Res. 1999, 33, 543–548. [Google Scholar] [CrossRef]
- Walker, A.K.; Nakamura, T.; Byrne, R.J.; Naicker, S.; Tynan, R.J.; Hunter, M.; Hodgson, D.M. Neonatal lipopolysaccharide and adult stress exposure predisposes rats to anxiety-like behaviour and blunted corticosterone responses: Implications for the double-hit hypothesis. Psychoneuroendocrinology 2009, 34, 1515–1525. [Google Scholar] [CrossRef] [PubMed]
- Imanaka, A.; Morinobu, S.; Toki, S.; Yamawaki, S. Importance of early environment in the development of post-traumatic stress disorder-like behaviors. Behav. Brain Res. 2006, 173, 129–137. [Google Scholar] [CrossRef]
- Giovanoli, S.; Meyer, U. Response to Comment on “Stress in Puberty Unmasks Latent Neuropathological Consequences of Prenatal Immune Activation in Mice”. Science 2013, 340, 811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rymut, H.E.; Rund, L.A.; Bolt, C.R.; Villamil, M.B.; Southey, B.R.; Johnson, R.W.; Rodriguez-Zas, S.L. The Combined Effect of Weaning Stress and Immune Activation during Pig Gestation on Serum Cytokine and Analyte Concentrations. Animals 2021, 11, 2274. [Google Scholar] [CrossRef]
- Southey, B.R.; Bolt, C.R.; Rymut, H.E.; Keever, M.R.; Ulanov, A.V.; Li, Z.; Rund, L.A.; Johnson, R.W.; Rodriguez-Zas, S.L. Impact of Weaning and Maternal Immune Activation on the Metabolism of Pigs. Front. Mol. Biosci. 2021, 8, 660764. [Google Scholar] [CrossRef]
- Keever, M.R.; Zhang, P.; Bolt, C.R.; Antonson, A.M.; Rymut, H.E.; Caputo, M.P.; Houser, A.K.; Hernandez, A.G.; Southey, B.R.; Rund, L.A.; et al. Lasting and Sex-Dependent Impact of Maternal Immune Activation on Molecular Pathways of the Amygdala. Front. Neurosci. 2020, 14, 774. [Google Scholar] [CrossRef] [PubMed]
- Keever-Keigher, M.R.; Zhang, P.; Bolt, C.R.; Rymut, H.E.; Antonson, A.M.; Caputo, M.P.; Houser, A.K.; Hernandez, A.G.; Southey, B.R.; Rund, L.A.; et al. Interacting impact of maternal inflammatory response and stress on the amygdala transcriptome of pigs. G3 2021, 11, jkab113. [Google Scholar] [CrossRef]
- Southey, B.R.; Keever-Keigher, M.R.; Rymut, H.E.; Rund, L.A.; Johnson, R.W.; Rodriguez-Zas, S.L. Disruption of Alternative Splicing in the Amygdala of Pigs Exposed to Maternal Immune Activation. Immuno 2021, 1, 499–517. [Google Scholar] [CrossRef]
- Rymut, H.E.; Rund, L.A.; Southey, B.R.; Johnson, R.W.; Rodriguez-Zas, S.L. Terpenoid Backbone Biosynthesis among Pig Hippocampal Pathways Impacted by Stressors. Genes 2022, 13, 814. [Google Scholar] [CrossRef]
- Rodriguez-Zas, S.L.; Southey, B.R.; Rymut, H.E.; Rund, L.A.; Johnson, R.W. Hippocampal Changes Elicited by Metabolic and Inflammatory Stressors following Prenatal Maternal Infection. Genes 2022, 14, 77. [Google Scholar] [CrossRef]
- Rymut, H.E.; Bolt, C.R.; Caputo, M.P.; Houser, A.K.; Antonson, A.M.; Zimmerman, J.D.; Villamil, M.B.; Southey, B.R.; Rund, L.A.; Johnson, R.W.; et al. Long-Lasting Impact of Maternal Immune Activation and Interaction with a Second Immune Challenge on Pig Behavior. Front. Veter Sci. 2020, 7, 561151. [Google Scholar] [CrossRef] [PubMed]
- Geisert, R.D.; Lucy, M.C. Pig. In Encyclopedia of Reproduction, 2nd ed.; Skinner, M.K., Ed.; Academic Press: Oxford, UK, 2018; pp. 641–649. [Google Scholar]
- Wu, H.; Southam, A.D.; Hines, A.; Viant, M.R. High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal. Biochem. 2008, 372, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Rymut, H.E.; Rund, L.A.; Bolt, C.R.; Villamil, M.B.; Bender, D.E.; Southey, B.R.; Johnson, R.W.; Rodriguez-Zas, S.L. Biochemistry and Immune Biomarkers Indicate Interacting Effects of Pre- and Postnatal Stressors in Pigs across Sexes. Animals 2021, 11, 987. [Google Scholar] [CrossRef] [PubMed]
- Southey, B.R.; Zhang, P.; Keever, M.R.; Rymut, H.E.; Johnson, R.W.; Sweedler, J.V.; Rodriguez-Zas, S.L. Effects of maternal immune activation in porcine transcript isoforms of neuropeptide and receptor genes. J. Integr. Neurosci. 2021, 20, 21–31. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.-L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Sikalidis, A.K. Amino Acids and Immune Response: A Role for Cysteine, Glutamine, Phenylalanine, Tryptophan and Arginine in T-cell Function and Cancer? Pathol. Oncol. Res. 2015, 21, 9–17. [Google Scholar] [CrossRef]
- Miyajima, M. Amino acids: Key sources for immunometabolites and immunotransmitters. Int. Immunol. 2020, 32, 435–446. [Google Scholar] [CrossRef]
- Kelly, B.; Pearce, E.L. Amino Assets: How Amino Acids Support Immunity. Cell Metab. 2020, 32, 154–175. [Google Scholar] [CrossRef] [PubMed]
- Hamill, M.J.; Afeyan, R.; Chakravarthy, M.V.; Tramontin, T. Endogenous Metabolic Modulators: Emerging Therapeutic Potential of Amino Acids. iScience 2020, 23, 101628. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; He, W.; Huang, Y.; Zeng, Z.; Yang, X.; Huang, H.; Wen, J.; Cao, Y.; Sun, H. Hippocampal metabolic alteration in rat exhibited susceptibility to prenatal stress. J. Affect. Disord. 2019, 259, 458–467. [Google Scholar] [CrossRef] [PubMed]
- McColl, E.R.; Piquette-Miller, M. Poly(I:C) alters placental and fetal brain amino acid transport in a rat model of maternal immune activation. Am. J. Reprod. Immunol. 2019, 81, e13115. [Google Scholar] [CrossRef]
- Nguyen, Y.T.K.; Ha, H.T.T.; Nguyen, T.H.; Nguyen, L.N. The role of SLC transporters for brain health and disease. Cell. Mol. Life Sci. 2021, 79, 20. [Google Scholar] [CrossRef]
- Ouellette, J.; Lacoste, B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front. Aging Neurosci. 2021, 13, 749026. [Google Scholar] [CrossRef]
- Morris, S.M. Arginine Metabolism Revisited. J. Nutr. 2016, 146, 2579S–2586S. [Google Scholar] [CrossRef] [Green Version]
- Proietti, E.; Rossini, S.; Grohmann, U.; Mondanelli, G. Polyamines and Kynurenines at the Intersection of Immune Modulation. Trends Immunol. 2020, 41, 1037–1050. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, H.; Wolff, A.R.; Bilkey, D.K.; Liu, P. Altered arginine metabolism in the hippocampus and prefrontal cortex of maternal immune activation rat offspring. Schizophr. Res. 2013, 148, 151–156. [Google Scholar] [CrossRef]
- Zhang, J.; Jing, Y.; Zhang, H.; Bilkey, D.K.; Liu, P. Effects of maternal immune activation on brain arginine metabolism of postnatal day 2 rat offspring. Schizophr. Res. 2018, 192, 431–441. [Google Scholar] [CrossRef]
- Fraschilla, I.; Amatullah, H.; Jeffrey, K.L. One genome, many cell states: Epigenetic control of innate immunity. Curr. Opin. Immunol. 2022, 75, 102173. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Son, H.; Baek, J.-H. Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses. Life 2021, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Arts, R.J.; Novakovic, B.; ter Horst, R.; Carvalho, A.; Bekkering, S.; Lachmandas, E.; Rodrigues, F.; Silvestre, R.; Cheng, S.-C.; Wang, S.-Y.; et al. Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metab. 2016, 24, 807–819. [Google Scholar] [CrossRef] [Green Version]
- Cruzat, V.; Macedo Rogero, M.; Keane, K.N.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Mendu, S.K.; Birnir, B. GABA is an effective immunomodulatory molecule. Amino Acids 2013, 45, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czeh, B.; Varga, Z.K.; Henningsen, K.; Kovacs, G.L.; Miseta, A.; Wiborg, O. Chronic stress reduces the number of GABAergic interneurons in the adult rat hippocampus, dorsal-ventral and region-specific differences. Hippocampus 2015, 25, 393–405. [Google Scholar] [CrossRef]
- Dolfen, N.; Veldman, M.P.; Gann, M.A.; von Leupoldt, A.; Puts, N.A.J.; Edden, R.A.E.; Mikkelsen, M.; Swinnen, S.; Schwabe, L.; Albouy, G.; et al. A role for GABA in the modulation of striatal and hippocampal systems under stress. Commun. Biol. 2021, 4, 1033. [Google Scholar] [CrossRef]
- Zasłona, Z.; O’neill, L.A. Cytokine-like Roles for Metabolites in Immunity. Mol. Cell 2020, 78, 814–823. [Google Scholar] [CrossRef]
- Yoon, D.W.; Kwon, H.N.; Jin, X.; Kim, J.K.; Lee, S.K.; Park, S.; Yun, C.-H.; Shin, C. Untargeted metabolomics analysis of rat hippocampus subjected to sleep fragmentation. Brain Res. Bull. 2019, 153, 74–83. [Google Scholar] [CrossRef]
- Grimaldi, M.; Marino, C.; Buonocore, M.; Santoro, A.; Sommella, E.; Merciai, F.; Salviati, E.; De Rosa, A.; Nuzzo, T.; Errico, F.; et al. Prenatal and Early Postnatal Cerebral d-Aspartate Depletion Influences l-Amino Acid Pathways, Bioenergetic processes, and Developmental Brain Metabolism. J. Proteome Res. 2021, 20, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.C.; O’neill, L.A.J. A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation. Front. Immunol. 2018, 9, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch-Nolte, F.; Dahl, G. Purine Release, Metabolism, and Signaling in the Inflammatory Response. Annu. Rev. Immunol. 2019, 37, 325–347. [Google Scholar] [CrossRef]
- Bortolotti, M.; Polito, L.; Battelli, M.G.; Bolognesi, A. Xanthine oxidoreductase: One enzyme for multiple physiological tasks. Redox Biol. 2021, 41, 101882. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Lupton, J.R.; Turner, N.D.; Fang, Y.-Z.; Yang, S. Glutathione Metabolism and Its Implications for Health. J. Nutr. 2004, 134, 489–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, C.; Percival, S.S. Immunomodulatory Effects of Glutathione, Garlic Derivatives, and Hydrogen Sulfide. Nutrients 2019, 11, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canales, C.P.; Estes, M.L.; Cichewicz, K.; Angara, K.; Aboubechara, J.P.; Cameron, S.; Prendergast, K.; Su-Feher, L.; Zdilar, I.; Kreun, E.J.; et al. Sequential perturbations to mouse corticogenesis following in utero maternal immune activation. Elife 2021, 10, e60100. [Google Scholar] [CrossRef]
- Asser, A.; Taba, P. Psychostimulants and Movement Disorders. Front. Neurol. 2015, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, X.; Ge, S.-N.; Wang, X.-L. Alterations in Neurotransmitters Targeted Metabolomics from the Key Nuclei of Brain Reward Circuits in Cocaine-Induced Behavioral Sensitization for Self-Administering Rats. SSRN 2022. [Google Scholar] [CrossRef]
- Li, L.; Cao, H.; Li, J.; Kuang, H.; Zhou, Z.; Wang, Q. Metabolomics analysis reveals how water extract of Gastrodia elata helps against heroin addiction. Pharmacol. Res. Mod. Chin. Med. 2022, 3, 100071. [Google Scholar] [CrossRef]
- Zaitsu, K.; Hayashi, Y.; Suzuki, K.; Nakayama, H.; Hattori, N.; Takahara, R.; Kusano, M.; Tsuchihashi, H.; Ishii, A. Metabolome disruption of the rat cerebrum induced by the acute toxic effects of the synthetic cannabinoid MAM-2201. Life Sci. 2015, 137, 49–55. [Google Scholar] [CrossRef]
- Li, K.; He, H.-T.; Li, H.-M.; Liu, J.-K.; Fu, H.-Y.; Hong, M. Heroin affects purine nucleotides metabolism in rat brain. Neurochem. Int. 2011, 59, 1104–1108. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-D.; Zhang, J.-Z.; Sun, C.; Yu, H.-M.; Li, Q.; Hong, M. Heroin affects purine nucleotides catabolism in rats in vivo. Life Sci. 2006, 78, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, L.; Sapolsky, R. The Role of the Hippocampus in Feedback Regulation of the Hypothalamic-Pituitary-Adrenocortical Axis. Endocr. Rev. 1991, 12, 118–134. [Google Scholar] [CrossRef] [PubMed]
KEGG Pathway | MIA | STR | ||
---|---|---|---|---|
Hits | Impact a | Hits | Impact | |
Amino acid metabolism | ||||
Alanine, aspartate and glutamate metabolism | 3 | 0.423 | 5 | 0.286 ** |
Arginine biosynthesis | 5 | 0.178 *** | 4 | 0.178 ** |
Carbohydrate metabolism | ||||
Butanoate metabolism | 1 | 0.000 | 3 | 0.032 * |
Glyoxylate and dicarboxylate metabolism | 4 | 0.228 * | 2 | 0.032 |
Pentose phosphate pathway | 4 | 0.176 ** | 2 | 0.176 |
Metabolism of other amino acids | ||||
Glutathione metabolism | 5 | 0.371 ** | 5 | 0.290 ** |
Nucleotide metabolism | ||||
Purine metabolism | 7 | 0.128 ** | 7 | 0.111 ** |
Translation | ||||
Aminoacyl-tRNA biosynthesis | 7 | 0.167 *** | 6 | 0.000 ** |
NP 1 | Control 2 | PRRSV | |||||
---|---|---|---|---|---|---|---|
Metabolite | Saline 3 | Fasted | Poly(I:C) | Saline | Fasted | Poly(I:C) | |
Asparagine | 2 | 3.5 ± 0.2 a | 3.5 ± 0.2 a | 3.2 ± 0.2 ab | 3.8 ± 0.2 a | 2.6 ± 0.2 b | 3.4 ± 0.2 a |
Glutamic acid | 8 | 10.1 ± 0.1 ab | 10.3 ± 0.1 a | 10.0 ± 0.1 abc | 10.2 ± 0.1 a | 9.8 ± 0.1 c | 9.8 ± 0.1 bc |
Glyceric acid | 3 | 2.2 ± 0.1 ab | 1.9 ± 0.1 ab | 1.6 ± 0.1 b | 2.0 ± 0.1 ab | 2.5 ± 0.1 a | 2.2 ± 0.1 ab |
Glycine | 5 | 8.6 ± 0.1 ab | 8.6 ± 0.1 a | 8.4 ± 0.1 abc | 8.5 ± 0.1 ab | 8.1 ± 0.1 c | 8.3 ± 0.1 bc |
Inositol #2 | 0 | 4.9 ± 0.2 ab | 5.0 ± 0.2 a | 4.3 ± 0.2 b | 5.1 ± 0.2 a | 4.3 ± 0.2 b | 4.6 ± 0.2 ab |
Inositol #3 | 0 | 1.3 ± 0.2 b | 1.9 ± 0.2 a | 1.3 ± 0.2 ab | 1.8 ± 0.2 ab | 1.1 ± 0.2 b | 1.3 ± 0.2 ab |
Leucine | 2 | 5.1 ± 0.1 b | 5.7 ± 0.1 a | 5.1 ± 0.1 b | 5.0 ± 0.1 b | 4.8 ± 0.1 b | 4.8 ± 0.1 b |
Serine | 3 | 8.2 ± 0.1 ab | 8.5 ± 0.1 a | 8.1 ± 0.1 abc | 8.3 ± 0.1 ab | 7.8 ± 0.1 c | 8.0 ± 0.1 bc |
Metabolite 1 | MIA 2 | STR 3 | |||
---|---|---|---|---|---|
Control | PRRSV | Saline | Fasted | Poly(I:C) | |
3-HBA | 3.08 ± 0.08 | 2.94 ± 0.08 | 2.86 ± 0.10 b | 3.39 ± 0.10 a | 2.79 ± 0.10 b |
Adenine | 5.36 ± 0.11 a | 4.97 ± 0.11 b | 5.45 ± 0.13 a | 5.21 ± 0.13 ab | 4.83 ± 0.13 b |
AMP | 6.81 ± 0.09 a | 6.37 ± 0.09 b | 6.82 ± 0.11 a | 6.66 ± 0.11 ab | 6.28 ± 0.11 b |
Aspartic acid | 8.81 ± 0.05 a | 8.56 ± 0.05 b | 8.75 ± 0.07 | 8.72 ± 0.07 | 8.57 ± 0.07 |
Fumaric acid | 5.38 ± 0.06 a | 5.07 ± 0.06 b | 5.40 ± 0.07 a | 5.25 ± 0.07 ab | 5.02 ± 0.07 b |
Guanine | 3.09 ± 0.04 a | 2.94 ± 0.05 b | 3.16 ± 0.05 a | 2.94 ± 0.06 b | 2.94 ± 0.06 b |
Hypoxanthine | 6.08 ± 0.09 a | 5.71 ± 0.09 b | 5.97 ± 0.11 | 5.92 ± 0.11 | 5.79 ± 0.11 |
Inosine | 8.36 ± 0.07 a | 7.99 ± 0.07 b | 8.35 ± 0.09 a | 8.19 ± 0.09 ab | 7.98 ± 0.09 b |
Lysine | 5.52 ± 0.06 | 5.43 ± 0.06 | 5.50 ± 0.07 a | 5.70 ± 0.07 a | 5.23 ± 0.07 b |
Ornithine | 4.00 ± 0.07 a | 3.70 ± 0.07 b | 4.06 ± 0.08 a | 3.70 ± 0.08 b | 3.79 ± 0.08 ab |
Putrescine | 3.47 ± 0.10 | 3.41 ± 0.10 | 3.67 ± 0.12 a | 3.50 ± 0.12 ab | 3.14 ± 0.12 b |
pGlutamic acid | 10.23 ± 0.05 a | 10.01 ± 0.05 b | 10.25 ± 0.06 a | 10.12 ± 0.06 a | 9.99 ± 0.06 b |
Ribose | 4.74 ± 0.11 a | 4.27 ± 0.11 b | 4.57 ± 0.13 | 4.61 ± 0.13 | 4.33 ± 0.13 |
Urea | 8.16 ± 0.09 | 8.11 ± 0.09 | 8.08 ± 0.10 b | 8.61 ± 0.10 a | 7.71 ± 0.10 c |
Valine | 5.48 ± 0.08 | 5.33 ± 0.08 | 5.35 ± 0.09 b | 5.79 ± 0.09 a | 5.09 ± 0.09 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Southey, B.R.; Johnson, R.W.; Rodriguez-Zas, S.L. Influence of Maternal Immune Activation and Stressors on the Hippocampal Metabolome. Metabolites 2023, 13, 881. https://doi.org/10.3390/metabo13080881
Southey BR, Johnson RW, Rodriguez-Zas SL. Influence of Maternal Immune Activation and Stressors on the Hippocampal Metabolome. Metabolites. 2023; 13(8):881. https://doi.org/10.3390/metabo13080881
Chicago/Turabian StyleSouthey, Bruce R., Rodney W. Johnson, and Sandra L. Rodriguez-Zas. 2023. "Influence of Maternal Immune Activation and Stressors on the Hippocampal Metabolome" Metabolites 13, no. 8: 881. https://doi.org/10.3390/metabo13080881
APA StyleSouthey, B. R., Johnson, R. W., & Rodriguez-Zas, S. L. (2023). Influence of Maternal Immune Activation and Stressors on the Hippocampal Metabolome. Metabolites, 13(8), 881. https://doi.org/10.3390/metabo13080881