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Abstract: The implementation of nanotechnology in the field of plant tissue culture has demonstrated
an interesting impact on in vitro plant growth and development. Furthermore, the plant tissue culture
accompanying nanoparticles has been showed to be a reliable alternative for the biosynthesis of sec-
ondary metabolites. Herein, the effectiveness of zinc oxide nanoparticles (ZnONPs) on the growth of
Delonix elata calli, as well as their phytochemical profiles, were investigated. Delonix elata seeds were
collected and germinated, and then the plant species was determined based on the PCR product se-
quence of ITS1 and ITS4 primers. Afterward, the calli derived from Delonix elata seedlings were subjected
to 0, 10, 20, 30, 40, and 50 mg/L of ZnONPs. The ZnONPs were biologically synthesized using the
Ricinus communis aqueous leaf extract, which acts as a capping and reducing agent, and zinc nitrate
solution. The nanostructures of the biogenic ZnONPs were confirmed using different techniques like
UV–visible spectroscopy (UV), zeta potential measurement, Fourier transform infrared spectra (FTIR),
X-ray diffraction (XRD), and scanning electron microscopy (SEM). Adding 30 mg/L of ZnONPs to
the MS media (containing 2.5 µM 2,4-D and 1 µM BAP) resulted in the highest callus fresh weight
(5.65 g) compared to the control and other ZnONP treatments. Similarly, more phenolic accumulation
(358.85 µg/g DW) and flavonoid (112.88 µg/g DW) contents were achieved at 30 mg/L. Furthermore,
the high-performance liquid chromatography (HPLC) analysis showed significant increments in gallic
acid, quercetin, hesperidin, and rutin in all treated ZnONP calli compared to the control. On the other
hand, the gas chromatography and mass spectroscopy (GC-MS) analysis of the calli extracts revealed
that nine phytochemical compounds were common among all extracts. Moreover, the most predominant
compound found in calli treated with 20, 30, 40, and 50 mg/L of ZnONPs was bis(2-ethylhexyl) phthalate,
with percentage areas of 27.33, 38.68, 22.66, and 17.98%, respectively. The predominant compounds in
the control and in calli treated with 10 mg/L of ZnONPs were octadecanoic acid, 2-propenyl ester and
heptanoic acid. In conclusion, in this study, green ZnONPs exerted beneficial effects on Delonix elata calli
and improved their production of bioactive compounds, especially at a dose of 30 mg/L.

Keywords: Delonix elata; medicinal plant; tissue culture; ZnONPs; secondary metabolites

1. Introduction

In this century, nanotechnology has developed into a promising field of interdisci-
plinary research involving the integration of biotechnology and material science. This field
mainly relies on the use of ultrafine particles ranging in size from 1 to 100 nanometers,
which demonstrate different properties regarding physical strength, chemical reactivity,
electrical conductivity, magnetism, and photovoltaic effects compared to those of bulk mate-
rials [1]. Different approaches have been used for the fabrication of the nanoparticles, which
can mostly be divided into two categories: top–down and bottom–up methods. Among
bottom–up approaches, green synthesis has emerged as an eco-friendly and cost-effective
method involving the use of biological materials to produce nanomaterials [2]. Green
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synthesis is a sustainable procedure in which the production of unwanted and harmful
products is avoided. This technique is based on the use of different biological materials
such as fungi, bacteria algae, and plant extracts. According to [3], the use of plant extracts
is a fairly simple and easy process to produce nanoparticles on a large scale compared to
bacteria- and fungi-mediated synthesis. The plant materials used in the green synthesis
method of producing nanoparticles include leaf, fruit, peel, seed, and root extracts replacing
the hazardous chemicals with polyphenols, flavonoids, proteins, saponins, or sugar used
as the reducing and capping agent [4]. Among metal nanoparticles, zinc oxide (ZnO) is of
much interest to researchers and the scientific community owing to its excellent properties
in environmental sustainability. ZnONPs are biosynthesized via a very simple procedure
using various plant extracts such as Lemna minor [5], thyme [6], Delonix elata [7], Aloe vera [8],
and Pongamia pinnata [9]. This biosynthesis procedure does not require any additional
external chemical stabilizers, as the biochemical compounds present in the plant extract
can act as reducing and stabilizing agents for the synthesis [10]. Utilizing Ricinus communis
extract seeds, ZnONPs have been well synthesized and analyzed for their efficacy regarding
antioxidant, antifungal, and anticancer activities [11]. The multiplicity of plant sources
used for zinc nanoparticulation has resulted in variable ZnO shapes and morphologies [10].
Emul et al. (2019) [12] noted that the morphology of the nanoparticles is very important be-
cause it is directly related to their field of use. Based on UV–visible spectroscopy and FTIR,
XRD, SEM, and zeta potential analyses, nanoparticles have been characterized regarding
their particle size, surface charge, and morphological and structural properties [12–14].

Zinc oxide nanoparticles are widely applied as an anti-microbial agent and to enhance
plant growth and boost plants’ phenolic compounds [15]. A study reported by [16] showed
that zinc oxide nanoparticles improved the growth of shoots and the callus of Juniperus
procera and increased their total phenolic and flavonoid contents. In several plant species,
such as Melissa officinalis [17], Capsicum annuum [15], Raphanus sativus L. [18], and Linum
usitatissimum L. [19], ZnONPs have been shown to trigger the production of secondary
metabolites. Zinc oxide nanoparticles improve plant growth and metabolism via different
mechanisms such as the improvement of nutritional status, the modification of enzymatic
and non-enzymatic antioxidant systems, the altering of phytohormonal balances, their
influence on nitrogen assimilation, and by affecting gene expression [17]. In this con-
text, García-López et al. (2018) [15] reported that ZnO can modify the level of auxin via
tryptophan biosynthesis. Depending on the concentration used, nanoparticles may have
beneficial or harmful effects. Indeed, a high level of nanoparticles leads to severe stress,
which can promote the production of stress-induced secondary metabolites [20].

Delonix elata is a tree found in the southern region of Saudi Arabia. This species belongs
to the Fabaceae family and the Caesalpinioideae sub-family [21]. The Delonix genera consist
of three species, two of which are found in eastern Africa. In Greek, the name Delonix is
derived from Delos, meaning a claw that looks like petals, and elata, meaning tall. D. elata
is commonly named the creamy peacock flower, the flamboyant tree, the tiger bean, or the
white gul mohur [22]. D. elata was used in folk medicine to treat joint pain and flatulence. It
has been noted that the local people in some areas use the leaves and bark of D. elata to treat
inflammation. In [23], the anti-inflammatory activity of D. elata leaves and bark extracts was
found to be significant. The antibacterial activity of the D. elata leaf extract was reported,
and this was attributed to the presence of bioactive compounds such as luteolin [24].
Phytochemical analysis using gas chromatography–mass spectrometry (GC-MS) showed
that the D. elata methanolic extract mainly contains flavonoids and terpenes [25]. On
the other hand, the HPLC analysis of the D. elata ethanolic extract revealed the presence
of antioxidant molecules such as gallic acid, ellagic acid, coumaric acid, quercetin, and
rutin [26].

The in vitro culture can represent a good alternative to cultivation in the field and
facilitate the production of metabolites that have a commercial interest [27]. In addition,
plant tissue culture accompanying nanoparticles has been showed to be a reliable alternative
for the induction of bioactive compounds in medicinal plants [28]. In a previous study, the
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leaves, stem, and roots of D. elata have been used as explants to induce callus [29]. However,
no studies showed the effects of nanoparticles generally and, especially, ZnONPs on the
callus growth as well as the biosynthesis of secondary metabolites in D. elata. Thus, in this
study, we aimed to obtain green ZnONPs utilizing the leaf extract of Ricinus communis. In
addition, we tested the effects of the ZnONPs on the phytochemical profile of the callus
induced by the potent medicinal plant Delonix elata.

2. Materials and Methods
2.1. Zinc Oxide Nanoparticles Biosynthesis and Characterization

The green synthesis of ZnONPs was performed by following the protocol described
by [30]. Briefly, 15 g powder of the Ricinus communis leaves (voucher specimen KSU 13719
deposited at the Herbarium, College of Sciences, King Saud University, KSA) was soaked in
300 mL of deionized Milli-Q water. After heating in the water bath (Julabo TW20, Seelbach,
Germany) at 60 ◦C for 30 min, the mixture was kept shaking overnight at 37 ◦C using a
New Brunswick Innova® 44 machine. Thereafter, the extract was filtered through Whatman
filter paper no. 1. To 200 mL of the obtained filtrate, 3.78 g of zinc nitrate hexahydrate
(Zn(NO3)2·6H2O) was added and placed at hot plate magnetic stirrer for 2 h at 60 ◦C (Janke
& Kunkel, Staufen, Germany). The mixture was centrifuged at 10,000 rpm for 10 min at
4 ◦C, the supernatant was discarded, and the precipitates were washed several times. The
precipitates were then dried at 50 ◦C in a hot air oven (Vaciotem-T oven, JP Selecta SA,
Barcelona, Spain) and finally calcinated at 500 ◦C for 3 h in a furnace (DKN 602, Yamato
Scientific Co., Ltd., Tokyo, Japan).

The ZnONPs were characterized via different techniques such as UV–visible (UV-vis),
Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), scanning electron micro-
scope (SEM), and zeta potential. The UV-vis was performed using the spectrophotometer
instrument (Shimadzu UV-1800, Chiyoda-ku, Tokyo, Japan) in the range of 300 to 700 nm.
As to the FTIR, a Fourier transform infrared spectrophotometer (8400S, Shimadzu, Tokyo,
Japan) was employed to determine the functional groups in plant extract and ZnONP
solution in the spectral array from 400 to 4000 cm−1. The XRD was measured in the Bruker
D8 Discover XRD instrument at 2θ ranging from 10 to 80◦. Further, to determine the
particle’s shapes and sizes, a scanning electron microscope (SEM) was used. The surface
charge or the zeta potential of the ZnONPs was identified using Malvern Zetasizer machine
(Malvern Instruments Ltd., Malvern, UK).

2.2. Plant Seeds Collection and Germination

The seeds of the species Delonix elata were collected from the Baljurashi, Al-Baha
region, Saudi Arabia. The seeds were placed in an airtight container containing silica gel
and delivered to the plant biotechnology lab in the College of Science, King Saud University.
In the lab, the seeds were sterilized for 10 min in 50% (v/v) commercial Clorox bleach
and, thereafter, washed several times with sterile distilled water. Afterward, the seeds
were sown in jars containing 1/4 strength MS media supplemented with 2% sucrose and
solidified 0.5% of agar. The jars were maintained in a growth chamber at 25–28 ◦C under
16 h/8 h photoperiod/dark cycle for three weeks. Once the germination was achieved, the
germinated seedlings were used to identify the plant species via a molecular-based method
and to initiate the callus formation.

2.3. Molecular Identification

The isolation of the DNA from the germinated seedlings was performed using the
DNeasy Plant Mini Kit (Qiagen, Hilden, Germany), as described in the manufacturer’s
instructions. The DNA quantity and integrity were checked in Nanodrop 8000 spectropho-
tometer (Thermo Scientific, Wilmington, NC, USA) and 1% agarose gel electrophoresis,
respectively. Thereafter, the amplification of the ITS region was accomplished in a total vol-
ume of 25 µL, which consists of PuReTaqTM Ready-To-GoTM PCR beads (GE Healthcare,
Little Chalfont, Buckinghamshire, UK), 0.5 µL of forward primer (ITS1), 0.5 µL of reverse
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primer (ITS4), 2 µL of DNA, and 20 µL of ultra-pure water. The PCR amplification was
achieved in Applied Biosystems thermal cycler (Applied Biosystems, Waltham, MA, USA)
following the conditions cited by [31], including one cycle initial denaturation at 94 ◦C for
5 min, then denaturation at 94 ◦C for 1 min, annealing at 50 ◦C for 1 min, extension at 72 ◦C
for 1 min for 30 cycles, and a final extension step of 72 ◦C for 5 min. A total of 5 µL of the
PCR product was checked in 1.2% agarose gel and then bidirectionally sequenced in the
Macrogen Inc. (Geumchun-gu, Seoul, Republic of Korea). The identification of the plant
species was performed via the blast of the obtained sequence in the NCBI databases.

2.4. Callus Induction and ZnONP Application

The germinated seedlings were employed as explants to induce callus. Around 1 cm of
the donor seedlings was transferred to MS media [32], amended with 30 g/L sucrose, and
enriched with different combinations (0.5, 1, 2.5, and 5 µM) of 2,4-dichlorophenoxyacetic
acid (2,4-D) and 6-Benzylaminopurine (BAP). Jars were kept in the growth chamber at
controlled condition for six weeks, and the best combination (2.5 µM 2,4-D and 1 µM BAP)
for callus induction was selected. Subsequently, the effects of the ZnONPs on callus growth
were tested by transferring the obtained callus onto agar media containing MS mineral
media, 30 g/L sucrose, 2.5 µM 2,4-D, 1 µM BAP, and supplemented with 0, 10, 20, 30, 40,
and 50 mg/L of ZnONPs. Six weeks later, the callus fresh weights were recorded and then
dried to extract the phytochemical compounds.

2.5. Phytochemicals Extraction

The callus of the different treatments was dried at room temperature and then pow-
dered in the TissueLyser LT machine (Qiagen, Hilden, Germany) instrument. A total of
2 g of the powder was soaked in 20 mL methanol (80%) and kept shaking for 24 h. Next,
the mixtures were centrifuged for 5 min at 5000 rpm, and the supernatants were collected
and concentrated via evaporation. The obtained extracts were finally dissolved in 2 mL of
methanol, filtered using a syringe filter of 0.45 µm, and kept at 4 ◦C for further analysis.

2.5.1. Total Phenolic Content Estimation

The Folin–Ciocalteu colorimetric method described by [33] was employed to estimate
the total phenolic content. For that, 0.5 mL of the diluted (1:5) callus extract was mixed
with 125 µL of Folin−Ciocalteu and then allowed to react for 5 min. Thereafter, 1250 µL
of sodium carbonate (7%) and 1125 µL of water were added. The mixture was incubated
at room temperature for 90 min, and then the absorbance of the reaction was measured at
760 nm using UV-1800 spectrophotometer (Shimadzu UV spectrophotometer). The values
of the total phenolic content were compared to the calibration curve prepared with known
doses of gallic acid and expressed as microgram gallic acid per gram dry weight.

2.5.2. Total Flavonoid Content Estimation

The total flavonoids of the callus extracts were determined using the calorimetric
method described by [34]. The reaction mixture containing 0.5 mL of the sample extract
and 0.5 mL of 2% AlCl3 was incubated for 60 min at room temperature. Afterward,
the absorbance of this mixture was spectrophotometrically measured at 420 nm. The
values of the total flavonoid contents were expressed as micrograms of quercetin per gram
dry weight.

2.5.3. HPLC Quantification

The HPLC quantification of the gallic acid, quercetin, hesperidin, and rutin was
performed using an Agilent Technologies 1290 Infinity instrument equipped with ZOBRAX
RX-C18 column (4.6 × 150 mm), which was used for the separation of the target compounds
as follows:
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The gallic acid in the treated callus extracts was detected using 60% methanol and 40%
acetic acid as a mobile phase, which was pumped at a flow rate of 1 mL/min, with a 5 min
run time and 1 µL of injection volume at 25 ◦C and at a wavelength of 274 nm.

For the quercetin quantification, the mobile phase was composed of methanol and
acetonitrile in a ratio of 60:40. The injection volume was 1 µL, the flow rate was 1 mL/min,
the run time was 5 min, and the DAD detector was set at 254 nm.

As for the Hesperidin separation and quantification, the mobile phase consisted of
80% methanol and 60% acetonitrile, the flow rate was 0.5 mL/min, the injection volume
was 1 µL, the column temperature was set at 25 ◦C and DAD detection at 280 nm.

Regarding the rutin separation and quantification, column temperature was main-
tained at 25 ◦C, the mobile phase consisted of methanol and acetonitrile (80%:20%), the
flow rate was 0.8 mL/min, the run time was 5 min, and the DAD (UV-vis) detector was set
at 254 nm.

The targeted compounds in the callus extracts were calculated by referencing them
to the calibration curves generated from the Area (mAU*s) of the authentic standards
giving an R2 equal to 0.989, 0.990, 0.999, and 0.987, respectively, for gallic acid, quercetin,
hesperidin, and rutin.

2.5.4. Callus Extracts GC-MS Analysis

The extracts of the treated and untreated callus were subjected to gas chromatography–
mass spectrometry (GC-MS) analysis using QP2010 Ultra, Shimadzu, Tokyo, Japan in-
strument fitted with an Rtx-5MS column (30 m; 0.25 mm inner diameter; 0.25 µm). The
helium gas was used as the carrier gas at a constant flow rate of 1.6 mL/min. The GC oven
temperature program was set as follows: 50 ◦C for 3 min, increased at 10 ◦C/min to 280 ◦C,
held for 3 min, elevated to 300 ◦C at 2 ◦C/min, and then maintained at this temperature for
10 min. The injector and detector temperatures were programmed to hold 250 and 275 ◦C,
respectively. For the mass spectrometer, the electron ionization energy was set at 70 eV.
The phytochemicals of the callus extracts were identified by comparing their mass spectra
and retention time to those stored in the National Institute of Standards and Technology
(NIST) database.

The leaf extract of Ricinus communis was used as a stabilizing and reducing agent in
the synthesis of ZnONPs. The extract was filtered using a syringe filter (0.45 µm) and then
subjected to the GC-MS analysis, as described above.

2.6. Statistical Analysis

The statistical analysis was carried out using IBM SPSS Statistics, version 25 (SPSS
Inc./IBM Group, Armonk, NY, USA). The treatments were made in triplicates, and their
data were subjected to one-way ANOVA followed by an analysis with Duncan’s test. The
different letters on chart bars presented a significant difference at p ≤ 0.05.

While for plant species identification, the NCBI-BLAST search was performed, and
then the MEGA software package (version 11, http://www.megasoftware.net), was used
to construct the phylogenetic tree.

3. Results
3.1. Biosynthesis and Characterization of the ZnONPs

The ZnONPs were biologically prepared using the aqueous extract of Ricinus communis,
which was analyzed for its phytoconstituents using GC-MS. This analysis showed the
existence of 15 compounds, where silanediol dimethyl (5.25%), 2-Methoxy-4-vinylphenol
(5.69%), and ricinine (65.36%) were the main compounds identified based on the area
percentage (Table 1). These three compounds categorized, respectively, as flavonoid, phenol,
and alkaloid, might play an important role in the capping and stabilizing of nanoparticles
during biosynthesis. The produced ZnONPs were firstly characterized by UV–visible
spectrophotometer at the optical spectrum ranging from 300 to 700 nm. A strong peak at
around 370 nm was observed confirming the presence of ZnONPs in the mixture (Figure 1a).

http://www.megasoftware.net
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The colloidal solution stability was determined using the zeta potential test based on the
surface charge of the fabricated nanoparticles. This test showed that the ZnONP zeta
potential value was −17.5 mV, which indicates that the produced nanoparticles were
negatively charged and highly stable (Figure 1b). The detection of the functional groups in
the plant extract and the ZnONP colloidal solution was performed using Fourier transform
infrared spectroscopy in the wavenumber ranging from 500 to 4500 cm−1. The plant extract
(Figure 1c) showed four peaks at 709.90, 1633.85, 2078.88, and 3435.10 cm−1, which were,
respectively, shifted to 666.84, 1634.21, 2075.34, and 3435.55 cm−1 in the ZnONP solution
(Figure 1d). The medium peaks (709.90 and 666.84 cm−1) correspond to C-H bending, the
strong peaks (1633.85 and 1634.21) are attributed to C=O stretching, the weak peaks (2078.88
and 2075.34 cm−1) correspond to C≡C stretching, and the other strong peaks (3435.15 and
3435.55 cm−1) are assigned to O-H stretching. The XRD pattern of the fabricated ZnONPs
is presented in Figure 1e. Strong and sharp peaks were observed at 2θ values equal to
31.84, 34.62, 36.42, 47.71, 56.78, 63.04, 68.06, 69.42, and 77.18. Compared to JCPSD card no.
01-007-2551, these peaks, respectively, correspond to (100), (002), (101), (102), (110), (103),
(112), (201), and (202) diffraction planes. Further, using Scherrer’s formula, the average
crystallite size of the ZnONPs was to be 13.5 nm. According to the SEM analysis (Figure 1f),
the nanoparticles are agglomerated showing a spherical morphology and having sizes
varied from 14.9 to 25.1 nm.
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Table 1. GC-MS analysis of Ricinus communis leaf extract.

NO RT (min) % Compounds

1 5.267 5.25 Silanediol, dimethyl-
2 6.989 1.34 2-Furanmethanol
3 8.156 1.57 1,2-Cyclopentanedione
4 8.34 2.37 Undecane
5 8.391 2.46 Dodecanoic acid, 1,1-dimethylpropyl ester
6 9.118 2.36 Cyclopentasiloxane, decamethyl-
7 9.192 1.08 2(5H)-Furanone
8 9.936 2.70 Benzeneacetaldehyde
9 11.601 2.96 2-Propen-1-ol
10 11.984 0.93 p-Cresol

11 12.442 2.69 4H-Pyran-4-one,
2,3-dihydro-3,5-dihydroxy-6-methyl-

12 14.971 5.69 2-Methoxy-4-vinylphenol
13 15.601 1.96 5-Hydroxymethylfurfural
14 19.446 1.27 p-Hydroxyphenylacetone
15 28.738 65.36 Ricinine

3.2. Delonix elata Molecular Identification

The species of the collected plant was identified with the amplification of the internal
transcribed spacer (ITS) as we described in the Materials and Methods section. Blasting the
assembled sequences to the NCBI GenBank, we noted that the highest identity (98.77%) was
with D. elata published under the accession number KY321105.1. Further, the constructed
phylogenetic tree based on the neighbor-joining method revealed that the collected plant
was associated with D. elatata. The phylogenetic tree was rooted in Acacia senegal and
Acacia victoriae, which were selected as an outgroup to the group containing Delonix species
(Figure 2).
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3.3. Effect of ZnONPs on Callus Growth

The calli derived from the D. elata explants were inoculated with 0, 10, 20, 30, 40, and
50 mg/L of ZnONPs as we described in the Materials and Methods section. The callus
morphological aspects and their fresh weights are shown in Figure 3. After six weeks of
inoculation with the different concentrations of ZnONPs, we observed that the callus fresh
weight varied depending on applied doses. Indeed, the callus with the highest fresh weight
(5.65 g) was recorded in the culture medium supplemented with 30 mg/L of ZnONPs.
However, the lowest callus fresh weight was observed in the medium containing 50 mg/L
of ZnONPs. Additionally, we noted that when the ZnONP doses were increased further
than 30 mg/L, there was a decrease in the callus growth.
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Duncan’s test (p < 0.05) were indicated by the different letters on the bars.

3.4. Phytochemical Analysis
3.4.1. Effects of ZnONPs on Phenols and Flavonoids Contents

The total phenolic content (TPC) of the treated callus is shown in Figure 4a. We
observed that the highest TPC (358.85 µg GAE/g of DW) was produced by the callus
cultivated in the media supplemented with 30 mg/L ZnONPs, while, when the culture
media was not provided with ZnONPs, the lowest TPC (201.45 µg GAE/g of DW) was
recorded. Generally, compared to the control, the TPC was increased by 1.05, 1.09, 1.82,
1.38, and 1.02 times, respectively, for the callus grown with 10, 20, 30, 40, and 50 mg/L
of ZnONPs.
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Similarly, for the total flavonoids content (TFC), the highest value (112.88 µg QE/g
DW) was recorded in the calli treated with the 30 mg/L of ZnONPs, whereas the lowest
amount of TFC (69.14 µg QE/g DW) was registered in the calli of the media without
ZnONPs. Compared to the control, the TFC was significantly improved by 31.6%, 34.33%,
63.26%, 37.7%, and 35.49% following the exposure to 10, 20, 30, 40 and 50 mg/L, respectively.
Further, even though there was a decrease in TFC when the concentrations of ZnONPs
were greater than 30 mg/L, the amount of TFC remained greater than those detected at
doses below 30 mg/L of ZnONPs (Figure 4b).

On the other hand, one phenolic compound (gallic acid) and three flavonoids (quercetin,
hesperidin, and rutin) of the treated and untreated callus were quantified using HPLC
(Figure 5). The identification of these compounds in the callus extracts was performed
by matching their retention times to those of their specific standards under similar con-
ditions. The retention times of gallic acid, quercetin, hesperidin, and rutin were found to
be 1.345, 2.05, 2.456, and 1.542 min, respectively (Figure 5e–h). This study showed that all
tested compounds, gallic acid (Figure 5a), quercetin (Figure 5b), hesperidin (Figure 5c), and
rutin (Figure 5d) were significantly increased in the callus supplemented with all doses
of ZnONPs compared to untreated callus. Further, among the ZnONP-treated callus, the
highest contents of gallic acid, quercetin, hesperidin, and rutin (65.45, 11.12, 7.03, and
23.07 µg/mg, respectively) were detected in the callus treated with 30 mg/L of ZnONPs.

3.4.2. GC-MS for Phytochemical Compound Identification

Gas chromatography and mass spectroscopy (GC-MS) was used to detect the bioactive
compounds in the extracts of the calli treated and untreated with ZnONPs. The result of this
test revealed 20, 14, 13, 15, 12, and 12 phytochemical compounds, respectively, identified
in the callus extracts treated with 0, 10, 20, 30, 40, and 50 mg/L of ZnONPs. Based on the
area percentage, the highest compounds detected in the extracts were octadecanoic acid,
2-propenyl ester (10.04%) for the control callus, and heptanoic acid and octadecanoic acid,
2-propenyl ester (13.37% and 31.31%, respectively) for the callus treated with 10 mg/L of
ZnONPs, while the bis (2-ethylhexyl) phthalate was the major compound detected in the
extracts of the callus treated with 20, 30, 40, and 50 mg/L of ZnONPs, where their area
percentages were 27.33%, 38.68%, 22.66%, and 17.98%, respectively. Overall, the retention
time, the area percentage, and the biological activities of the annotated phytocompounds
are shown in Table 2. Further, the heatmap showing the hierarchical clustering of the
identified phytocompound as well as of the ZnONP treatments is presented in Figure 6.
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Figure 5. HPLC quantification of gallic acid (a). Quercetin (b), hesperidin (c), and rutin (d) in the
ZnONP-treated and -untreated callus of D. elata. (e–h), respectively, presented the chromatograms of
the standards of gallic acid, quercetin, hesperidin, and rutin. Values are the means of three replicates
± SD; the significant differences according to Duncan’s test (p < 0.05) were indicated by the different
letters on the bars.



Metabolites 2023, 13, 905 11 of 19

Table 2. Phytochemical compounds detected in ZnONP-treated and -untreated calli extracts of Delonix elata.

Compounds
Control Zn (10 mg/L) Zn (20 mg/L) Zn (30 mg/L) Zn (40 mg/L) Zn (50 mg/L)

Biological Activity
RT % RT % RT % RT % RT % RT %

Tetrahydrofurfuryl chloride 3.38 2.10 - - - - - - - - - - Not reported

3-Hexanone 3.522 2.22 3.493 5.65 3.447 7.46 3.294 5.58 3.417 11.84 3.393 12.20 Antifungal activity [35]

2-Hexanone 3.653 3.99 3.622 7.59 3.571 8.22 3.395 7.11 3.535 13.64 3.506 14.48 Insecticide [36]

3-Hexanol 3.789 1.73 3.743 3.62 3.681 5.28 3.494 5.30 3.640 7.26 3.610 9.00 Antibacterial [37]

2-Hexanol 3.929 2.82 3.880 4.50 3.811 6.79 3.601 7.04 3.765 10.54 3.730 10.18 Biological control of pests [38]

Heptanoic acid - - 9.468 13.37 9.383 9.00 - - 9.312 9.17 9.261 7.75 Marker of neuronal differentiation [39]

Hexanoic acid - - - - - - 7.415 0.83 - - - - Antifungal activity [40]

Octanoic acid 11.054 6.09 10.988 7.90 10.908 6.80 10.679 3.86 10.848 6.65 10.805 4.95 Antimicrobial activity [41]

2-Decenal, (E)- 12.107 6.05 - - - - - - - - - - Nematicidal activity [42]

2-Tridecenal, (E)- - - 12.073 4.16 13.540 1.93 - - - - - - Antioxidant activity [43]

Nonanoic acid 12.469 4.15 12.406 4.65 12.339 2.47 12.149 2.12 12.288 2.44 12.248 2.32 Antimicrobial activities [44]

Undecanal 12.713 3.69 - - - - - - - - - - Antifungal activity [45]

2-Undecenal 13.607 6.10 13.571 4.94 - - - - - - - - Mosquito-repellent activity [46]

Dodecanal 14.170 4.28 - - - - - - - - - - Antimicrobial activity [47]

2-Dodecenal 15.010 0.95 - - - - - - - - - - Nematicidal activity [42]

Tridecanal 15.530 2.95 - - - - - - - - - - Antimicrobial [48]

Tetradecanal 16.814 3.47 - - - - - - - - - - Antibacterial activity [49]

Dodecanoic acid - - - - 16.264 2.32 16.119 1.38 16.217 2.09 16.194 1.94 Antibacterial, antioxidant, and anti-apoptotic [50]

Pentadecanal- 18.031
20.283

4.27
1.06 17.995 2.14 - - - - - - - - Antibacterial activity [51]

Tetradecanoic acid - - - - - - 18.478 1.21 - - - - Antibacterial activity [52]

Hexadecanoic acid, methyl ester 20.351 5.66 20.314 8.77 20.288 5.99 20.216 3.26 20.264 4.89 20.254 4.88 Antibacterial activities [53]

n-Hexadecanoic acid - - - - - - 20.637 2.91 20.724 1.96 20.703 2.03 Antioxidant and antibacterial activities [54]

Octadecanoic acid, 2-propenyl ester 21.868 10.04 21.831 13.31 21.806
23.681

8.64
4.34 21.736 11.84 21.782 6.88 21.773

23.650
8.27
4.01 Antibacterial activity [55]

9-Octadecanoic acid, methyl ester - - - - - - 22.003 2.81 - - - - Antioxidant and anticancer [56]

2(3H)-Furanone,
dihydro-5-tetradecyl- 22.325 9.16 - - - - - - - - - - Not reported

Octadecanoic acid, ethenyl ester 23.331 9.83 23.293 8.13 23.681 4.34 23.611 6.06 - - - - Antimicrobial [57]

Bis(2-ethylhexyl) phthalate 26.194 9.40 26.153 11.27 26.126 27.33 26.041 38.68 26.098 22.66 26.087 17.98 Antibacterial and antimutagenic activities [58,59]

Total compounds 20 14 13 15 12 12

RT: retention time; %: area percentage; Zn: ZnONPs.
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4. Discussion

Nanotechnology is a procedure of the synthesis, characterization, and manipulation
of nanoparticles at sizes in the nanoscale ranging from 1 to 100 nm. Nanotechnology as a
multidisciplinary field impacts several domains, such as engineering, biology, chemistry,
computing, materials science, communications, etc. [60]. For instance, in the agriculture
field, nanoparticles have been introduced as nanofertilizers for plant growth and protection,
as nanobiosensors for the detection of plant diseases and biological components and also
for genetic engineering and gene editing [61]. The use of expensive and toxic materials for
the fabrication of nanoparticles has become a major concern. Thereby, many researchers
have resorted to using environmentally friendly bio-renewable materials like vegetable
oils, carbohydrates, and plant extracts [62]. Plant extracts contain biomolecules that can
be used for reducing metal ions to nanoparticles in a biogenic process. This reduction of
metal ions to nanoparticles is a rapid procedure, environmentally friendly, performed at
room temperature and pressure, and scaled up easily. Water-soluble metabolites, such as
alkaloids, phenolic compounds, and terpenoids, and coenzymes are the major reducing
agents involved in the nanoparticle’s green synthesis [63]. The extracts of several plant
species were successfully employed in producing nanoparticles [64–67]. Nanoparticles,
in turn, have been used as elicitors to improve the plant’s bioactive compounds, as these
compounds are commercially valued to be widely used in the medical, pharmacological,
cosmetic, agriculture, and food industries [68].

In this current study, ZnONPs were biologically synthesized and investigated for their
effects on phytochemical compounds in the callus derived from the seedlings of D. elata.
The Delonix species was first identified via the amplification of the internal transcribed
spacer (ITS) region, as this region was commonly used for plant molecular systematic
investigations at the species level [31].
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For the fabrication of ZnONPs, the leaves extract of Ricinus communis L. containing
ricinine (65.36%), silanediol dimethyl (5.25%), and 2-Methoxy-4-vinylphenol (5.69%) as the
major chemical constituents (Table 1), was used as capping and reducing agents. Chenni-
malai et al. [69] reported that ZnONPs were synthesized via a facile green approach from
the Ricinus communis L. leaf extract. This facile approach was attributed to the presence of
the secondary metabolites, which were qualitatively examined using the standard method
of screening. The plant-based bioconstituents such as alkaloids, flavonoids, and phenolics
play the role of strong chelating, reducing, and stabilizing agents, which ensure stability,
prevent agglomeration, and help to adjust the shape and size of the nanoparticles [70].
The green synthesis of ZnONPs was first confirmed via UV–visible spectroscopic analysis,
which showed an absorption peak at 370 nm (Figure 1a). The absorption peak at this
range could be explained by the intrinsic band-gap absorption of ZnO, possibly from the
electron exchange from the valence band to the conduction band [69,71]. The ZnONP
colloidal solution stability was assessed using the zeta potential based on the charge of
fabricated nanoparticles [72]. Jan et al. (2021) [73] reported that the negative charge on the
particle’s surface is effective for particle dispersion stability. It also prevents nanoparticle
aggregation, which can happen because of the high binding affinity between the extracts
and the metallic ion. The zeta potential analysis showed a value of −17.5 mV (Figure 1b),
indicating the stability of the produced nanoparticles. Almost similar results of zeta po-
tential (−18.4 mV) were observed when ZnONPs were fabricated using the aqueous leaf
extract of Aquilegia pubiflora [73]. On the other hand, the FTIR analysis showed almost
the same dips when comparing the absorption peaks detected in the plant extract and
those of the ZnONP solution (Figure 1c,d). This confirmed the presence of the plant extract
secondary metabolites on the surface of the nanoparticles playing the roles of capping and
stabilizing agents. Further, the absorption peaks detected at (3435.15 and 3435.55 cm−1),
(2078.88 and 2075.34 cm−1), (1633.85 and 1634.21 cm−1), and (709.90 and 666.84 cm−1) are,
respectively, ascribed to alcohol OH, alkynes, carboxylic acids, and aromatic compounds
as functional groups [74–76]. According to [77], the slight shifting peaks between the
plant extract and the synthesized nanoparticles are owing to the decrease in the value of
the force constant and the increase in the reduced mass, which can simultaneously act to
provoke a shift in the FTIR peaks. The ZnONPs were characterized also for their crystalline
nature, crystal morphology, and size using XRD and SEM techniques (Figure 1e,f). The
analysis of XRD peaks and their corresponding hkl planes revealed the crystalline nature
with the wurtzite hexagonal shape of the produced nanoparticles according to JCPDS card
no. 36-1451. Furthermore, the SEM analysis displayed spherical nanoparticles with an
average size of 20 nm, confirming the potential of the Ricinus communis L. leaf extract for
the fabrication of the nanoparticles [78,79].

Nanoparticles were used for a wide purpose. In the in vitro culture, the nanoparticles
were successfully employed to eliminate microbial contamination from the culture media.
Further, the nanoparticle application was found to be effective for callus induction, somatic
embryogenesis, organogenesis somaclonal variation, genetic transformation, and secondary
metabolite production [80,81]. It is possible to conquer the recalcitrant potential of cultivars
to adventitious organogenesis when the culture medium is enriched by the zinc nanoparti-
cles [82]. Alharby et al. (2017) [83] observed that the inclusion of ZnONPs in culture media
stimulated the callus growth of Solanum lycopersicum, and the dose of 30 mg/L was found
to be more suitable for growth enhancement. Likewise, in this study, the highest D. elata
callus fresh weight (5.65 g) was obtained in the media supplemented with 30 mg/L of
ZnONPs (Figure 3), while above 30 mg/L the higher the concentration of ZnONPs, the
lower callus fresh weight. The positive role of ZnONPs in callus growth improvement
may be explained by the involvement of the Zn in protein synthesis, carbohydrates, lipids,
and nucleic acids metabolism [84]. Moreover, Zinc may act as a biosynthesis stimulator
of plant growth regulators, especially the auxins and gibberellins [20,85]. Similar to our
findings, [30] noted that when the dose of ZnONPs was more than 30 mg/L, the callus
induction frequency of Panicum virgatum L declined. The negative effects of ZnONPs may
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be due to the injury in the cell’s wall and membrane after high dose application. In this
regard, [86] noted that at high concentrations of ZnONPs and over time, the nanoparticles
can aggregate into micro-size particles, which reduce their dissolution, and, thus, be similar
in pattern to the micro-form.

Besides having an organogenesis fate, callus also has the potential for the same chemi-
cal as the plant and can, therefore, be used for secondary metabolites production [76]. The
in vitro regeneration of medicinal plants is used by industrial companies to produce bioac-
tive compounds in a relatively short period of time for ensuring continuous supply [87].
In the presence of ZnONPs, the total phenol and total flavonoid contents were increased
depending on the applied ZnONP doses reaching the maximum values (358.85 µg GAE/g
DW and 112.88 µg QE/g DW, respectively, for the total phenols and total flavonoids) at
30 mg/L and then decreased at above this dose (Figure 4). A similar trend was recorded
by [20], where the maximum values of total phenols and total flavonoids were registered
at 25 mg/L of ZnONPs for the calli derived from the stem of Linum usitatissimum L. For
the callus cultures of Silybum marianum L., it was also observed that ZnONPs significantly
enhanced the phenolic and flavonoid contents, and the highest values were recorded in the
cultures containing 0.15 mg/L of ZnONPs [88]. According to [89], the use of nanoparticles
leads to the synthesis of secondary metabolites such as phenols and flavonoids, which
play the role of ROS scavengers. Owing to their small nano size, ZnONPs having the
high potential to move into the cells via apoplastic or symplastic routes, could activate
the synthesis pathways of the polyphenols and enhance their accumulation in the cell [88].
Identically to the trend showed for the total phenol and total flavonoids following the
application of ZnONPs, the quantification via HPLC showed that the highest values of
gallic acid, quercetin, hesperidin, and rutin were detected in the calli treated with 30 mg/L
of ZnONPs, before declining at 40 and 50 mg/L of ZnONPs (Figure 5). In agreement with
our findings, [90] noted that Fe-ZnO-NPs improved the biomass and activate the secondary
metabolism in cell cultures of Fagonia indica. García-López et al. [15] documented that
zinc oxide nanoparticles boosted the phenolic compounds of Capsicum annuum L. It was
speculated that this might be because of the changes induced by ZnONPs in the physiology
and biochemistry of plants, which lead to the synthesis of the secondary metabolites. The
phenols and flavonoids are potent hydrogen donors responsible for several biological
activities owing to their carboxyl and hydroxyl functional groups [91].

The total phytochemical compounds in the treated and untreated callus extracts were
screened using GC-MS. The detected phytoconstituents as well as their biological activities
were reported in Table 2. The analysis based on the area percentage peaks showed that
octadecanoic acid, 2-propenyl ester with antibacterial activity [55] was the predominant
compound for the control callus extract. For the 10 mg/L ZnONP-treated callus, the
two compounds, heptanoic acid and octadecanoic acid, 2-propenyl ester, showed almost
the same peak area of 13.37 and 13.31%, respectively, while bis(2-ethylhexyl) phthalate
possessing antibacterial and antimutagenic activities was the most dominant compound
in 20, 30, 40, and 50 mg/L ZnO-NPs calli extracts with the peak area of 20.33, 38.68, 22.66,
and 17.98%, respectively [58,59]. In a previous study performed on Delonix elata, the
GC-MS analysis identified 50 and 45 compounds, respectively, in the roots and leaves
extracts. Among these detected compounds, quercetin, hesperidin, and rutin had the
highest percentage peaks [25]. These phytochemical compounds presented in Delonix elata
extracts may support its use as a potent medicinal plant [22].

5. Conclusions

In conclusion, the fabrication of ZnONPs using the aqueous leaf extract of Ricinus
communis was confirmed via UV-vis absorption, zeta potential, FTIR, XRD, and SEM
techniques. The addition of ZnONPs up to 30 mg/L significantly increased the Delonix elata
callus development. However, above 30 mg/L, the higher the concentration of ZnONPs,
the lower the callus fresh weight. On the other hand, all doses of ZnO NPs (10, 20, 30, 40,
and 50 mg/L) improved the accumulation of the phenolic and flavonoid compounds. This
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was clearly remarked in the HPLC quantified gallic acid, quercetin, hesperidin, and rutin
compounds. Further, the GC-MS analysis revealed that a higher number of compounds
(20) was detected in the extract of the control callus. However, fewer compound numbers
(12) were detected in 40 and 50 mg/L ZnONP-treated calli. The main constituent in the
control callus is octadecanoic acid, 2-propenyl ester. The extract of 10 mg/L ZnONPs
mainly contains octadecanoic acid, 2-propenyl ester and heptanoic acid (13.37 and 13.31%,
respectively), whereas the 20, 30, 40, and 50 mg/L ZnONPs calli extracts were mainly rich
on bis (2-ethylhexyl) phthalate. Therefore, the difference in phytochemical compounds
among the treated and untreated calli should be conducted for further investigations to
understand the mechanism behind it.
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