Metabolic Alteration of MCF-7 Cells upon Indirect Exposure to E. coli Secretome: A Model of Studying the Microbiota Effect on Human Breast Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Supernatant Preparation
2.2. Cell Culture and Treatment
2.3. Metabolomics Sample Preparation
2.4. LC-HRMS Metabolomics
2.5. Data and Statistical Analyses
2.6. Metabolites Identification
3. Results
3.1. Metabolites of E. coli Secretome
3.2. Mass Ion Detection and Dysregulated Intracellular Metabolites after Treating MCF-7 Cells with E. coli Secretome at Different Time Points
3.3. Mass Ion Detection and Dysregulated Extracellular Metabolites after Treating MCF-7 Cells with E. coli Secretome
4. Discussion
4.1. Metabolites Related to E. coli Secretome
4.2. Dysregulated Intracellular Metabolites after Treating MCF-7 Cells with E. coli Secretome
4.3. Dysregulated Extracellular Metabolites after Treating MCF-7 Cells with E. coli Secretome
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nelson, H.D.; Zakher, B.; Cantor, A.; Fu, R.; Griffin, J.; O’Meara, E.S.; Buist, D.S.; Kerlikowske, K.; van Ravesteyn, N.T.; Trentham-Dietz, A. Risk factors for breast cancer for women aged 40 to 49 years: A systematic review and meta-analysis. Ann. Intern. Med. 2012, 156, 635–648. [Google Scholar] [CrossRef]
- Blum, H.E. The human microbiome. Adv. Med. Sci. 2017, 62, 414–420. [Google Scholar] [CrossRef]
- Plaza-Díaz, J.; Álvarez-Mercado, A.I.; Ruiz-Marín, C.M.; Reina-Pérez, I.; Pérez-Alonso, A.J.; Sánchez-Andujar, M.B.; Torné, P.; Gallart-Aragón, T.; Sánchez-Barrón, M.T.; Reyes Lartategui, S.; et al. Association of breast and gut microbiota dysbiosis and the risk of breast cancer: A case-control clinical study. BMC Cancer 2019, 19, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao Malla, R.; Marni, R.; Kumari, S.; Chakraborty, A.; Lalitha, P. Microbiome Assisted Tumor Microenvironment: Emerging Target of Breast Cancer. Clin. Breast Cancer 2021, 22, 200–211. [Google Scholar] [CrossRef]
- Fernández, M.F.; Reina-Pérez, I.; Astorga, J.M.; Rodríguez-Carrillo, A.; Plaza-Díaz, J.; Fontana, L. Breast Cancer and Its Relationship with the Microbiota. Int. J. Environ. Res. Public Health 2018, 15, 1747. [Google Scholar] [CrossRef] [Green Version]
- Kovács, T.; Mikó, E.; Ujlaki, G.; Sári, Z.; Bai, P. The microbiome as a component of the tumor microenvironment. In Tumor Microenvironment; Springer: Cham, Switzerland, 2020; pp. 137–153. [Google Scholar]
- Urbaniak, C.; Gloor, G.B.; Brackstone, M.; Scott, L.; Tangney, M.; Reid, G. The microbiota of breast tissue and its association with breast cancer. Appl. Environ. Microbiol. 2016, 82, 5039–5048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbaniak, C.; Cummins, J.; Brackstone, M.; Macklaim, J.M.; Gloor, G.B.; Baban, C.K.; Scott, L.; O’Hanlon, D.M.; Burton, J.P.; Francis, K.P.; et al. Microbiota of Human Breast Tissue. Appl. Environ. Microbiol. 2014, 80, 3007–3014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parhi, L.; Alon-Maimon, T.; Sol, A.; Nejman, D.; Shhadeh, A.; Fainsod-Levi, T.; Yajuk, O.; Isaacson, B.; Abed, J.; Maalouf, N.; et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat. Commun. 2020, 11, 3259. [Google Scholar] [CrossRef]
- AlMalki, R.H.; Sebaa, R.; Al-Ansari, M.M.; Al-Alwan, M.; Alwehaibi, M.A.; Rahman, A.M.A. E. coli Secretome Metabolically Modulates MDA-MB-231 Breast Cancer Cells’ Energy Metabolism. Int. J. Mol. Sci. 2023, 24, 4219. [Google Scholar] [CrossRef]
- Comşa, Ş.; Cimpean, A.M.; Raica, M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res. 2015, 35, 3147–3154. [Google Scholar]
- Drabovich, A.P.; Pavlou, M.P.; Dimitromanolakis, A.; Diamandis, E.P. Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay. Mol. Cell. Proteom. MCP 2012, 11, 422–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes, N.; Silveyra, P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol. 2019, 116, 135–170. [Google Scholar] [PubMed]
- Capper, C.P.; Rae, J.M.; Auchus, R.J. The Metabolism, Analysis, and Targeting of Steroid Hormones in Breast and Prostate Cancer. Horm. Cancer 2016, 7, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Jia, S.; Dong, T.; Zhao, F.; Xu, T.; Yang, Q.; Gong, J.; Fang, M. Metabolomic and transcriptomic analysis of MCF-7 cells exposed to 23 chemicals at human-relevant levels: Estimation of individual chemical contribution to effects. Environ. Health Perspect. 2020, 128, 127008. [Google Scholar] [CrossRef]
- Cardoso, M.R.; Santos, J.C.; Ribeiro, M.L.; Talarico, M.C.R.; Viana, L.R.; Derchain, S.F.M. A Metabolomic Approach to Predict Breast Cancer Behavior and Chemotherapy Response. Int. J. Mol. Sci. 2018, 19, 617. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, A.K.; DeBerardinis, R.J. Applications of metabolomics to study cancer metabolism. Biochim. Biophys. Acta—Rev. Cancer 2018, 1870, 2–14. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Worley, B.; Powers, R. Multivariate analysis in metabolomics. Curr. Metab. 2013, 1, 92–107. [Google Scholar]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L. HMDB 5.0: The human metabolome database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Guo, A.C.; Jewison, T.; Wilson, M.; Liu, Y.; Knox, C.; Djoumbou, Y.; Lo, P.; Mandal, R.; Krishnamurthy, R.; Wishart, D.S. ECMDB: The E. coli Metabolome Database. Nucleic Acids Res. 2012, 41, D625–D630. [Google Scholar] [CrossRef] [Green Version]
- OConnor, H.; MacSharry, J.; Bueso, Y.F.; Lindsay, S.; Kavanagh, E.L.; Tangney, M.; Clyne, M.; Saldova, R.; McCann, A. Resident bacteria in breast cancer tissue: Pathogenic agents or harmless commensals? Discov. Med. 2018, 26, 93–102. [Google Scholar]
- Eslami, S.Z.; Majidzadeh, A.K.; Halvaei, S.; Babapirali, F.; Esmaeili, R. Microbiome and Breast Cancer: New Role for an Ancient Population. Front. Oncol. 2020, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Mikó, E.; Kovács, T.; Sebő, É.; Tóth, J.; Csonka, T.; Ujlaki, G.; Sipos, A.; Szabó, J.; Méhes, G.; Bai, P. Microbiome—Microbial metabolome—Cancer cell interactions in breast cancer—Familiar, but unexplored. Cells 2019, 8, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, S.; Chen, B.; Yang, J.; Wang, J.; Zhu, D.; Meng, Q.; Zhang, L. Study of microbiomes in aseptically collected samples of human breast tissue using needle biopsy and the potential role of in situ tissue microbiomes for promoting malignancy. Front. Oncol. 2018, 8, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S.; Tian, T.; Wei, Z.; Shih, N.; Feldman, M.D.; Peck, K.N.; DeMichele, A.M.; Alwine, J.C.; Robertson, E.S. Distinct Microbial Signatures Associated with Different Breast Cancer Types. Front. Microbiol. 2018, 9, 951. [Google Scholar] [CrossRef] [Green Version]
- Hieken, T.J.; Chen, J.; Hoskin, T.L.; Walther-Antonio, M.; Johnson, S.; Ramaker, S.; Xiao, J.; Radisky, D.C.; Knutson, K.L.; Kalari, K.R. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci. Rep. 2016, 6, 30751. [Google Scholar] [CrossRef]
- Williams, P.H. Novel iron uptake system specified by ColV plasmids: An important component in the virulence of invasive strains of Escherichia coli. Infect. Immun. 1979, 26, 925–932. [Google Scholar] [CrossRef]
- Bellaire, B.H.; Elzer, P.H.; Baldwin, C.L.; Roop, R.M., 2nd. The siderophore 2,3-dihydroxybenzoic acid is not required for virulence of Brucella abortus in BALB/c mice. Infect. Immun. 1999, 67, 2615–2618. [Google Scholar] [CrossRef]
- Hopkins, A.P.; Hawkhead, J.A.; Thomas, G.H. Transport and catabolism of the sialic acids N-glycolylneuraminic acid and 3-keto-3-deoxy-D-glycero-D-galactonononic acid by Escherichia coli K-12. FEMS Microbiol. Lett. 2013, 347, 14–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haines-Menges, B.L.; Whitaker, W.B.; Lubin, J.B.; Boyd, E.F. Host Sialic Acids: A Delicacy for the Pathogen with Discerning Taste. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Severi, E.; Müller, A.; Potts, J.R.; Leech, A.; Williamson, D.; Wilson, K.S.; Thomas, G.H. Sialic acid mutarotation is catalyzed by the Escherichia coli beta-propeller protein YjhT. J. Biol. Chem. 2008, 283, 4841–4849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, T.; Jebbar, M.; Rassouli, Y.; Himdi-Kabbab, S.; Hamelin, J.; Blanco, C. Ectoine accumulation and osmotic regulation in Brevibacterium linens. Microbiology 1993, 139, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Sheikhpour, M.; Sadeghi, A.; Yazdian, F.; Movafagh, A.; Mansoori, A. Anticancer and apoptotic effects of ectoine and hydroxyectoine on non-small cell lung cancer cells: An in-vitro investigation. Multidiscip. Cancer Investig. 2019, 16, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, K.D.; Khanna, S.; Byers, S.W.; Fornace, A., Jr.; Cheema, A.K. Small molecule metabolite extraction strategy for improving LC/MS detection of cancer cell metabolome. J. Biomol. Tech. 2011, 22, 1–4. [Google Scholar] [PubMed]
- Ali, I.; Conrad, R.J.; Verdin, E.; Ott, M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem. Rev. 2018, 118, 1216–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunet, J.; Vazquez-Martin, A.; Colomer, R.; Graña-Suarez, B.; Martin-Castillo, B.; Menendez, J.A. BRCA1 and acetyl-CoA carboxylase: The metabolic syndrome of breast cancer. Mol. Carcinog. 2008, 47, 157–163. [Google Scholar] [CrossRef]
- Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino acids in cancer. Exp. Mol. Med. 2020, 52, 15–30. [Google Scholar] [CrossRef]
- Kobayashi, D.; Yamamoto, K.; Kimura, T.; Shimbo, T. Aspartate aminotransferase/alanine aminotransferase ratio and subsequent cancer development. Cancer Med. 2022, 11, 798–814. [Google Scholar] [CrossRef]
- Beuster, G.; Zarse, K.; Kaleta, C.; Thierbach, R.; Kiehntopf, M.; Steinberg, P.; Schuster, S.; Ristow, M. Inhibition of alanine aminotransferase in silico and in vivo promotes mitochondrial metabolism to impair malignant growth. J. Biol. Chem. 2011, 286, 22323–22330. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Zou, T.; Shen, X.; Nelson, P.J.; Li, J.; Wu, C.; Yang, J.; Zheng, Y.; Bruns, C.; Zhao, Y.; et al. Lipid metabolism in cancer progression and therapeutic strategies. MedComm 2021, 2, 27–59. [Google Scholar] [CrossRef]
- Choi, S.Y.; Collins, C.C.; Gout, P.W.; Wang, Y. Cancer-generated lactic acid: A regulatory, immunosuppressive metabolite? J. Pathol. 2013, 230, 350–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.-Y.; Li, X.-T.; Xu, K.; Wang, R.-T.; Guan, X.-X. c-MYC mediates the crosstalk between breast cancer cells and tumor microenvironment. Cell Commun. Signal. 2023, 21, 28. [Google Scholar] [CrossRef]
- Melone, M.A.B.; Valentino, A.; Margarucci, S.; Galderisi, U.; Giordano, A.; Peluso, G. The carnitine system and cancer metabolic plasticity. Cell Death Dis. 2018, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Corbet, C.; Pinto, A.; Martherus, R.; Santiago de Jesus, J.P.; Polet, F.; Feron, O. Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation. Cell Metab. 2016, 24, 311–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.; Reinstadler, B.; Engelstad, K.; Skinner, O.S.; Stackowitz, E.; Haller, R.G.; Clish, C.B.; Pierce, K.; Walker, M.A.; Fryer, R.; et al. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J. Clin. Investig. 2021, 131, e136055. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Kumar, R.; Sheets, E.D.; Benkovic, S.J. Reversible Compartmentalization of de Novo Purine Biosynthetic Complexes in Living Cells. Science 2008, 320, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol. 2016, 213, 8–14. [Google Scholar] [CrossRef] [Green Version]
Compound | HMDB ID | Compound Name | RT | m/z | p Value | FC | Log FC | Regulation |
---|---|---|---|---|---|---|---|---|
0.65_518.9934 m/z | HMDB0041706 | Caffeic acid 3-O-sulfate | 0.65 | 518.99 | 0.00 | 2.96 | 1.57 | up |
0.67_259.0768 m/z | HMDB0032552 | Vanillin 1,2-butylene glycol acetal | 0.67 | 259.08 | 0.00 | 16.00 | 4.00 | up |
0.83_341.1082 m/z | HMDB0041306 | Methyl 2-(methylthio)butyrate | 0.83 | 341.11 | 0.00 | 4.38 | 2.13 | up |
0.89_487.2109 m/z | HMDB0296919 | DG(2:0/PGJ2/0:0) | 0.89 | 487.21 | 0.00 | 2.33 | 1.22 | up |
1.78_134.0454 m/z | HMDB0000161 | L-Alanine | 1.78 | 134.05 | 0.00 | 2.33 | 1.22 | up |
12.39_409.1679 m/z | HMDB0031920 | 9-Hydroxycalabaxanthone | 12.39 | 409.17 | 0.01 | 3.65 | −1.87 | down |
14.60_272.1178 n | HMDB0035191 | (2S,4R)-4-(9H-Pyrido[3,4-b]indol-1-yl)-1,2,4-butanetriol | 14.60 | 589.23 | 0.02 | 4.40 | 2.14 | up |
3.12_453.0646 m/z | HMDB0001508 | dADP | 3.12 | 453.06 | 0.01 | 2.77 | 1.47 | up |
3.34_366.2033 m/z | HMDB0294083 | CDP-DG(PGF1alpha/i-19:0) | 3.34 | 366.20 | 0.01 | 2.55 | 1.35 | up |
4.35_115.0542 m/z | HMDB0002222 | 3-Methylphenylacetic acid | 4.35 | 115.05 | 0.01 | 2.76 | 1.46 | up |
4.92_171.1124 m/z | HMDB0000446 | N-alpha-Acetyl-L-lysine | 4.92 | 171.11 | 0.01 | 2.35 | −1.23 | down |
5.31_733.6413 m/z | HMDB0298285 | DG(18:3(9,11,15)-OH(13)/0:0/a-25:0) | 5.31 | 733.64 | 0.04 | 2.21 | 1.14 | up |
5.33_738.4847 m/z | HMDB0008240 | PC(18:4(6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)) | 5.33 | 738.48 | 0.04 | 2.69 | 1.43 | up |
5.35_731.6062 m/z | HMDB0001348 | SM(d18:1/18:0) | 5.35 | 731.61 | 0.00 | 2.24 | 1.16 | up |
5.59_729.0708 m/z | HMDB0000934 | Uridine diphosphate acetylgalactosamine 4-sulfate | 5.59 | 729.07 | 0.03 | 3.35 | 1.74 | up |
5.96_645.3717 m/z | HMDB0298359 | DG(PGE2/i-12:0/0:0) | 5.96 | 645.37 | 0.00 | 3.61 | −1.85 | down |
6.18_187.0280 m/z | HMDB0304115 | 3-butenylglucosinolate | 6.18 | 187.03 | 0.00 | 16.82 | −4.07 | down |
6.59_492.2480 m/z | HMDB0278346 | PI(PGJ2/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) | 6.59 | 492.25 | 0.01 | 3.01 | 1.59 | up |
7.68_926.4949 m/z | HMDB0276269 | PI(PGJ2/16:2(9Z,12Z)) | 7.68 | 926.49 | 0.01 | 2.95 | 1.56 | up |
7.69_108.0273 m/z | HMDB0028768 | Cysteinyl-Alanine | 7.69 | 108.03 | 0.00 | 6.27 | 2.65 | up |
7.69_174.0575 m/z | HMDB0011745 | N-Acetyl-L-methionine | 7.69 | 174.06 | 0.00 | 6.48 | 2.70 | up |
7.69_263.1203 m/z | HMDB0040672 | 3-Oxo-alpha-ionol 9-[apiosyl-(1->6)-glucoside] | 7.69 | 263.12 | 0.00 | 5.74 | 2.52 | up |
8.00_160.0420 m/z | HMDB0001015 | N-Formyl-L-methionine | 8.00 | 160.04 | 0.00 | 3.97 | 1.99 | up |
8.00_205.9999 m/z | HMDB0001000 | dUDP | 8.00 | 206.00 | 0.01 | 3.34 | 1.74 | up |
8.00_347.0763 m/z | HMDB0011691 | Cytidine 2′,3′-cyclic phosphate | 8.00 | 347.08 | 0.00 | 4.14 | 2.05 | up |
8.41_403.0972 m/z | HMDB0001117 | 4′-Phosphopantothenoylcysteine | 8.41 | 403.10 | 0.00 | 5.35 | −2.42 | down |
8.94_365.1163 m/z | HMDB0040760 | 4,4′-Dihydroxy-5,5′-diisopropyl-2,2′-dimethyl-3,6-biphenyldione | 8.94 | 365.12 | 0.00 | 16.00 | −4.00 | down |
9.87_158.0278 m/z | HMDB0029508 | Laccaic acid D | 9.87 | 158.03 | 0.00 | 15.79 | −3.98 | down |
9.89_107.5117 m/z | HMDB0000682 | Indoxyl sulfate | 9.89 | 107.51 | 0.00 | 16.00 | −4.00 | down |
9.89_114.0363 m/z | HMDB0000696 | L-Methionine | 9.89 | 114.04 | 0.00 | 7.97 | −2.99 | down |
9.89_178.0233 m/z | HMDB0006555 | dIMP | 9.89 | 178.02 | 0.00 | 21.14 | −4.40 | down |
Compound | HMDB ID | Compound Name | RT | m/z | p Value | FC | Log FC | Regulation |
---|---|---|---|---|---|---|---|---|
3.53_340.1895 m/z | HMDB0060988 | 5-hydroxypropafenone | 3.53 | 340.19 | 0.00 | 2.05 | 1.03 | up |
3.53_461.1963 m/z | HMDB0260498 | MG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/0:0) | 3.53 | 461.20 | 0.00 | 2.02 | 1.01 | up |
3.75_229.1521 m/z | HMDB0011174 | Isoleucylproline | 3.75 | 229.15 | 0.00 | 2.68 | 1.42 | up |
4.09_438.2217 m/z | HMDB0240776 | O-(13-Carboxytridecanoyl)carnitine | 4.09 | 438.22 | 0.00 | 2.14 | 1.10 | up |
4.49_591.2626 m/z | HMDB0029005 | Phenylalanylthreonine | 4.49 | 591.26 | 0.00 | 2.06 | 1.05 | up |
5.49_429.2150 m/z | HMDB0011154 | LysoPA(P-16:0/0:0) | 5.49 | 429.22 | 0.00 | 2.00 | −1.00 | down |
5.58_311.0837 m/z | HMDB0062178 | N-lactoyl-Tryptophan | 5.58 | 311.08 | 0.00 | 4.31 | −2.11 | down |
5.94_197.0562 m/z | HMDB0004194 | N1-Methyl-4-pyridone-3-carboxamide | 5.94 | 197.06 | 0.00 | 2.31 | 1.21 | up |
6.02_307.1754 n | HMDB0241867 | 4-Phenylbutanoylcarnitine | 6.02 | 352.17 | 0.00 | 2.24 | 1.16 | up |
6.17_514.2649 m/z | HMDB0011475 | LysoPE(0:0/18:1(11Z)) | 6.17 | 514.26 | 0.00 | 2.24 | 1.16 | up |
6.53_392.2754 n | HMDB0039019 | 3-Hydroxy-10′-apo-b,y-carotenal | 6.53 | 437.27 | 0.00 | 2.14 | −1.10 | down |
6.98_566.2758 m/z | HMDB0240604 | LysoPS(18:2(9Z,12Z)/0:0) | 6.98 | 566.28 | 0.00 | 2.04 | 1.03 | up |
7.06_179.0549 m/z | HMDB0000190 | L-Lactic acid | 7.06 | 179.05 | 0.00 | 16.00 | −4.00 | down |
7.08_315.1322 m/z | HMDB0242134 | 3-Aminopiperidine-2,6-dione | 7.08 | 315.13 | 0.00 | 8.98 | −3.17 | down |
7.09_884.4338 m/z | HMDB0281253 | PS(TXB2/16:1(9Z)) | 7.09 | 884.43 | 0.00 | 2.32 | 1.21 | up |
7.15_961.2977 m/z | HMDB0060299 | (1R)-Glutathionyl-(2R)-hydroxy-1,2-dihydronaphthalene | 7.15 | 961.30 | 0.00 | 15.28 | 3.93 | up |
7.21_528.2782 m/z | HMDB0241876 | (5Z)-7-[(1R,2R,5S)-5-Hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-3-oxocyclopentyl]hept-5-enoylcarnitine | 7.21 | 528.28 | 0.00 | 2.28 | −1.19 | down |
7.25_1071.2554 m/z | HMDB0060783 | 6-beta-Hydroxy-mometasone furoate | 7.25 | 1071.26 | 0.00 | 2.95 | 1.56 | up |
7.25_730.1474 m/z | HMDB0031996 | Licorice glycoside E | 7.25 | 730.15 | 0.01 | 3.04 | 1.60 | up |
7.27_307.1102 m/z | HMDB0032673 | 15-Octadecene-9,11,13-triynoic acid | 7.27 | 307.11 | 0.00 | 6.31 | 2.66 | up |
7.27_334.1092 m/z | HMDB0241039 | 2,3-dimethylidenepentanedioylcarnitine | 7.27 | 334.11 | 0.00 | 4.30 | 2.10 | up |
7.28_375.0968 m/z | HMDB0001272 | Nicotine glucuronide | 7.28 | 375.10 | 0.00 | 3.09 | 1.63 | up |
7.33_285.0968 m/z | HMDB0061112 | 3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid | 7.33 | 285.10 | 0.00 | 3.77 | 1.91 | up |
7.70_108.0272 m/z | HMDB0028768 | Cysteinyl-Alanine | 7.70 | 108.03 | 0.00 | 4.76 | 2.25 | up |
7.70_146.0620 m/z | HMDB0012267 | N-Succinyl-L,L-2,6-diaminopimelate | 7.70 | 146.06 | 0.00 | 4.14 | 2.05 | up |
7.70_263.1212 m/z | HMDB0001129 | N-Acetylmannosamine | 7.70 | 263.12 | 0.00 | 6.10 | 2.61 | up |
7.97_135.0497 m/z | HMDB0060810 | cyclic 6-Hydroxymelatonin | 7.97 | 135.05 | 0.00 | 2.22 | 1.15 | up |
7.97_969.9324 m/z | HMDB0043342 | TG(15:0/22:1(13Z)/24:0) | 7.97 | 969.93 | 0.01 | 2.92 | 1.55 | up |
7.99_185.0708 m/z | HMDB0000472 | 5-Hydroxy-L-tryptophan | 7.99 | 185.07 | 0.00 | 2.81 | 1.49 | up |
8.00_206.0042 m/z | HMDB0001000 | dUDP | 8.00 | 206.00 | 0.00 | 2.27 | 1.19 | up |
8.61_1019.0126 m/z | HMDB0061723 | Carbovir Triphosphate | 8.61 | 1019.01 | 0.01 | 2.06 | −1.04 | down |
8.89_169.0965 m/z | HMDB0060427 | Acetone cyanohydrin | 8.89 | 169.10 | 0.00 | 11.35 | −3.50 | down |
8.89_255.1118 m/z | HMDB0304210 | 5,6-dihydrothymine | 8.89 | 255.11 | 0.00 | 9.76 | −3.29 | down |
8.89_391.1105 m/z | HMDB0004308 | 7,9-Dimethyluric acid | 8.89 | 391.11 | 0.00 | 16.95 | −4.08 | down |
8.89_478.1285 m/z | HMDB0001056 | Dihydrofolic acid | 8.89 | 478.13 | 0.00 | 16.00 | −4.00 | down |
8.89_579.0252 m/z | HMDB0304422 | N-acetylglutamyl-phosphate | 8.89 | 579.03 | 0.00 | 7.39 | −2.89 | down |
8.99_289.0995 m/z | HMDB0029737 | Indole-3-carboxaldehyde | 8.99 | 289.10 | 0.00 | 22.77 | −4.51 | down |
8.99_994.1592 m/z | HMDB0300998 | Undeca-3,5,7-trienedioyl-CoA | 8.99 | 994.16 | 0.00 | 16.00 | −4.00 | down |
9.11_288.1432 m/z | HMDB0240764 | 2-Ethylacryloylcarnitine | 9.11 | 288.14 | 0.00 | 16.00 | −4.00 | down |
9.16_865.5139 m/z | HMDB0268808 | PG(5-iso PGF2VI/18:0) | 9.16 | 865.51 | 0.00 | 2.29 | 1.20 | up |
9.17_1195.6690 m/z | HMDB0002596 | Deoxycholic acid 3-glucuronide | 9.17 | 1195.67 | 0.00 | 2.29 | 1.20 | up |
9.69_207.0898 n | HMDB0000512 | N-Acetyl-L-phenylalanine | 9.69 | 208.10 | 0.00 | 2.55 | −1.35 | down |
9.87_1079.6930 m/z | HMDB0117448 | CL(8:0/10:0/10:0/i-19:0) | 9.87 | 1079.69 | 0.00 | 5.64 | −2.50 | down |
9.87_114.0362 m/z | HMDB0000696 | L-Methionine | 9.87 | 114.04 | 0.00 | 9.10 | −3.19 | down |
9.87_160.0422 m/z | HMDB0001015 | N-Formyl-L-methionine | 9.87 | 160.04 | 0.00 | 8.49 | −3.09 | down |
9.87_182.0247 m/z | HMDB0006409 | Tyramine-O-sulfate | 9.87 | 182.02 | 0.00 | 10.10 | −3.34 | down |
9.87_198.0525 m/z | HMDB0059660 | sn-glycero-3-Phosphoethanolamine | 9.87 | 198.05 | 0.00 | 9.64 | −3.27 | down |
9.87_354.2685 m/z | HMDB0295990 | DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/0:0/18:0) | 9.87 | 354.27 | 0.00 | 16.00 | −4.00 | down |
9.87_433.5980 m/z | HMDB0300835 | 4-Methylpentanoyl-CoA | 9.87 | 433.60 | 0.00 | 9.67 | −3.27 | down |
9.87_578.0937 m/z | HMDB0012278 | Phosphoribulosylformimino-AICAR-P | 9.87 | 578.09 | 0.00 | 19.62 | −4.29 | down |
9.91_213.0398 n | HMDB0032357 | N-Lactoyl ethanolamine phosphate | 9.91 | 178.03 | 0.00 | 10.06 | −3.33 | down |
9.91_260.0232 m/z | HMDB0011725 | 5-Sulfosalicylic acid | 9.91 | 260.02 | 0.00 | 12.30 | −3.62 | down |
9.91_419.0582 m/z | HMDB0000797 | SAICAR | 9.91 | 419.06 | 0.00 | 5.82 | −2.54 | down |
9.91_512.3994 m/z | HMDB0011187 | TG(8:0/8:0/8:0) | 9.91 | 512.40 | 0.00 | 16.00 | −4.00 | down |
9.91_513.0681 m/z | HMDB0006354 | Deoxythymidine diphosphate-L-rhamnose | 9.91 | 513.07 | 0.00 | 16.00 | −4.00 | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlMalki, R.H.; Jaber, M.A.; Al-Ansari, M.M.; Sumaily, K.M.; Al-Alwan, M.; Sabi, E.M.; Malkawi, A.K.; Abdel Rahman, A.M. Metabolic Alteration of MCF-7 Cells upon Indirect Exposure to E. coli Secretome: A Model of Studying the Microbiota Effect on Human Breast Tissue. Metabolites 2023, 13, 938. https://doi.org/10.3390/metabo13080938
AlMalki RH, Jaber MA, Al-Ansari MM, Sumaily KM, Al-Alwan M, Sabi EM, Malkawi AK, Abdel Rahman AM. Metabolic Alteration of MCF-7 Cells upon Indirect Exposure to E. coli Secretome: A Model of Studying the Microbiota Effect on Human Breast Tissue. Metabolites. 2023; 13(8):938. https://doi.org/10.3390/metabo13080938
Chicago/Turabian StyleAlMalki, Reem H., Malak A. Jaber, Mysoon M. Al-Ansari, Khalid M. Sumaily, Monther Al-Alwan, Essa M. Sabi, Abeer K. Malkawi, and Anas M. Abdel Rahman. 2023. "Metabolic Alteration of MCF-7 Cells upon Indirect Exposure to E. coli Secretome: A Model of Studying the Microbiota Effect on Human Breast Tissue" Metabolites 13, no. 8: 938. https://doi.org/10.3390/metabo13080938
APA StyleAlMalki, R. H., Jaber, M. A., Al-Ansari, M. M., Sumaily, K. M., Al-Alwan, M., Sabi, E. M., Malkawi, A. K., & Abdel Rahman, A. M. (2023). Metabolic Alteration of MCF-7 Cells upon Indirect Exposure to E. coli Secretome: A Model of Studying the Microbiota Effect on Human Breast Tissue. Metabolites, 13(8), 938. https://doi.org/10.3390/metabo13080938