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Abstract: According to studies, the microbiome may contribute to the emergence and spread of breast
cancer. E. coli is one of the Enterobacteriaceae family recently found to be present as part of the breast
tissue microbiota. In this study, we focused on the effect of E. coli secretome free of cells on MCF-7
metabolism. Liquid chromatography–mass spectrometry (LC-MS) metabolomics was used to study
the E. coli secretome and its role in MCF-7 intra- and extracellular metabolites. A comparison was
made between secretome-exposed cells and unexposed controls. Our analysis revealed significant
alterations in 31 intracellular and 55 extracellular metabolites following secretome exposure. Several
metabolic pathways, including lactate, aminoacyl-tRNA biosynthesis, purine metabolism, and energy
metabolism, were found to be dysregulated upon E. coli secretome exposure. E. coli can alter the breast
cancer cells’ metabolism through its secretome which disrupts key metabolic pathways of MCF-7
cells. These microbial metabolites from the secretome hold promise as biomarkers of drug resistance
or innovative approaches for cancer treatment, either as standalone therapies or in combination with
other medicines.

Keywords: microbiome; E. coli secretome; cancer; MCF-7 cells; metabolites; metabolomics;
high-resolution mass spectrometry

1. Introduction

Breast cancer (BC) is a complex disease influenced by various factors, including ge-
netics, lifestyle, and environmental exposures [1]. Generally, the human body contains
a diversity of bacteria, fungi, and viruses in/on the body, collectively known as the mi-
crobiota [2]. The breast microbiota refers to the collection of microorganisms that inhabit
the breast tissue. The diversity of the breast microbiota has been studied extensively [3,4].
However, the link between the breast microbiome and breast cancer has become the main
focus of researchers to identify specific microbial signatures for diseases among rising risk
factors including the role of bacteria in the development and progression of the disease [5].
The presence of these microbial communities and their mechanisms may contribute to
breast cancer, including inflammation and immune system dysregulation. Also, metabo-
lites, including fatty acids, amino acids, and products of fermentation, appear to influence
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the breast tumor microenvironment (TME) and play a key role in the development and pro-
gression of the disease and thus could be potential targets for the treatment or prevention of
breast cancer [6]. Recent studies have shown that the breast microbiota differs significantly
in women with breast cancer compared to healthy women [7].

Interestingly, certain bacterial species have been found to be more prevalent in breast
cancer tumors than in healthy breast tissue. It has been found that the presence of the
bacterium Fusobacterium nucleatum in breast cancer tumors was associated with a more
aggressive form of the disease and poor prognosis for patients [8,9].

We have shown recently that the Escherichia coli (E. coli) secretome linked to breast
inflammation and cancer development affects significant metabolic processes, including
fructose and mannose, sphingolipids, amino acids, fatty acids, amino sugar, nucleotide
sugar, and pyrimidine [10].

Luminal A is a subtype of breast cancer that is known for its hormone receptor
expression, making it the most prevalent form of breast cancer. In studies related to
hormone-dependent signaling, the MCF-7 cell line is commonly used due to its estrogen
receptor (ER) positivity [11]. The metabolism of MCF-7 cells can be divided into two main
pathways. First, it has a high rate of basic cell metabolism, which involves the breakdown
of carbohydrates, proteins, and lipids for energy production [12]. The second pathway
is related to ER signaling and the synthesis of steroid hormones, particularly estradiol.
This requires the catabolism of cholesterol and the synthesis of key steroid hormones such
as progesterone and androgens [13]. MCF-7 cells can produce a range of proteins and
other substances involved in signal transduction pathways, transcription, and cell growth,
ultimately influencing tumorigenesis [14].

Metabolism supports various aspects of normal cell biology overall in our bodies.
Changes to these fundamental features of cellular metabolism can result in multifactorial
impacts at numerous levels, as in the initiation and progression of cancer [15]. Understand-
ing cancer metabolism requires systematically applying analytical techniques to recognize
and assess these metabolic anomalies. The growing technology known as metabolomics
provides an overview of the metabolic network and its perturbations. It can thus be used to
find new biomarkers for tracking therapy response and potential therapeutic targets [16,17].
In order to develop effective strategies for prevention, early detection, and treatment of
breast cancer, it is crucial to fully comprehend the untargeted metabolomic changes that
occur due to the crosstalk between the breast microbiota and cancer cells of luminal A
subtype. A potential opportunity of research in this regard is exploring the impact of
E. coli secretome on MCF-7 cells and its role in facilitating the interaction between the breast
microbiota and cancer cells. By shedding light on this relationship, we can pave the way
for novel approaches to tackle breast cancer.

2. Materials and Methods
2.1. Bacterial Supernatant Preparation

Escherichia coli (E. coli) from American Type Culture Collection (ATCC) 25922 was used.
The secretome was prepared as follows. E. coli was grown in Luria–Bertani (LB) broth media
for 24 h at 37 ◦C after collecting the supernatant and centrifugation at 10,000 rpm for 10 min.
The supernatant was filtered using a disposable vacuum system with 0.22 µm pores.

2.2. Cell Culture and Treatment

In this study, we obtained Michigan Cancer Foundation-7 (MCF-7) cells of luminal
A subtype expressing estrogen receptor (ER) and progesterone receptor (PR) from ATCC
(Manassas, VA, USA). These cells were routinely inspected for mycoplasma contamination
using a PCR-based kit (Intron, Republic of Korea). Cells were cultured into T100 plates
using DMEM/F-12 supplemented with 10% FBS, 1% penicillin/streptomycin, and 1%
L-glutamine, then incubated at 37 ◦C with 5% CO2 in a humidified chamber. Once they
reached confluence, MCF-7 cells were collected, after 4 passages at 70% of confluence, and
counted using a light microscope (10 µL sample/10 µL dye), then counted using a hand
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tally counter (counting was conducted approximately with the same initial number of cells
(1 × 106 cells/mL). Treatment of cells was performed using 10% E. coli secretome in Serum-
Free Media (SFM), while control cells were treated with 10% of pure LB media in SFM and
incubated at different time points (0, 1, 2, 6, 8, and 24 h). Control was performed by having
a parallel non-treated set of samples with the same number of experimental replicates
to exclude any potential metabolomics profile associated with all the environmental and
uncontrolled conditions including fluctuations in temperature, humidity, etc. Mainly using
these measures, we excluded culture contaminants but not the direct effect of the E. coli
supernatant. The other control was performed to identify profiling of 0 h treated vs. 0 h
non-treated to exclude any media-related contamination and profile the E. coli secretome.
This experiment was performed once, where each time point was represented in triplicate.
In addition, 10% of media free of MCF-7 were cultured for 72 h to ensure the absence of
contamination for quality control.

2.3. Metabolomics Sample Preparation

To investigate the metabolic alterations occurring in our cell model, we followed a
previously reported protocol to extract intra- and extracellular metabolites [10]. Briefly,
in intracellular metabolism, medium was removed, and cells were washed with cold PBS
followed by quenching in liquid nitrogen. The cells were extracted by 80% (v:v) MeOH:H2O
and scraped using a cell scraper. The mixture was vortexed in a Thermomixer (Eppendorf,
Germany) for 1 h at 600 rpm on 4 ◦C. The mixture was then spun down for 10 min at 4 ◦C,
10,000 rpm. The supernatants were transferred to new Eppendorf tubes. The extracellular
metabolites were extracted by adding 50% (ACN: MeOH) to media and vortexed in a
Thermomixer (Eppendorf, Germany) at 600 rpm at 4 ◦C for 1 h. The samples were spun
down at 10,000 rpm, 4 ◦C for 10 min, and then the supernatant was transferred to new
Eppendorf tubes. The intra- and extracellular extracts were evaporated completely in a
Speed-Vac (Christ, Germany) and stored at −80 ◦C until LC-MS analysis.

2.4. LC-HRMS Metabolomics

The samples were reconstituted in 50% mobile phase A:B (A: 0.1% formic acid in
dH2O, B: 0.1% formic acid in 50% MeOH and ACN) for untargeted metabolomics analyses
using LCMS as previously reported [10]. Metabolites were acquired by a Waters Acquity
ultra pressure liquid chromatography (UPLC) system coupled with a Xevo G2-S QTOF
mass spectrometer equipped with an electrospray ionization source (ESI) on positive and
negative (ESI+, ESI−). The metabolites were chromatographed using an ACQUITY UPLC
XSelect (100 × 2.1 mm 2.5 µm) column (Waters Ltd., Elstree, UK). The mobile phases A and
B were pumped to the column in a gradient mode (0–16 min 95–5% A, 16–19 min 5% A,
19–20 min 5–95% A, 20–22 min 95–95% A) at 300 µL/min flow rate. MS conditions were
as follows: the source temperature was 150 ◦C, the desolvation temperature was 500 ◦C
(ESI+) or 140 ◦C (ESI−), capillary voltages were 3.20 kV (ESI+) or 3 kV (ESI−), cone voltage
was 40 V, desolvation gas flow was 800.0 L/h, and cone gas flow was 50 L/h. The collision
energy of low and high functions was set off, at 10–50 V, respectively, in MSE mode. The
mass spectrometer was calibrated, as recommended by the vendor, with sodium formate
in the range of 100–1200 Da in both ionization modes. Data Independent Acquisition
(DIA) was collected in continuum mode with a Masslynx™ V4.1 workstation (Waters Inc.,
Milford, MA, USA).

2.5. Data and Statistical Analyses

The MS raw data were processed following a standard pipeline starting from alignment
based on the m/z value and the ion signals’ retention time, peak picking, and signal
filtering based on the peak quality using the Progenesis QI v.3.0 software from Waters
(Waters Technologies, Milford, MA, USA). Multivariate statistical analysis was performed
using MetaboAnalyst v. 5.0 (McGill University, Montreal, QC, Canada) (http://www.
metaboanalyst.ca, accessed on 5 June 2022) [18]. The imported datasets were normalized
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by median, Pareto-scaled, log-transformed to maintain their normal distribution, and then
used to generate partial least squares-discriminant analysis (PLS-DA) and orthogonal
partial least squares-discriminant analysis (OPLS-DA) models. The OPLS-DA models
created were evaluated using the fitness of the model (R2Y) and predictive ability (Q2)
values [19]. Univariate analysis was performed using Mass Profiler Professional software
(Agilent, Santa Clara, CA, USA). One-way analysis of variance (ANOVA) with Tukey’s post-
hoc and false discovery rate (FDR) p ≤ 0.05 was performed among time points. Volcano
plot representation was used to identify significantly altered mass features based on a fold
change (FC) cutoff of 2 and FDR p ≤ 0.05. Venn diagrams were developed using MPP
Software (Agilent Inc., Santa Clara, CA, USA), and heatmap analysis for altered features
was performed using the distance measure of Pearson; each experiment was performed in
triplicate at 24 h, outliers were minimal, and already tested.

2.6. Metabolites Identification

The significant features obtained from intra- and extracellular metabolites were anno-
tated using the Human Metabolome Database (HMDB) based on the accurate precursor
mass, the fragmentation pattern, and isotopic distribution [20]. The E. coli database was
used to identify E. coli metabolites in the extracellular media samples [21]. Exogenous
compounds, such as drugs and food additives, were eliminated manually from the final list.

3. Results
3.1. Metabolites of E. coli Secretome

Initially, E. coli growth density was measured (OD = 1.5 in 1 mL/LB) to prepare the
E. coli secretome in a reproducible fashion. The E. coli-secreted metabolites in conditioned
media were profiled by comparing their expression in treated and non-treated samples
at baseline exposure (moderated t-test, cut-off: no correction p-value ≤ 0.05, and FC of
2). A total of 672 metabolites were revealed at baseline, where 185 and 487 were up- and
down-regulated, respectively. The E. coli metabolome database identified 26 metabolites.
Only seven out of 26 metabolites were identified and secreted from E. coli (Figure 1).
These metabolites potentially affect the MCF-7 metabolism as represented in the heatmap
developed on E. coli-related metabolites based on Pearson’s correlation coefficient and
average linkage methods. The data are summarized in Table S1.

Metabolites 2023, 13, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 1. E. coli-related secretome identification upon treatment. A heatmap and hierarchical cluster 
analysis showed only 7 E. coli-related excreted metabolites in conditioned media of MCF-7 cells 
compared to the control. 

3.2. Mass Ion Detection and Dysregulated Intracellular Metabolites after Treating MCF-7 Cells 
with E. coli Secretome at Different Time Points 

In intracellular extracts, 12,657 mass ions were obtained in positive and negative ion-
ization modes. Of these ions, 7833 and 4824 were detected in positive and negative ioni-
zation modes, respectively. The data were deposited in Metabolomics workbench 
(ST002715). One-way ANOVA (Tukey’s post-hoc, FDR p ≤ 0.05) was carried out in treated 
and untreated cells at various time points after missing values were excluded and im-
puted. A total of 907 and 1482 ions were significantly dysregulated in treated and non-
treated cells at various time points, respectively. The Venn diagram in Figure 2A repre-
sents the dysregulated ions after excluding culture media and incubation background-
related metabolites. A total of 293 ions were affected by treatment and culture conditions. 

 

(A) (B) 

Figure 1. E. coli-related secretome identification upon treatment. A heatmap and hierarchical cluster
analysis showed only 7 E. coli-related excreted metabolites in conditioned media of MCF-7 cells
compared to the control.



Metabolites 2023, 13, 938 5 of 16

3.2. Mass Ion Detection and Dysregulated Intracellular Metabolites after Treating MCF-7 Cells
with E. coli Secretome at Different Time Points

In intracellular extracts, 12,657 mass ions were obtained in positive and negative
ionization modes. Of these ions, 7833 and 4824 were detected in positive and negative
ionization modes, respectively. The data were deposited in Metabolomics workbench
(ST002715). One-way ANOVA (Tukey’s post-hoc, FDR p ≤ 0.05) was carried out in treated
and untreated cells at various time points after missing values were excluded and imputed.
A total of 907 and 1482 ions were significantly dysregulated in treated and non-treated
cells at various time points, respectively. The Venn diagram in Figure 2A represents
the dysregulated ions after excluding culture media and incubation background-related
metabolites. A total of 293 ions were affected by treatment and culture conditions.
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Figure 2. (A) A Venn diagram represents the relation between significantly dysregulated intracellular
ions in treated MCF-7 with E. coli secretome (n = 907) and non-treated cells (n = 1482) at different time
points (0, 1, 2, 6, 8, and 24 h). (B) Sample clustering and group separation. PLS-DA of 614 features of
MCF-7 cells that were treated with E. coli secretome at different time points (0, 1, 2, 6, 8, and 24 h).

The remaining 614 ions were significantly dysregulated in response to the E-coli
secretome exposure. These ions (n = 614) were used to represent the changes at various
time points. Figure 2B represents the PLS-DA plot, showing study samples clustering and
group separation at different treatment time points.

As demonstrated in the multivariant analysis, the greatest amount of metabolic alter-
ation was after 24 h of treatment. A binary comparison after 24 h of treatment with the
corresponding control was performed using multi- and univariate analyses; the OPLS-DA
model (Figure 3A) showed the group separation and sample clustering between the 0 and
24 h of treatment. The model produced goodness of prediction (Q2: 0.887) and the fitness
of the model (R2Y: 0.996). Univariate analysis using Volcano plot (cut-off: FDR p ≤ 0.05,
and FC 2) revealed 160 ions as significantly dysregulated. Of these 160 ions, 93 ions were
up-regulated, and 67 were down-regulated after 24 h post-treatment compared to the
corresponding control sample (Figure 3B). Only 79 metabolites were identified from the
160 significant ions following annotation with the HMDB. After manually excluding the
exogenous metabolites, the remaining 31 endogenous metabolites were used for further
pathway analysis. A total of 20 and 10 metabolites were up- and down-regulated after
24 h of treatment. These metabolites are summarized in Table 1. Perturbation in these



Metabolites 2023, 13, 938 6 of 16

metabolites resulted in changes in 13 metabolic pathways (Figure 3C). Pantothenate and
CoA biosynthesis was the most affected pathway based on pathway impact.
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Figure 3. Dysregulated intracellular metabolites between MCF-7 cells pre- and 24 h post-treatment
with E. coli secretome. (A): An OPLS-DA model of MCF-7 cells treated with E. coli secretome shows
a clear separation between pre- and 24 h post-treatment. The robustness of the created model was
evaluated by the fitness of the model (R2Y = 0.996), and predictive ability (Q2 = 0.887) values in a
larger dataset (n = 1000). (B): Univariate analysis using Volcano plot based on culture background-
free features (n = 614) showed 93 (red), and 67 (blue) metabolites were up- and down-regulated
24 h post-treatment compared to pre-treatment, respectively (cut-off: FDR p ≤ 0.05, and FC 2).
(C): Pathway analysis of significant metabolites dysregulated in treated MCF-7 cells with E. coli
secretome after 24 h.
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Table 1. Intracellular endogenous metabolites which were identified as significantly dysregulated. Binary comparison of MCF-7 with E. coli secretome in 24 h
post-treatment compared to pre-treatment. FDR p-value < 0.05, FC cutoff is 2.

Compound HMDB ID Compound Name RT m/z p Value FC Log FC Regulation

0.65_518.9934 m/z HMDB0041706 Caffeic acid 3-O-sulfate 0.65 518.99 0.00 2.96 1.57 up

0.67_259.0768 m/z HMDB0032552 Vanillin 1,2-butylene glycol acetal 0.67 259.08 0.00 16.00 4.00 up

0.83_341.1082 m/z HMDB0041306 Methyl 2-(methylthio)butyrate 0.83 341.11 0.00 4.38 2.13 up

0.89_487.2109 m/z HMDB0296919 DG(2:0/PGJ2/0:0) 0.89 487.21 0.00 2.33 1.22 up

1.78_134.0454 m/z HMDB0000161 L-Alanine 1.78 134.05 0.00 2.33 1.22 up

12.39_409.1679 m/z HMDB0031920 9-Hydroxycalabaxanthone 12.39 409.17 0.01 3.65 −1.87 down

14.60_272.1178 n HMDB0035191 (2S,4R)-4-(9H-Pyrido[3,4-b]indol-1-yl)-
1,2,4-butanetriol 14.60 589.23 0.02 4.40 2.14 up

3.12_453.0646 m/z HMDB0001508 dADP 3.12 453.06 0.01 2.77 1.47 up

3.34_366.2033 m/z HMDB0294083 CDP-DG(PGF1alpha/i-19:0) 3.34 366.20 0.01 2.55 1.35 up

4.35_115.0542 m/z HMDB0002222 3-Methylphenylacetic acid 4.35 115.05 0.01 2.76 1.46 up

4.92_171.1124 m/z HMDB0000446 N-alpha-Acetyl-L-lysine 4.92 171.11 0.01 2.35 −1.23 down

5.31_733.6413 m/z HMDB0298285 DG(18:3(9,11,15)-OH(13)/0:0/a-25:0) 5.31 733.64 0.04 2.21 1.14 up

5.33_738.4847 m/z HMDB0008240 PC(18:4(6Z,9Z,12Z,15Z)/
18:4(6Z,9Z,12Z,15Z)) 5.33 738.48 0.04 2.69 1.43 up

5.35_731.6062 m/z HMDB0001348 SM(d18:1/18:0) 5.35 731.61 0.00 2.24 1.16 up

5.59_729.0708 m/z HMDB0000934 Uridine diphosphate acetylgalactosamine 4-sulfate 5.59 729.07 0.03 3.35 1.74 up

5.96_645.3717 m/z HMDB0298359 DG(PGE2/i-12:0/0:0) 5.96 645.37 0.00 3.61 −1.85 down

6.18_187.0280 m/z HMDB0304115 3-butenylglucosinolate 6.18 187.03 0.00 16.82 −4.07 down

6.59_492.2480 m/z HMDB0278346 PI(PGJ2/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 6.59 492.25 0.01 3.01 1.59 up

7.68_926.4949 m/z HMDB0276269 PI(PGJ2/16:2(9Z,12Z)) 7.68 926.49 0.01 2.95 1.56 up
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Table 1. Cont.

Compound HMDB ID Compound Name RT m/z p Value FC Log FC Regulation

7.69_108.0273 m/z HMDB0028768 Cysteinyl-Alanine 7.69 108.03 0.00 6.27 2.65 up

7.69_174.0575 m/z HMDB0011745 N-Acetyl-L-methionine 7.69 174.06 0.00 6.48 2.70 up

7.69_263.1203 m/z HMDB0040672 3-Oxo-alpha-ionol 9-[apiosyl-(1->6)-glucoside] 7.69 263.12 0.00 5.74 2.52 up

8.00_160.0420 m/z HMDB0001015 N-Formyl-L-methionine 8.00 160.04 0.00 3.97 1.99 up

8.00_205.9999 m/z HMDB0001000 dUDP 8.00 206.00 0.01 3.34 1.74 up

8.00_347.0763 m/z HMDB0011691 Cytidine 2′,3′-cyclic phosphate 8.00 347.08 0.00 4.14 2.05 up

8.41_403.0972 m/z HMDB0001117 4′-Phosphopantothenoylcysteine 8.41 403.10 0.00 5.35 −2.42 down

8.94_365.1163 m/z HMDB0040760 4,4′-Dihydroxy-5,5′-diisopropyl-2,2′-dimethyl-
3,6-biphenyldione 8.94 365.12 0.00 16.00 −4.00 down

9.87_158.0278 m/z HMDB0029508 Laccaic acid D 9.87 158.03 0.00 15.79 −3.98 down

9.89_107.5117 m/z HMDB0000682 Indoxyl sulfate 9.89 107.51 0.00 16.00 −4.00 down

9.89_114.0363 m/z HMDB0000696 L-Methionine 9.89 114.04 0.00 7.97 −2.99 down

9.89_178.0233 m/z HMDB0006555 dIMP 9.89 178.02 0.00 21.14 −4.40 down
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3.3. Mass Ion Detection and Dysregulated Extracellular Metabolites after Treating MCF-7 Cells
with E. coli Secretome

The metabolomics profile of the extracellular extracts detected 12,997 mass ions in
positive and negative ionization modes. After missing values exclusion, one-way ANOVA
(Tukey’s post-hoc FDR p ≤ 0.05) was used to detect the significantly changed ions between
different time points in MCF-7 treated and non-treated cells. The analysis revealed that
1948 and 3128 ions were significantly dysregulated at different time points in treated and
non-treated groups, respectively. The culture and incubation background-associated ions
were eliminated from the treated samples using a Venn diagram. Of the dysregulated
ones, 821 ions detected in treated cells were retained for further analyses, as displayed in
Figure S1A.

As mentioned earlier, most metabolic changes happened 24 h post-treatment. Thus,
the binary comparison between pre-and 24 h post-treatment using Volcano plot (Cut-off:
FDR p ≤ 0.05, and FC 2) reveals that 437 metabolites were significantly dysregulated, of
which 159 and 278 metabolites were up-and down-regulated 24 h post-treatment compared
to control, respectively (Figure S1B,C). Only 55 out of 243 metabolites were identified as
endogenous metabolites (Table 2). Pathway analysis revealed that the most affected path-
ways include one carbon pool by folate, nicotinate and nicotinamide metabolism, pyruvate
metabolism, ether lipid metabolism, folate biosynthesis, pentose, and glucuronate intercon-
versions, cysteine and methionine metabolism, and tryptophan metabolism (Figure S1D).

Table 2. Dysregulated extracellular endogenous metabolites that were secreted in culture media after
treating MCF-7 cells with E. coli secretome. Binary comparison of MCF-7 cells treated with E. coli
secretome in 24 h post-treatment compared to pre-treatment. FDR p-value < 0.05, FC cutoff is 2.

Compound HMDB ID Compound Name RT m/z p
Value FC Log

FC Regulation

3.53_340.1895
m/z HMDB0060988 5-hydroxypropafenone 3.53 340.19 0.00 2.05 1.03 up

3.53_461.1963
m/z HMDB0260498 MG(20:5(7Z,9Z,11E,13E,17Z)-

3OH(5,6,15)/0:0/0:0) 3.53 461.20 0.00 2.02 1.01 up

3.75_229.1521
m/z HMDB0011174 Isoleucylproline 3.75 229.15 0.00 2.68 1.42 up

4.09_438.2217
m/z HMDB0240776 O-(13-Carboxytridecanoyl)carnitine 4.09 438.22 0.00 2.14 1.10 up

4.49_591.2626
m/z HMDB0029005 Phenylalanylthreonine 4.49 591.26 0.00 2.06 1.05 up

5.49_429.2150
m/z HMDB0011154 LysoPA(P-16:0/0:0) 5.49 429.22 0.00 2.00 −1.00 down

5.58_311.0837
m/z HMDB0062178 N-lactoyl-Tryptophan 5.58 311.08 0.00 4.31 −2.11 down

5.94_197.0562
m/z HMDB0004194 N1-Methyl-4-pyridone-3-

carboxamide 5.94 197.06 0.00 2.31 1.21 up

6.02_307.1754 n HMDB0241867 4-Phenylbutanoylcarnitine 6.02 352.17 0.00 2.24 1.16 up

6.17_514.2649
m/z HMDB0011475 LysoPE(0:0/18:1(11Z)) 6.17 514.26 0.00 2.24 1.16 up

6.53_392.2754 n HMDB0039019 3-Hydroxy-10′-apo-b,y-carotenal 6.53 437.27 0.00 2.14 −1.10 down

6.98_566.2758
m/z HMDB0240604 LysoPS(18:2(9Z,12Z)/0:0) 6.98 566.28 0.00 2.04 1.03 up
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Table 2. Cont.

Compound HMDB ID Compound Name RT m/z p
Value FC Log

FC Regulation

7.06_179.0549
m/z HMDB0000190 L-Lactic acid 7.06 179.05 0.00 16.00 −4.00 down

7.08_315.1322
m/z HMDB0242134 3-Aminopiperidine-2,6-dione 7.08 315.13 0.00 8.98 −3.17 down

7.09_884.4338
m/z HMDB0281253 PS(TXB2/16:1(9Z)) 7.09 884.43 0.00 2.32 1.21 up

7.15_961.2977
m/z HMDB0060299 (1R)-Glutathionyl-(2R)-hydroxy-

1,2-dihydronaphthalene 7.15 961.30 0.00 15.28 3.93 up

7.21_528.2782
m/z HMDB0241876

(5Z)-7-[(1R,2R,5S)-5-Hydroxy-2-
[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-

1-yl]-3-oxocyclopentyl]hept-
5-enoylcarnitine

7.21 528.28 0.00 2.28 −1.19 down

7.25_1071.2554
m/z HMDB0060783 6-beta-Hydroxy-mometasone furoate 7.25 1071.26 0.00 2.95 1.56 up

7.25_730.1474
m/z HMDB0031996 Licorice glycoside E 7.25 730.15 0.01 3.04 1.60 up

7.27_307.1102
m/z HMDB0032673 15-Octadecene-9,11,13-triynoic acid 7.27 307.11 0.00 6.31 2.66 up

7.27_334.1092
m/z HMDB0241039 2,3-

dimethylidenepentanedioylcarnitine 7.27 334.11 0.00 4.30 2.10 up

7.28_375.0968
m/z HMDB0001272 Nicotine glucuronide 7.28 375.10 0.00 3.09 1.63 up

7.33_285.0968
m/z HMDB0061112 3-Carboxy-4-methyl-5-propyl-

2-furanpropionic acid 7.33 285.10 0.00 3.77 1.91 up

7.70_108.0272
m/z HMDB0028768 Cysteinyl-Alanine 7.70 108.03 0.00 4.76 2.25 up

7.70_146.0620
m/z HMDB0012267 N-Succinyl-L,L-2,6-diaminopimelate 7.70 146.06 0.00 4.14 2.05 up

7.70_263.1212
m/z HMDB0001129 N-Acetylmannosamine 7.70 263.12 0.00 6.10 2.61 up

7.97_135.0497
m/z HMDB0060810 cyclic 6-Hydroxymelatonin 7.97 135.05 0.00 2.22 1.15 up

7.97_969.9324
m/z HMDB0043342 TG(15:0/22:1(13Z)/24:0) 7.97 969.93 0.01 2.92 1.55 up

7.99_185.0708
m/z HMDB0000472 5-Hydroxy-L-tryptophan 7.99 185.07 0.00 2.81 1.49 up

8.00_206.0042
m/z HMDB0001000 dUDP 8.00 206.00 0.00 2.27 1.19 up

8.61_1019.0126
m/z HMDB0061723 Carbovir Triphosphate 8.61 1019.01 0.01 2.06 −1.04 down

8.89_169.0965
m/z HMDB0060427 Acetone cyanohydrin 8.89 169.10 0.00 11.35 −3.50 down

8.89_255.1118
m/z HMDB0304210 5,6-dihydrothymine 8.89 255.11 0.00 9.76 −3.29 down
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Table 2. Cont.

Compound HMDB ID Compound Name RT m/z p
Value FC Log

FC Regulation

8.89_391.1105
m/z HMDB0004308 7,9-Dimethyluric acid 8.89 391.11 0.00 16.95 −4.08 down

8.89_478.1285
m/z HMDB0001056 Dihydrofolic acid 8.89 478.13 0.00 16.00 −4.00 down

8.89_579.0252
m/z HMDB0304422 N-acetylglutamyl-phosphate 8.89 579.03 0.00 7.39 −2.89 down

8.99_289.0995
m/z HMDB0029737 Indole-3-carboxaldehyde 8.99 289.10 0.00 22.77 −4.51 down

8.99_994.1592
m/z HMDB0300998 Undeca-3,5,7-trienedioyl-CoA 8.99 994.16 0.00 16.00 −4.00 down

9.11_288.1432
m/z HMDB0240764 2-Ethylacryloylcarnitine 9.11 288.14 0.00 16.00 −4.00 down

9.16_865.5139
m/z HMDB0268808 PG(5-iso PGF2VI/18:0) 9.16 865.51 0.00 2.29 1.20 up

9.17_1195.6690
m/z HMDB0002596 Deoxycholic acid 3-glucuronide 9.17 1195.67 0.00 2.29 1.20 up

9.69_207.0898 n HMDB0000512 N-Acetyl-L-phenylalanine 9.69 208.10 0.00 2.55 −1.35 down

9.87_1079.6930
m/z HMDB0117448 CL(8:0/10:0/10:0/i-19:0) 9.87 1079.69 0.00 5.64 −2.50 down

9.87_114.0362
m/z HMDB0000696 L-Methionine 9.87 114.04 0.00 9.10 −3.19 down

9.87_160.0422
m/z HMDB0001015 N-Formyl-L-methionine 9.87 160.04 0.00 8.49 −3.09 down

9.87_182.0247
m/z HMDB0006409 Tyramine-O-sulfate 9.87 182.02 0.00 10.10 −3.34 down

9.87_198.0525
m/z HMDB0059660 sn-glycero-3-Phosphoethanolamine 9.87 198.05 0.00 9.64 −3.27 down

9.87_354.2685
m/z HMDB0295990 DG(22:5(4Z,7Z,10Z,13Z,19Z)-

O(16,17)/0:0/18:0) 9.87 354.27 0.00 16.00 −4.00 down

9.87_433.5980
m/z HMDB0300835 4-Methylpentanoyl-CoA 9.87 433.60 0.00 9.67 −3.27 down

9.87_578.0937
m/z HMDB0012278 Phosphoribulosylformimino-AICAR-P 9.87 578.09 0.00 19.62 −4.29 down

9.91_213.0398 n HMDB0032357 N-Lactoyl ethanolamine phosphate 9.91 178.03 0.00 10.06 −3.33 down

9.91_260.0232
m/z HMDB0011725 5-Sulfosalicylic acid 9.91 260.02 0.00 12.30 −3.62 down

9.91_419.0582
m/z HMDB0000797 SAICAR 9.91 419.06 0.00 5.82 −2.54 down

9.91_512.3994
m/z HMDB0011187 TG(8:0/8:0/8:0) 9.91 512.40 0.00 16.00 −4.00 down

9.91_513.0681
m/z HMDB0006354 Deoxythymidine

diphosphate-L-rhamnose 9.91 513.07 0.00 16.00 −4.00 down

4. Discussion

The scientific community has acknowledged that the breast can provide a favorable
environment for the growth of bacteria since it is composed primarily of fatty tissue and has
significant lymphatic drainage, lobules, and vasculature [8,22]. However, the microbiome
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distribution varies considerably from healthy subjects to cancer patients [22–24]. Patients
with BC exhibited greater relative phyla abundances, including staphylococcus, bacillus, En-
terobacteriaceae, firmicutes, actinobacteria, bacteroidetes and proteobacteria, and others [8,25–27].
Since a higher abundance of E. coli was detected in women with BC than in healthy controls,
this study employed metabolomics to reveal the impact of E. coli secretome on the MCF-7
cellular biological processes.

The microbiome can modify the physiology of the host cells through metabolites
that enter the circulation and reach their target cells, similar to human hormones [24].
These microbial metabolites could regulate the TME; hence, a deeper comprehension
of how microbial pathogens affect BC can improve future prevention, diagnosis, and
treatment options.

4.1. Metabolites Related to E. coli Secretome

The current study found seven metabolites related to E. coli secretome that might
play important roles in BC pathogenesis or protection. Our findings showed that 2,3-
dihydroxybenzoic acid (DHBA) was elevated in the E. coli secretome. DHBA is a siderophore
secreted by E. coli and other pathogens under conditions of low iron availability to in-
crease their virulence. DHBA sequesters iron from the host, which is known to be a
severely iron-restricted growth environment, and provides this essential metal nutrient to
microbes [28,29].

An interesting finding in our study is the elevated α-N-acetylneuraminate found
in the E. coli secretome, also known as sialic acids. E. coli can grow on Neu5Ac as a
carbon source [30]. E. coli can use these sialic acids to capsule their polysaccharides to
mimic the host cells leading to a dampening of immune responses and so increasing their
survival [31,32]. This could be one of many reasons why higher percentages of E. coli
colonies were detected in BC tissue compared to healthy tissue.

Additionally, ectoine in the E. coli secretome was found to be elevated; this is a natural
metabolite that has a role as an osmolyte, which helps E. coli avoid deleterious increases
in ion concentration and maintain cytoplasmic electroneutrality [33]. Moreover, ectoine
has induced apoptosis in lung cancer cells without toxic effects on normal cells [34]. Thus,
ectoine could have a potential role in protecting from cancer.

Moreover, our analysis showed that 2-oxo-3-sulfopropanoic acid was up-regulated in
E. coli secretome. 2-oxo-3-sulfopropanoic acid plays a key role in amino acid metabolism [35].
As a result, the metabolites of E. coli may influence the TME and contribute to the develop-
ment or prevention of cancer. In turn, TME may influence the virulence of these pathogens.

4.2. Dysregulated Intracellular Metabolites after Treating MCF-7 Cells with E. coli Secretome

Acetylated methionine and lysine were up-regulated in MCF-7 treated cells, which
are crucial for proper mitochondrial protein acetylation. The degree of acetylation is
influenced by nutrient availability and cellular metabolic status. Increased acetylation is
associated with physiological conditions that result in higher levels of acetyl-CoA, such as
fasting, calorie restriction, a high-fat diet, and ethanol intoxication, to avoid mitochondria
overfeeding [36]. Acetyl coenzyme A carboxylase alpha (ACCA) is a biotin-dependent
enzyme that catalyzes the carboxylation of acetyl-CoA to produce malonyl-CoA, which
is used in fatty acid synthase. As a protective mechanism, the tumor suppressor gene
breast cancer susceptibility gene 1, also known as BRCA1, interacts with ACCA and
stabilizes the inactive state, which prevents tumor cell anabolism, suppresses the malignant
phenotype, and raises Acetyl-CoA levels [37]. In addition, a low level of intracellular
methionine was detected. Methionine is consumed in the methionine cycle to generate
S-adenosylmethionine (SAM), which serves as a methyl donor; increased methionine cycle
results in an overabundance of SAM that can lead to enhanced tumor growth [38].

According to a study, women with very low AST/ALT ratios had higher BC risks
than women with moderate AST/ALT ratios resulting in the detection of a higher level
of alanine [39]. This increased synthesis of alanine may be intended to counteract the
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anti-carcinogenic effect caused by some of the E. coli secretomes discussed previously.
However, it has been demonstrated that the alanine content of tumor tissues correlates
favorably with tumor malignancy, and thus E. coli secretome may promote the growth and
virulence of tumors. This might increase the sensitivity of cancer cells to ALT inhibitors.
Inhibition of ALT effectively slows cancer growth by counteracting the Warburg effect.
When the Warburg effect is reduced in cancer cells, compensatory activation of mitochon-
drial metabolism by activating AMP-activated protein kinase is initiated. This will increase
the respiration rates and mitochondrial production of reactive oxygen species, negatively
affecting cancer growth [40].

In addition, we showed several lipids such as induction of diglyceride, phosphatidyl-
choline, and phosphatidylinositol keep up with the increased demand during progression
in response to E. coli secretome. Lipids’ high production, storage, and absorption contribute
to cancer progression. The changing of lipid metabolism in cancer has been connected
to the activation of oncogenic signaling pathways and cross-communication with the
tumor microenvironment [41].

4.3. Dysregulated Extracellular Metabolites after Treating MCF-7 Cells with E. coli Secretome

Significant amounts of lactic acid produced during aerobic glycolysis and glutaminoly-
sis are released into the TME. Cancer cells’ overexcretion of lactic acid prevents intracellular
acidification and upregulates the glycolytic pathway [42]. Moreover, it has been suggested
that lactate functions as an oncometabolite in the MCF7 human BC cell line because it
boosts the transcriptional activity of MYC, a potent facilitator of carcinogenesis associated
with poor prognosis in malignancies [43].

In addition, our data showed increase in β-oxidation and fatty acid catabolism doc-
umented in tumor cells, which is an adaptive response to nutrient deprivation and en-
vironmental stressors [44]. The acidity of the TME causes a metabolic adaptation of the
tumor cell population and promotes β-oxidation as a metabolic strategy (the Corbet−Feron
Effect) [45]. Also, the increased acylcarnitines level suggests incomplete fatty acid oxida-
tion due to increased β-oxidation, which exceeds the tricarboxylic acid cycle’s capacity.
However, decreased lactic acid concentration in the extracellular extract of treated cells
could be due to lactate metabolism by the E. coli secretome. Therefore, these perturbations
in key regulatory processes could lead to inhibited tumor growth.

N-lactoyl-tryptophan and indole-3-carboxaldehyde were downregulated, which is
recognized as a disturbance in tryptophan metabolism after the MCF-7 cells’ treatment
with E. coli secretome. An elevated level of N-lactoyl-tryptophan was associated with
mitochondrial dysfunction in mitochondrial encephalomyopathy lactic acidosis [46]. The
decrease in lactic acid concentration discussed above is more likely to cause a drop in
N-lactoyl-amino acids synthesis.

Importantly, tumor cells have been found to contain significant levels of purine metabo-
lites [47]. The complementary salvage method and the de novo biosynthetic pathway are
used in mammalian cells to create purine nucleotides. Most of the cellular needs for purine
are often met by the complementary salvage route, which recycles the bases that have
been broken down. In the circumstances with a larger requirement for purine nucleotides,
such as proliferating cells and tumor cells, the de novo manufacturing process is crucial
to replenish the purine pool [48]. Upon the treatment with E. coli secretome, two purine
metabolites were dysregulated in MCF 7 extracellular media, namely SAICAR and inosine,
which are metabolites of the de novo purine biosynthetic pathway and its salvage process,
respectively. This suggests that the microbiological secretome impact on cancer cells might
be attributed to tampering with the nucleotide metabolism.

5. Conclusions

Tumor cells can survive in the face of unfavorable environmental conditions due to
cancer’s metabolic flexibility. A metabolite’s ability to change in response to internal or ex-
ternal perturbations is a requirement for metabolic plasticity. Although the E. coli secretome
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could have some beneficial effects against cancer growth and propagation, the MCF-7 cell’s
responses are able to reverse these alterations by lipid metabolic reprogramming, increased
ALT activity, and acylation. This may in turn render the cancerous cells more aggressive.
However, due to the metabolic network’s complicated structure, locating regulatory nodes
within it is attractive additional research that could help us to understand the overall
picture fully.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo13080938/s1, Figure S1: Dysregulated extracellular metabo-
lites between MCF-7 cells pre-and 24 h post-treatment with E. coli secretome. (A) A Venn diagram
represents the relation between significantly dysregu-lated extracellular ions in treated MCF-7 with
E. coli secretome (n = 1948) and non-treated cells (n = 3128) at different time points (0, 1, 2, 6, 8, and
24 h), (B) An OPLS-DA model represents the sepa-ration between pre- and 24 h post-treatment
samples based on selected 821 extracellular ions. The robustness of the created model was evaluated
by the fitness of the model (R2Y = 0.999) and pre-dictive ability (Q2 = 0.984) values in a larger
dataset (n = 1000). (C) Volcano plot revealed 437 sig-nificantly dysregulated metabolites, where 159
(in red) and 278 (in blue) ions were up- and down-regulated in 24 h post-treatment compared to
control, respectively (Cut-off: FDR ≤ 0.05, and FC 2). (D) Pathway analysis for the significant metabo-
lites dysregulated that secreted in culture media after treating MCF-7 cells with E. coli secretome.
56 metabolites were ultimately identified as endogenous; Table S1: E. coli-related excreted metabolites;
Table S2: Endogenous metabolites of significantly dysregulated intracellular metabolites after 24 h. of
treatment with E. coli secretome; Table S3: Dysregulated extracellular endogenous metabolites that
were secreted in culture media after treating MCF-7 cells with E. coli secretome; Table S4: Common
metabolites between intra- and extracellular of MCF-7 cells after treatment with E. coli secretome.
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