Plasma Amino Acids in NAFLD Patients with Obesity Are Associated with Steatosis and Fibrosis: Results from the MAST4HEALTH Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Medical, Anthropometric and Lifestyle Assessments
2.3. MRI Parameters
2.4. Blood Collection
- -
- Biochemical parameters
- -
- Inflammation and oxidative stress biomarkers
2.5. Plasma Amino Acid Profiles
- -
- Sample preparation and labeling with the aTRAQ® reagents
- -
- Separation and detection
2.6. Statistical Analysis
3. Results
3.1. General Characteristics of Study Participants
3.2. AA Plasma Levels across PDFF and cT1 Categories
3.3. Correlations of AAs with MRI-PDFF and Other Disease Parameters
3.4. Associations of AAs with MRI-PDFF and MRI-cT1
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loomba, R.; Sanyal, A.J. The global nafld epidemic. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 686–690. [Google Scholar] [CrossRef]
- Goh, G.B.; Pagadala, M.R.; Dasarathy, J.; Unalp-Arida, A.; Sargent, R.; Hawkins, C.; Sourianarayanane, A.; Khiyami, A.; Yerian, L.; Pai, R.K.; et al. Clinical spectrum of non-alcoholic fatty liver disease in diabetic and non-diabetic patients. BBA Clin. 2015, 3, 141–145. [Google Scholar] [CrossRef]
- Kitade, H.; Chen, G.; Ni, Y.; Ota, T. Nonalcoholic fatty liver disease and insulin resistance: New insights and potential new treatments. Nutrients 2017, 9, 387. [Google Scholar] [CrossRef]
- Lee, J.H.; Friso, S.; Choi, S.W. Epigenetic mechanisms underlying the link between non-alcoholic fatty liver diseases and nutrition. Nutrients 2014, 6, 3303–3325. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Baranova, A.; Younossi, Z.M. The future is around the corner: Noninvasive diagnosis of progressive nonalcoholic steatohepatitis. Hepatology 2008, 47, 373–375. [Google Scholar] [CrossRef]
- Pavlides, M.; Banerjee, R.; Sellwood, J.; Kelly, C.J.; Robson, M.D.; Booth, J.C.; Collier, J.; Neubauer, S.; Barnes, E. Multiparametric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease. J. Hepatol. 2016, 64, 308–315. [Google Scholar] [CrossRef]
- Harrison, S.A.; Bashir, M.R.; Guy, C.D.; Zhou, R.; Moylan, C.A.; Frias, J.P.; Alkhouri, N.; Bansal, M.B.; Baum, S.; Neuschwander-Tetri, B.A.; et al. Resmetirom (mgl-3196) for the treatment of non-alcoholic steatohepatitis: A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2019, 394, 2012–2024. [Google Scholar] [CrossRef]
- Harrison, S.A.; Rossi, S.J.; Paredes, A.H.; Trotter, J.F.; Bashir, M.R.; Guy, C.D.; Banerjee, R.; Jaros, M.J.; Owers, S.; Baxter, B.A.; et al. Ngm282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis. Hepatology 2020, 71, 1198–1212. [Google Scholar] [CrossRef]
- Dedoussis, G.V.; Amanatidou, A.I. From transcriptomic to metabolomic in the development of biomarkers in nafld/nash. In Nafld and Nash: Biomarkers in Detection, Diagnosis and Monitoring; Romero-Gomez, M., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 181–190. [Google Scholar]
- Masoodi, M.; Gastaldelli, A.; Hyotylainen, T.; Arretxe, E.; Alonso, C.; Gaggini, M.; Brosnan, J.; Anstee, Q.M.; Millet, O.; Ortiz, P.; et al. Metabolomics and lipidomics in nafld: Biomarkers and non-invasive diagnostic tests. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 835–856. [Google Scholar] [CrossRef]
- Kalhan, S.C.; Guo, L.; Edmison, J.; Dasarathy, S.; McCullough, A.J.; Hanson, R.W.; Milburn, M. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism 2011, 60, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Kakazu, E.; Sano, A.; Morosawa, T.; Inoue, J.; Ninomiya, M.; Iwata, T.; Nakamura, T.; Takai, S.; Sawada, S.; Katagiri, H.; et al. Branched chain amino acids are associated with the heterogeneity of the area of lipid droplets in hepatocytes of patients with non-alcoholic fatty liver disease. Hepatol. Res. 2019, 49, 860–871. [Google Scholar] [CrossRef] [PubMed]
- Gaggini, M.; Carli, F.; Rosso, C.; Buzzigoli, E.; Marietti, M.; Della Latta, V.; Ciociaro, D.; Abate, M.L.; Gambino, R.; Cassader, M.; et al. Altered amino acid concentrations in nafld: Impact of obesity and insulin resistance. Hepatology 2018, 67, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Amerikanou, C.; Kanoni, S.; Kaliora, A.C.; Barone, A.; Bjelan, M.; D’Auria, G.; Gioxari, A.; Gosalbes, M.J.; Mouchti, S.; Stathopoulou, M.G.; et al. Effect of mastiha supplementation on nafld: The mast4health randomised, controlled trial. Mol. Nutr. Food Res. 2021, 65, e2001178. [Google Scholar] [CrossRef]
- Banerjee, R.; Pavlides, M.; Tunnicliffe, E.M.; Piechnik, S.K.; Sarania, N.; Philips, R.; Collier, J.D.; Booth, J.C.; Schneider, J.E.; Wang, L.M.; et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J. Hepatol. 2014, 60, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, J.; Tuomilehto, J. The diabetes risk score: A practical tool to predict type 2 diabetes risk. Diabetes Care 2003, 26, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sport. Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Amanatidou, A.I.; Kaliora, A.C.; Amerikanou, C.; Stojanoski, S.; Milosevic, N.; Vezou, C.; Beribaka, M.; Banerjee, R.; Kalafati, I.P.; Smyrnioudis, I.; et al. Association of dietary patterns with mri markers of hepatic inflammation and fibrosis in the mast4health study. Int. J. Environ. Res. Public Health 2022, 19, 971. [Google Scholar] [CrossRef]
- Held, P.K.; White, L.; Pasquali, M. Quantitative urine amino acid analysis using liquid chromatography tandem mass spectrometry and atraq reagents. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 2695–2703. [Google Scholar] [CrossRef]
- Vanweert, F.; Boone, S.C.; Brouwers, B.; Mook-Kanamori, D.O.; de Mutsert, R.; Rosendaal, F.R.; Lamb, H.J.; Schrauwen-Hinderling, V.B.; Schrauwen, P.; Hesselink, M.K.C.; et al. The effect of physical activity level and exercise training on the association between plasma branched-chain amino acids and intrahepatic lipid content in participants with obesity. Int. J. Obes. 2021, 45, 1510–1520. [Google Scholar] [CrossRef]
- Lischka, J.; Schanzer, A.; Hojreh, A.; Ssalamah, A.B.; Item, C.B.; de Gier, C.; Walleczek, N.K.; Metz, T.F.; Jakober, I.; Greber-Platzer, S.; et al. A branched-chain amino acid-based metabolic score can predict liver fat in children and adolescents with severe obesity. Pediatr. Obes. 2021, 16, e12739. [Google Scholar] [CrossRef] [PubMed]
- Leonetti, S.; Herzog, R.I.; Caprio, S.; Santoro, N.; Trico, D. Glutamate-serine-glycine index: A novel potential biomarker in pediatric non-alcoholic fatty liver disease. Children 2020, 7, 270. [Google Scholar] [CrossRef] [PubMed]
- Ajaz, S.; McPhail, M.J.; Gnudi, L.; Trovato, F.M.; Mujib, S.; Napoli, S.; Carey, I.; Agarwal, K. Mitochondrial dysfunction as a mechanistic biomarker in patients with non-alcoholic fatty liver disease (nafld). Mitochondrion 2021, 57, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Felig, P.; Marliss, E.; Cahill, G.F., Jr. Plasma amino acid levels and insulin secretion in obesity. N. Engl. J. Med. 1969, 281, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Mardinoglu, A.; Agren, R.; Kampf, C.; Asplund, A.; Uhlen, M.; Nielsen, J. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun. 2014, 5, 3083. [Google Scholar] [CrossRef] [PubMed]
- Galsgaard, K.D. The vicious circle of hepatic glucagon resistance in non-alcoholic fatty liver disease. J. Clin. Med. 2020, 9, 4049. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, E.H.; Flores-Guerrero, J.L.; Gruppen, E.G.; de Borst, M.H.; Wolak-Dinsmore, J.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. Non-alcoholic fatty liver disease and risk of incident type 2 diabetes: Role of circulating branched-chain amino acids. Nutrients 2019, 11, 705. [Google Scholar] [CrossRef]
- Haufe, S.; Witt, H.; Engeli, S.; Kaminski, J.; Utz, W.; Fuhrmann, J.C.; Rein, D.; Schulz-Menger, J.; Luft, F.C.; Boschmann, M.; et al. Branched-chain and aromatic amino acids, insulin resistance and liver specific ectopic fat storage in overweight to obese subjects. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 637–642. [Google Scholar] [CrossRef]
- Lake, A.D.; Novak, P.; Shipkova, P.; Aranibar, N.; Robertson, D.G.; Reily, M.D.; Lehman-McKeeman, L.D.; Vaillancourt, R.R.; Cherrington, N.J. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids 2015, 47, 603–615. [Google Scholar] [CrossRef]
- Cheng, S.; Wiklund, P.; Autio, R.; Borra, R.; Ojanen, X.; Xu, L.; Tormakangas, T.; Alen, M. Adipose tissue dysfunction and altered systemic amino acid metabolism are associated with non-alcoholic fatty liver disease. PLoS ONE 2015, 10, e0138889. [Google Scholar] [CrossRef]
- De Mello, V.D.; Sehgal, R.; Mannisto, V.; Klavus, A.; Nilsson, E.; Perfilyev, A.; Kaminska, D.; Miao, Z.; Pajukanta, P.; Ling, C.; et al. Serum aromatic and branched-chain amino acids associated with nash demonstrate divergent associations with serum lipids. Liver Int. 2021, 41, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Swierczynski, J.; Sledzinski, T.; Slominska, E.; Smolenski, R.; Sledzinski, Z. Serum phenylalanine concentration as a marker of liver function in obese patients before and after bariatric surgery. Obes. Surg. 2009, 19, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Kawanaka, M.; Nishino, K.; Oka, T.; Urata, N.; Nakamura, J.; Suehiro, M.; Kawamoto, H.; Chiba, Y.; Yamada, G. Tyrosine levels are associated with insulin resistance in patients with nonalcoholic fatty liver disease. Hepat. Med. 2015, 7, 29–35. [Google Scholar] [CrossRef]
- Li, X.; Ma, W.; Yang, T.; Wang, C.; Zhang, W.; Li, H.; Zhao, T.; Guo, X. Higher intakes of lysine, threonine and valine are inversely associated with non-alcoholic fatty liver disease risk: A community-based case-control study in the chinese elderly. Food Sci. Hum. Wellness 2024, 13, 191–197. [Google Scholar] [CrossRef]
Variables | Ν | All (Mean (SD)) | Females (N: 28) (Mean (SD)) | Males (N:69) (Mean (SD)) | p-Value |
---|---|---|---|---|---|
Age (years) | 97 | 49.04 (9.16) | 49.61 (7.67) | 48.81 (9.74) | 0.676 |
Smoking (Yes|No) | 96 | Yes: 21, No: 75 | Yes: 7, No: 21 | Yes: 14, No:54 | 0.839 |
BMI (kg/m2) | 97 | 34.43 (4.43) | 35.39 (5.19) | 34.04 (4.06) | 0.228 |
PAL (total MET- min/week) | 91 | 3622.17 (5128.17) | 3733.37 (5326.04) | 3575.26 (5084.72) | 0.452 |
cT1 (ms) | 94 | 877.94 (79.82) | 874.27 (65.96) | 879.5 (85.43) | 0.82 |
PDFF (%) | 95 | 16.59 (11.98) | 12.89 (8.14) | 18.06 (12.96) | 0.058 |
LIF * | 94 | 2.26 (0.63) | 2.25 (0.59) | 2.27 (0.65) | 0.902 |
AST (IU/L) | 94 | 25.39 (11.13) | 22.59 (8.15) | 26.52 (12) | 0.093 |
ALT (IU/L) | 94 | 38 (20.44) | 28.93 (14.97) | 41.66 (21.29) | 0.001 |
AST/ALT ratio | 94 | 0.74 (0.24) | 0.88 (0.32) | 0.68 (0.17) | 0.004 |
γ-gt (U/L) | 96 | 55. 37 (60.48) | 62.04 (79.03) | 52.77 (51.95) | 0.28 |
Total cholesterol (mg/dL) | 97 | 196.39 (37.48) | 209.01 (33.5) | 191.27 (38.03) | 0.010 |
HDL (mg/dL) | 97 | 44.51 (10.39) | 48 (11.17) | 43.1 (9.8) | 0.022 |
LDL (mg/dL) | 96 | 122.23 (34.92) | 130.95 (30.35) | 118.64 (36.23) | 0.028 |
Triglycerides (mg/dL) | 97 | 148.57 (65.33) | 150.54 (76.47) | 147.77 (60.83) | 0.793 |
Glucose (mg/dL) | 92 | 102.59 (15.65) | 98.84 (10.35) | 104.15 (17.21) | 0.343 |
120 min-OGTT Glucose (mg/dL) | 86 | 131.99 (47.58) | 131.35 (38.08) | 132.26 (51.45) | 0.665 |
HOMA-IR | 89 | 4.89 (2.61) | 4.23 (2.43) | 5.19 (2.65) | 0.109 |
Insulin (μU/mL) | 93 | 19 (9.83) | 16.83 (10.18) | 19.93 (9.6) | 0.096 |
HGB (g/mL) * | 96 | 0.15 (0.01) | 0.135 (0.009) | 0.151 (0.011) | 1.37 × 10−9 |
TAS (mmol/L) | 96 | 1.91 (0.21) | 1.791 (0.177) | 1.951 (0.202) | 4.94 × 10−4 |
Amino Acids (AAs) μmoles/L | PDFF (%) | p-Value | Corrected p-Value c | cT1 (ms) | p-Value | Corrected p-Value c | ||||
---|---|---|---|---|---|---|---|---|---|---|
Low (N: 24) Mean (SD) | Medium (N: 47) Mean (SD) | High (N: 24) Mean (SD) | Low (N: 24) Mean (SD) | Medium (N: 46) Mean (SD) | High (N: 24) Mean (SD) | |||||
Essential AAs | 1010.507 (121.086) # * | 1117.744 (172.683) # | 1147.612 (126.467) * | 0.002 | 0.078 | 1044.921 (110.025) * | 1097.495 (188.893) | 1144.300 (121.150) * | 0.035 | 1.000 |
Nonessential AAs | 1603.642 (173.144) | 1630.705 (196.743) | 1703.354 (307.453) | 0.442 | 1.000 | 1572.581 (167.286) | 1629.763 (180.126) | 1698.318 (335.970) | 0.236 | 1.000 |
GSG Index | 13.940 (7.202) * | 16.371 (6.675) | 20.605 (9.649) * | 0.038 | 1.000 | 15.863 (6.368) | 15.876 (7.683) | 19.698 (9.553) | 0.234 | 1.000 |
BCAAs | 441.535 (74.955) # * | 521.277 (109.371) # | 527.588 (75.433) * | 7.6 × 10−4 | 0.03 | 476.257 (71.391) | 504.378 (122.071) | 522.531 (71.487) | 0.133 | 1.000 |
AAAs | 127.859 (15.436) # * | 141.767 (21.725) # | 150.859 (24.663) * | 0.001 | 0.039 | 130.773 (17.302) | 140.170 (22.655) | 148.765 (24.896) | 0.052 | 1.000 |
L-Alanine * | 317.202 (56.578) | 337.971 (58.528) | 350.397 (56.300) | 0.133 | 1.000 | 309.325 (52.834) | 343.036 (58.583) | 337.085 (55.198) | 0.059 | 1.000 |
Beta-Alanine * | 7.026 (1.746) | 7.847 (1.822) | 7.984 (1.959) | 0.136 | 1.000 | 7.238 (1.719) | 7.920 (1.817) | 7.786 (1.871) | 0.32 | 1.000 |
Sarcosine | 3.579 (1.368) | 3.922 (1.454) | 3.702 (1.457) | 0.291 | 1.000 | 3.600 (1.244) | 3.812 (1.490) | 3.924 (1.531) | 0.65 | 1.000 |
Cystine | 40.717 (14.985) | 39.377 (18.192) | 39.065 (16.011) | 0.959 | 1.000 | 40.023 (14.163) | 37.813 (17.141) | 40.061 (18.420) | 0.739 | 1.000 |
L-Serine | 96.910 (20.859) | 100.830 (48.638) | 123.573 (164.319) | 0.703 | 1.000 | 92.250 (16.841) | 96.555 (18.828) | 135.814 (174.332) | 0.587 | 1.000 |
O-Phosphoethanolamine | 1.942 (2.186) | 1.443 (1.721) | 1.549 (1.849) | 0.577 | 1.000 | 1.145 (1.217) | 1.760 (1.983) | 1.672 (2.120) | 0.555 | 1.000 |
Taurine | 53.064 (20.481) | 61.665 (22.178) ** | 48.514 (15.845) ** | 0.024 | 0.936 | 53.257 (15.357) | 55.314 (22.141) | 58.918 (24.626) | 0.68 | 1.000 |
L-Asparagine | 54.496 (11.271) | 53.350 (7.353) | 55.100 (6.664) | 0.52 | 1.000 | 51.039 (9.143) | 54.766 (8.654) | 54.270 (7.440) | 0.175 | 1.000 |
Hydroxy-L-Proline | 11.304 (5.339) | 13.959 (9.471) | 13.035 (4.640) | 0.216 | 1.000 | 11.515 (5.288) | 14.474 (9.701) | 11.349 (3.616) | 0.359 | 1.000 |
Glycine | 226.806 (64.259) | 198.042 (43.774) | 204.405 (95.119) | 0.049 | 1.000 | 200.584 (34.363) | 206.239 (56.277) | 213.808 (100.801) | 0.649 | 1.000 |
L-Glutamine * | 567.882 (57.524) | 584.667 (73.382) | 581.345 (62.948) | 0.604 | 1.000 | 576.075 (74.131) | 576.024 (71.608) | 577.389 (51.543) | 0.996 | 1.000 |
Ethanolamine * | 6.941 (0.999) | 7.175 (1.157) | 7.136 (0.904) | 0.672 | 1.000 | 7.089 (0.964) | 7.082 (1.121) | 7.161 (1.113) | 0.956 | 1.000 |
L-Aspartic Acid | 2.774 (1.226) | 3.516 (2.018) | 3.142 (0.938) | 0.0841 | 1.000 | 2.873 (1.376) | 3.305 (2.004) | 3.406 (1.040) | 0.073 | 1.000 |
L-Citruline | 34.583 (6.578) | 33.641 (8.581) | 33.246 (7.836) | 0.734 | 1.000 | 33.913 (6.809) | 32.740 (8.673) | 33.851 (6.616) | 0.542 | 1.000 |
L-Threonine | 119.821 (21.051) | 118.390 (25.142) | 134.106 (38.418) | 0.136 | 1.000 | 113.123 (22.263) * | 119.272 (22.610) | 137.588 (39.616) * | 0.037 | 1.000 |
L-Glutamic Acid | 40.962 (17.351) * | 46.498 (15.045) | 58.379 (22.542) * | 0.024 | 0.936 | 44.725 (15.954) | 45.112 (18.403) | 57.037 (19.981) | 0.05 | 1.000 |
L-Histidine * | 80.343 (7.429) | 83.616 (12.239) | 81.368 (12.152) | 0.466 | 1.000 | 80.325 (10.822) | 82.975 (9.536) | 82.066 (14.450) | 0.649 | 1.000 |
1-Me-L-Histdine | 7.062 (7.218) | 9.403 (9.220) | 9.013 (6.706) | 0.682 | 1.000 | 7.591 (7.616) | 9.315 (9.383) | 8.858 (6.398) | 0.538 | 1.000 |
3-Me-L-Histdine | 3.588 (1.080) | 4.212 (1.217) | 4.146 (1.264) | 0.0619 | 1.000 | 4.085 (1.317) | 4.061 (1.257) | 4.037 (1.116) | 0.969 | 1.000 |
Gamma-Amino-Butyric Acid (GABA) | 0.253 (0.198) | 0.261 (0.197) | 0.235 (0.198) | 0.686 | 1.000 | 0.240 (0.169) | 0.268 (0.188) | 0.234 (0.205) | 0.42 | 1.000 |
D,L-Beta-Aminoisobutyric Acid | 1.329 (0.951) | 1.534 (3.636) | 0.931 (0.474) | 0.133 | 1.000 | 2.190 (5.040) | 1.004 (0.525) | 1.003 (0.500) | 0.434 | 1.000 |
D,L-Alpha-Amino-n-Butyric Acid | 18.008 (4.930) | 21.551 (8.995) | 19.206 (6.469) | 0.249 | 1.000 | 20.012 (6.643) | 19.911 (8.635) | 20.533 (7.090) | 0.868 | 1.000 |
L-Alpha-Aminoadipic Acid | 1.133 (0.665) | 2.316 (6.846) | 1.406 (0.343) | 0.173 | 1.000 | 1.288 (0.568) | 2.308 (6.929) | 1.313 (0.375) | 0.929 | 1.000 |
L-Proline | 186.226 (56.889) | 188.215 (49.229) | 202.916 (43.959) | 0.152 | 1.000 | 185.135 (55.458) | 188.792 (48.981) | 197.152 (51.387) | 0.426 | 1.000 |
L-Arginine * | 71.748 (14.970) | 69.180 (18.837) | 67.686 (13.335) | 0.693 | 1.000 | 69.609 (17.453) | 69.263 (16.657) | 66.761 (15.467) | 0.798 | 1.000 |
L-Ornithine | 76.410 (23.151) | 82.478 (30.591) | 97.123 (72.984) | 0.411 | 1.000 | 73.665 (18.991) | 79.683 (24.979) | 101.239 (76.291) | 0.334 | 1.000 |
L-Lysine | 152.499 (27.927) * | 168.823 (31.944) | 174.336 (23.859) * | 0.025 | 0.975 | 155.491 (24.986) | 169.067 (34.639) | 172.438 (21.154) | 0.059 | 1.000 |
L-Valine | 244.565 (45.337) # * | 290.103 (53.620) # | 291.946 (45.378) * | 7.5 × 10−4 | 0.029 | 263.556 (43.649) | 280.199 (61.459) | 291.348 (42.990) | 0.103 | 1.000 |
L-Methionine * | 28.276 (6.731) | 29.574 (7.626) | 30.997 (6.562) | 0.423 | 1.000 | 28.310 (6.625) | 29.393 (7.302) | 30.841 (7.313) | 0.47 | 1.000 |
L-Tyrosine | 69.666 (10.675) # * | 78.239 (16.443) # | 85.033 (15.838) * | 0.001 | 0.039 | 70.552 (11.647) * | 78.122 (17.263) | 82.296 (15.671) * | 0.03 | 1.000 |
L-Isoleucine | 60.976 (12.066) # * | 74.338 (25.326) # | 77.534 (16.999) * | 8.3 × 10−4 | 0.032 | 66.075 (11.634) | 73.088 (27.006) | 74.409 (16.780) | 0.3 | 1.000 |
L-Leucine | 135.994 (21.617) # * | 156.836 (34.849) # | 158.108 (20.361) * | 0.003 | 0.117 | 146.626 (21.119) | 151.090 (37.617) | 156.774 (19.545) | 0.2 | 1.000 |
L-Phenylalanine | 58.192 (6.279) # * | 63.528 (8.868) # | 65.826 (9.936) * | 0.006 | 0.234 | 60.222 (7.204) | 62.049 (8.665) | 66.469 (10.402) | 0.117 | 1.000 |
L-Tryptophan | 58.092 (11.694) | 63.356 (11.024) | 65.707 (12.084) | 0.081 | 1.000 | 61.585 (9.455) | 61.098 (11.580) | 65.605 (12.587) | 0.2 | 1.000 |
Amino Acids (AAs) | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
---|---|---|---|---|---|
Exp(Beta) (Corrected p-Value c) | Exp(Beta) (Corrected p-Value c) | Exp(Beta) (Corrected p-Value c) | Exp(Beta) (Corrected p-Value c) | Exp(Beta) (Corrected p-Value c) | |
Log-PDFF (%) | |||||
Essential AAs | 1.002 (0.037) | NS | NS | NS | NS |
GSG index | 1.032 (0.019) | NS | NS | NS | NS |
BCAAs | 1.003 (0.014) | NS | NS | 1.003 (0.037) | 1.003 (0.040) |
AAAs | 1.013 (0.001) | 1.012 (0.008) | 1.013 (0.006) | 1.012 (0.043) | 1.012 (0.036) |
L-Glutamic Acid | 1.015 (0.006) | 1.014 (0.019) | 1.014 (0.025) | 1.015 (0.026) | 1.016 (0.031) |
L-Valine | 1.005 (0.005) | 1.005 (0.018) | 1.005 (0.024) | 1.005 (0.009) | 1.005 (0.010) |
L-Tyrosine | 1.018 (0.003) | 1.016 (0.014) | 1.017 (0.010) | NS | NS |
L-Phenylalanine | 1.029 (0.014) | NS | NS | NS | NS |
Log-cT1 (ms) | |||||
AAAs | NS | NS | 1.001 (0.038) | NS | NS |
L-Threonine | NS | 1.001 (0.041) | 1.001 (0.008) | 1.001 (0.001) | 1.001 (0.001) |
L-Glutamic Acid | 1.002 (0.018) | 1.002 (0.014) | 1.002 (0.043) | 1.002 (0.043) | 1.002 (0.031) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amanatidou, A.I.; Mikropoulou, E.V.; Amerikanou, C.; Milanovic, M.; Stojanoski, S.; Bjelan, M.; Cesarini, L.; Campolo, J.; Thanopoulou, A.; Banerjee, R.; et al. Plasma Amino Acids in NAFLD Patients with Obesity Are Associated with Steatosis and Fibrosis: Results from the MAST4HEALTH Study. Metabolites 2023, 13, 959. https://doi.org/10.3390/metabo13080959
Amanatidou AI, Mikropoulou EV, Amerikanou C, Milanovic M, Stojanoski S, Bjelan M, Cesarini L, Campolo J, Thanopoulou A, Banerjee R, et al. Plasma Amino Acids in NAFLD Patients with Obesity Are Associated with Steatosis and Fibrosis: Results from the MAST4HEALTH Study. Metabolites. 2023; 13(8):959. https://doi.org/10.3390/metabo13080959
Chicago/Turabian StyleAmanatidou, Athina I., Eleni V. Mikropoulou, Charalampia Amerikanou, Maja Milanovic, Stefan Stojanoski, Mladen Bjelan, Lucia Cesarini, Jonica Campolo, Anastasia Thanopoulou, Rajarshi Banerjee, and et al. 2023. "Plasma Amino Acids in NAFLD Patients with Obesity Are Associated with Steatosis and Fibrosis: Results from the MAST4HEALTH Study" Metabolites 13, no. 8: 959. https://doi.org/10.3390/metabo13080959
APA StyleAmanatidou, A. I., Mikropoulou, E. V., Amerikanou, C., Milanovic, M., Stojanoski, S., Bjelan, M., Cesarini, L., Campolo, J., Thanopoulou, A., Banerjee, R., Kurth, M. J., Milic, N., Medic-Stojanoska, M., Trivella, M. G., Visvikis-Siest, S., Gastaldelli, A., Halabalaki, M., Kaliora, A. C., Dedoussis, G. V., & on behalf of the Mast4Health consortium. (2023). Plasma Amino Acids in NAFLD Patients with Obesity Are Associated with Steatosis and Fibrosis: Results from the MAST4HEALTH Study. Metabolites, 13(8), 959. https://doi.org/10.3390/metabo13080959