Iron Metabolism of the Skin: Recycling versus Release
Abstract
:1. Metabolism of Iron in the Skin
1.1. Functions of Iron in Skin Cells
1.2. Roles of the Epidermis in the Regulation of Systemic Iron Levels
2. Molecular Control of Iron Metabolism in Epithelial Cells
2.1. Iron Import in the Basal Layer
2.2. Iron Storage in the Epidermal Keratinocytes
2.3. Regulation of Iron Homeostasis by Iron Regulatory Proteins
3. Recycling and Transport of Iron in Differentiated Epidermal Keratinocytes
3.1. Metabolism of Hemoproteins, Heme, and Iron Ions in Differentiated Keratinocytes
3.2. Expression and Activity of Heme Oxygenase 1 (HO-1) in Differentiated Keratinocytes
3.3. Expression and Function of Ferroportin (SLC40A1) in Differentiated Keratinocytes
3.4. Expression and Function of Hephaestin-like 1 (HEPHL1) in Differentiated Keratinocytes
4. Roles of Iron in Skin Infections and Other Pathologies
4.1. Control of Microbes on the Skin Surface
4.2. Roles of Iron in Nutritional Immunity of the Skin
4.3. Iron in Non-Infectious Skin Diseases
5. Comparison of Iron Metabolism in the Epidermis and Other Stratified Epithelia
6. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fuchs, E. Scratching the surface of skin development. Nature 2007, 445, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Watt, F.M. Terminal differentiation of epidermal keratinocytes. Curr. Opin. Cell Biol. 1989, 1, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Amagai, M. Dissecting the formation, structure and barrier function of the stratum corneum. Int. Immunol. 2015, 27, 269–280. [Google Scholar] [CrossRef]
- Eckhart, L.; Zeeuwen, P.L.J.M. The skin barrier: Epidermis vs environment. Exp. Dermatol. 2018, 27, 805–806. [Google Scholar] [CrossRef]
- Dutt, S.; Hamza, I.; Bartnikas, T.B. Molecular mechanisms of iron and heme metabolism. Annu. Rev. Nutr. 2022, 42, 311–335. [Google Scholar] [CrossRef]
- Ricci, A.; Di Betto, G.; Bergamini, E.; Buzzetti, E.; Corradini, E.; Ventura, P. Iron metabolism in the disorders of heme biosynthesis. Metabolites 2022, 12, 819. [Google Scholar] [CrossRef]
- Rizzollo, F.; More, S.; Vangheluwe, P.; Agostinis, P. The lysosome as a master regulator of iron metabolism. Trends. Biochem. Sci. 2021, 46, 960–975. [Google Scholar] [CrossRef]
- Wright, J.A.; Richards, T.; Srai, S.K. The role of iron in the skin and cutaneous wound healing. Front. Pharmacol. 2014, 5, 156. [Google Scholar] [CrossRef]
- Asano, M.; Yamasaki, K.; Yamauchi, T.; Terui, T.; Aiba, S. Epidermal iron metabolism for iron salvage. J. Dermatol. Sci. 2017, 87, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Surbek, M.; Sukseree, S.; Sachslehner, A.P.; Copic, D.; Golabi, B.; Nagelreiter, I.M.; Tschachler, E.; Eckhart, L. Heme oxygenase-1 is upregulated during differentiation of keratinocytes but its expression is dispensable for cornification of murine epidermis. J. Dev. Biol. 2023, 11, 12. [Google Scholar] [CrossRef]
- Caldas Nogueira, M.L.; Pastore, A.J.; Davidson, V.L. Diversity of structures and functions of oxo-bridged non-heme diiron proteins. Arch. Biochem. Biophys. 2021, 705, 108917. [Google Scholar] [CrossRef] [PubMed]
- Kotla, N.K.; Dutta, P.; Parimi, S.; Das, N.K. The role of ferritin in health and disease: Recent advances and understandings. Metabolites 2022, 12, 609. [Google Scholar] [CrossRef]
- De Domenico, I.; McVey Ward, D.; Kaplan, J. Regulation of iron acquisition and storage: Consequences for iron-linked disorders. Nat. Rev. Mol. Cell Biol. 2008, 9, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yu, C.; Kang, R.; Tang, D. Iron metabolism in ferroptosis. Front. Cell Dev. Biol. 2020, 8, 590226. [Google Scholar] [CrossRef]
- Vats, K.; Kruglov, O.; Mizes, A.; Samovich, S.N.; Amoscato, A.A.; Tyurin, V.A.; Tyurina, Y.Y.; Kagan, V.E.; Bunimovich, Y.L. Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure. Redox Biol. 2021, 47, 102143. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Lian, N.; Shi, L.; Hao, Z.; Chen, K. Ferroptosis: Mechanism and connections with cutaneous diseases. Front. Cell Dev. Biol. 2023, 10, 1079548. [Google Scholar] [CrossRef]
- Shah, R.; Shchepinov, M.S.; Pratt, D.A. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent. Sci. 2018, 4, 387–396. [Google Scholar] [CrossRef]
- Shou, Y.; Yang, L.; Yang, Y.; Xu, J. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation. Cell Death Dis. 2021, 12, 1009. [Google Scholar] [CrossRef]
- Krieg, P.; Fürstenberger, G. The role of lipoxygenases in epidermis. Biochim. Biophys. Acta 2014, 1841, 390–400. [Google Scholar] [CrossRef]
- Egolf, S.; Zou, J.; Anderson, A.; Simpson, C.L.; Aubert, Y.; Prouty, S.; Ge, K.; Seykora, J.T.; Capell, B.C. MLL4 mediates differentiation and tumor suppression through ferroptosis. Sci. Adv. 2021, 7, 9141. [Google Scholar] [CrossRef]
- Jobard, F.; Lefèvre, C.; Karaduman, A.; Blanchet-Bardon, C.; Emre, S.; Weissenbach, J.; Ozgüc, M.; Lathrop, M.; Prud’homme, J.F.; Fischer, J. Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1. Hum. Mol. Genet. 2002, 11, 107–113. [Google Scholar] [CrossRef]
- Youssry, I.; Mohsen, N.A.; Shaker, O.G.; El-Hennawy, A.; Fawzy, R.; Abu-Zeid, N.M.; El-Beshlawy, A. Skin iron concentration: A simple, highly sensitive method for iron stores evaluation in thalassemia patients. Hemoglobin 2007, 31, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Khalil, S.; Cavagnero, K.J.; Williams, M.R.; O’Neill, A.; Nakatsuji, T.; Gallo, R.L. Regulation of epidermal ferritin expression influences systemic iron homeostasis. J. Investig. Dermatol. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Weintraub, L.R.; Demis, D.J.; Conrad, M.E.; Crosby, W.H. Iron excretion by the skin. Selective localization or iron-59 in epthelial cells. Am. J. Pathol. 1965, 46, 121–127. [Google Scholar] [PubMed]
- Milstone, L.M.; Hu, R.H.; Dziura, J.D.; Zhou, J. Impact of epidermal desquamation on tissue stores of iron. J. Dermatol. Sci. 2012, 67, 9–14. [Google Scholar] [CrossRef]
- Christophers, E.; Sterry, W. Epidermis: Disorders of cell kinetics and differentiation. In Dermatology in General Medicine, 4th ed.; Fitzpatrick, T.B., Eisen, A.Z., Wolff, K., Freedberg, I.M., Austen, K.F., Eds.; McGraw-Hill, Inc.: New York, NY, USA, 1993; Volume 1, pp. 489–514. [Google Scholar]
- Ponikowska, M.; Tupikowska, M.; Kasztura, M.; Jankowska, E.A.; Szepietowski, J.C. Deranged iron status in psoriasis: The impact of low body mass. J. Cachexia Sarcopenia Muscle 2015, 6, 358–364. [Google Scholar] [CrossRef]
- Coger, V.; Million, N.; Rehbock, C.; Sures, B.; Nachev, M.; Barcikowski, S.; Wistuba, N.; Strauß, S.; Vogt, P.M. Tissue concentrations of zinc, iron, copper, and magnesium during the phases of full thickness wound healing in a rodent model. Biol. Trace Elem. Res. 2019, 191, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Molin, L.; Wester, P.O. Iron content in normal and psoriatic epidermis. Acta Derm. Venereol. 1973, 53, 473–476. [Google Scholar] [CrossRef]
- Forslind, B.; Werner-Linde, Y.; Lindberg, M.; Pallon, J. Elemental analysis mirrors epidermal differentiation. Acta Derm. Venereol. 1999, 79, 12–17. [Google Scholar]
- Soyer, H.P.; Smolle, J.; Torne, R.; Kerl, H. Transferrin receptor expression in normal skin and in various cutaneous tumors. J. Cutan. Pathol. 1987, 14, 1–5. [Google Scholar] [CrossRef]
- Metral, E.; Bechetoille, N.; Demarne, F.; Rachidi, W.; Damour, O. α6 Integrin (α6high)/Transferrin receptor (CD71)low keratinocyte stem cells are more potent for generating reconstructed skin epidermis than rapid adherent cells. Int. J. Mol. Sci. 2017, 18, 282. [Google Scholar] [CrossRef]
- Milstone, L.M.; Adams, B.D.; Zhou, J.; Bruegel Sanchez, V.L.; Shofner, J. Stratum-specific expression of human transferrin receptor increases iron in mouse epidermis. J. Investig. Dermatol. 2006, 126, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Applegate, L.A.; Scaletta, C.; Panizzon, R.; Frenk, E. Evidence that ferritin is UV inducible in human skin: Part of a putative defense mechanism. J. Investig. Dermatol. 1998, 111, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Applegate, L.A.; Frenk, E. Oxidative defense in cultured human skin fibroblasts and keratinocytes from sun-exposed and non-exposed skin. Photodermatol. Photoimmunol. Photomed. 1995, 11, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Kerins, M.J.; Ooi, A. The roles of NRF2 in modulating cellular iron homeostasis. Antioxid. Redox Signal. 2018, 29, 1756–1773. [Google Scholar] [CrossRef]
- Yanatori, I.; Nishina, S.; Kishi, F.; Hino, K. Newly uncovered biochemical and functional aspects of ferritin. FASEB J. 2023, 37, 23095. [Google Scholar] [CrossRef]
- Mancias, J.D.; Wang, X.; Gygi, S.P.; Harper, J.W.; Kimmelman, A.C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014, 509, 105–109. [Google Scholar] [CrossRef]
- Seité, S.; Popovic, E.; Verdier, M.P.; Roguet, R.; Portes, P.; Cohen, C.; Fourtanier, A.; Galey, J.B. Iron chelation can modulate UVA-induced lipid peroxidation and ferritin expression in human reconstructed epidermis. Photodermatol. Photoimmunol. Photomed. 2004, 20, 47–52. [Google Scholar] [CrossRef]
- Hasegawa, S.; Harada, K.; Morokoshi, Y.; Tsukamoto, S.; Furukawa, T.; Saga, T. Growth retardation and hair loss in transgenic mice overexpressing human H-ferritin gene. Transgen. Res. 2013, 22, 651–658. [Google Scholar] [CrossRef]
- Anderson, C.P.; Shen, M.; Eisenstein, R.S.; Leibold, E.A. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim. Biophys. Acta. 2012, 1823, 1468–1483. [Google Scholar] [CrossRef]
- Giordani, A.; Martin, M.E.; Beaumont, C.; Santus, R.; Morlière, P. Inactivation of iron responsive element-binding capacity and aconitase function of iron regulatory protein-1 of skin cells by ultraviolet A. Photochem. Photobiol. 2000, 72, 746–752. [Google Scholar] [CrossRef]
- Malerba, M.; Louis, S.; Cuvellier, S.; Shambat, S.M.; Hua, C.; Gomart, C.; Fouet, A.; Ortonne, N.; Decousser, J.W.; Zinkernagel, A.S.; et al. Epidermal hepcidin is required for neutrophil response to bacterial infection. J. Clin. Investig. 2020, 130, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Cavill, I.; Jacobs, A.; Beamish, M.; Owen, G. Iron turnover in the skin. Nature 1969, 222, 167–168. [Google Scholar] [CrossRef] [PubMed]
- Eckhart, L.; Lippens, S.; Tschachler, E.; Declercq, W. Cell death by cornification. Biochim. Biophys. Acta. 2013, 1833, 3471–3480. [Google Scholar] [CrossRef]
- Yokouchi, M.; Kubo, A. Maintenance of tight junction barrier integrity in cell turnover and skin diseases. Exp. Dermatol. 2018, 27, 876–883. [Google Scholar] [CrossRef] [PubMed]
- De Benedetto, A.; Rafaels, N.M.; McGirt, L.Y.; Ivanov, A.I.; Georas, S.N.; Cheadle, C.; Berger, A.E.; Zhang, K.; Vidyasagar, S.; Yoshida, T.; et al. Tight junction defects in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2011, 127, 773–786. [Google Scholar] [CrossRef]
- Kirschner, N.; Houdek, P.; Fromm, M.; Moll, I.; Brandner, J.M. Tight junctions form a barrier in human epidermis. Eur. J. Cell Biol. 2010, 89, 839–842. [Google Scholar] [CrossRef]
- Méhul, B.; Ménigot, C.; Fogel, P.; Seraidaris, A.; Genette, A.; Pascual, T.; Duvic, M.; Voegel, J.J. Proteomic analysis of stratum corneum in cutaneous T-cell lymphomas and psoriasis. Exp. Dermatol. 2019, 28, 317–321. [Google Scholar] [CrossRef]
- Campbell, N.K.; Fitzgerald, H.K.; Dunne, A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat. Rev. Immunol. 2021, 21, 411–425. [Google Scholar] [CrossRef]
- Wojas-Pelc, A.; Marcinkiewicz, J. What is a role of haeme oxygenase-1 in psoriasis? Current concepts of pathogenesis. Int. J. Exp. Pathol. 2007, 88, 95–102. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, G.; Yang, L.; Zhong, J.L. UVA-induced protection of skin through the induction of heme oxygenase-1. Biosci. Trends 2011, 5, 239–244. [Google Scholar] [CrossRef]
- Numata, I.; Okuyama, R.; Memezawa, A.; Ito, Y.; Takeda, K.; Furuyama, K.; Shibahara, S.; Aiba, S. Functional expression of heme oxygenase-1 in human differentiated epidermis and its regulation by cytokines. J. Investig. Dermatol. 2009, 129, 2594–2603. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.; Ding, S.; Acosta-Jimenez, L.P.; Frangova, T.G.; Henderson, C.J.; Wolf, C.R. Measuring in vivo responses to endogenous and exogenous oxidative stress using a novel haem oxygenase 1 reporter mouse. J. Physiol. 2018, 596, 105–127. [Google Scholar] [CrossRef]
- Udayanga, K.G.; Miyata, H.; Yokoo, Y.; Qi, W.M.; Takahara, E.; Mantani, Y.; Yokoyama, T.; Hoshi, N.; Kitagawa, H. Immunohistochemical study of the apoptosis process in epidermal epithelial cells of rats under a physiological condition. Histol. Histopathol. 2011, 26, 811–820. [Google Scholar]
- Schäfer, M.; Farwanah, H.; Willrodt, A.H.; Huebner, A.J.; Sandhoff, K.; Roop, D.; Hohl, D.; Bloch, W.; Werner, S. Nrf2 links epidermal barrier function with antioxidant defense. EMBO Mol. Med. 2012, 4, 364–379. [Google Scholar] [CrossRef]
- Ishitsuka, Y.; Roop, D.R. The epidermis: Redox governor of health and diseases. Antioxidants 2021, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Liu, W.; Zhang, S.; Liu, S. The cardinal roles of ferroportin and its partners in controlling cellular iron in and out. Life Sci. 2020, 258, 118135. [Google Scholar] [CrossRef] [PubMed]
- Vashchenko, G.; MacGillivray, R.T. Multi-copper oxidases and human iron metabolism. Nutrients 2013, 5, 2289–2313. [Google Scholar] [CrossRef]
- Matsui, T.; Kadono-Maekubo, N.; Suzuki, Y.; Furuichi, Y.; Shiraga, K.; Sasaki, H.; Ishida, A.; Takahashi, S.; Okada, T.; Toyooka, K. A unique mode of keratinocyte death requires intracellular acidification. Proc. Natl. Acad. Sci. USA 2021, 118, e2020722118. [Google Scholar] [CrossRef]
- Dyring-Andersen, B.; Løvendorf, M.B.; Coscia, F.; Santos, A.; Møller, L.B.P.; Colaço, A.R.; Niu, L.; Bzorek, M.; Doll, S.; Andersen, J.L.; et al. Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin. Nat. Commun. 2020, 11, 5587. [Google Scholar] [CrossRef]
- Sukseree, S.; Karim, N.; Jaeger, K.; Zhong, S.; Rossiter, H.; Nagelreiter, I.M.; Gruber, F.; Tschachler, E.; Rice, R.H.; Eckhart, L. Autophagy controls the protein composition of hair shafts. J. Investig. Dermatol. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Laatsch, C.N.; Durbin-Johnson, B.P.; Rocke, D.M.; Mukwana, S.; Newland, A.B.; Flagler, M.J.; Davis, M.G.; Eigenheer, R.A.; Phinney, B.S.; Rice, R.H. Human hair shaft proteomic profiling: Individual differences, site specificity and cuticle analysis. PeerJ 2014, 2, e506. [Google Scholar] [CrossRef]
- Samra, E.B.; Mahé, Y.F.; Le Balch, M.; Cavusoglu, N.; Bouhanna, P.; Bakkar, K. Transcriptome profiling of pilosebaceous units in male androgenetic alopecia reveals altered junctional networks. J. Investig. Dermatol. 2021, 141, 2070–2073. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Reichert, M.; Lu, Y.; Markello, T.C.; Adams, D.R.; Steinbach, P.J.; Fuqua, B.K.; Parisi, X.; Kaler, S.G.; Vulpe, C.D.; et al. Biallelic HEPHL1 variants impair ferroxidase activity and cause an abnormal hair phenotype. PLoS Genet. 2019, 15, e1008143. [Google Scholar] [CrossRef] [PubMed]
- Eragene, S.; Stewart, J.J.; Samuel-Constanzo, J.I.; Tan, T.; Esgdaille, N.Z.; Bigiarelli, K.J.; DaCosta, V.D.; Jimenez, H.; King, T.R. The mouse curly whiskers (cw) mutations are recessive alleles of hephaestin-like 1 (Hephl1). Mol. Genet. Metab. Rep. 2019, 20, 100478. [Google Scholar] [CrossRef] [PubMed]
- Kuca, T.; Marron, B.M.; Jacinto, J.G.P.; Paris, J.M.; Gerspach, C.; Beever, J.E.; Drögemüller, C. A Nonsense variant in hephaestin like 1 (HEPHL1) is responsible for congenital hypotrichosis in belted Galloway cattle. Genes 2021, 12, 643. [Google Scholar] [CrossRef]
- Skaar, E.P.; Humayun, M.; Bae, T.; DeBord, K.L.; Schneewind, O. Iron-source preference of Staphylococcus aureus infections. Science 2004, 305, 1626–1628. [Google Scholar] [CrossRef]
- van Dijk, M.C.; de Kruijff, R.M.; Hagedoorn, P.L. The role of iron in Staphylococcus aureus infection and human disease: A metal tug of war at the host-microbe interface. Front. Cell Dev. Biol. 2022, 10, 857237. [Google Scholar] [CrossRef]
- Murdoch, C.C.; Skaar, E.P. Nutritional immunity: The battle for nutrient metals at the host-pathogen interface. Nat. Rev. Microbiol. 2022, 20, 657–670. [Google Scholar] [CrossRef]
- Fourie, R.; Kuloyo, O.O.; Mochochoko, B.M.; Albertyn, J.; Pohl, C.H. Iron at the centre of Candida albicans interactions. Front. Cell. Infect. Microbiol. 2018, 8, 185. [Google Scholar] [CrossRef]
- Byrd, A.; Belkaid, Y.; Segre, J. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Chen, Y.; Fischbach, M.; Belkaid, Y. Skin microbiota–host interactions. Nature 2018, 553, 427–436. [Google Scholar] [CrossRef]
- Ederveen, T.H.A.; Smits, J.P.H.; Boekhorst, J.; Schalkwijk, J.; van den Bogaard, E.H.; Zeeuwen, P.L.J.M. Skin microbiota in health and disease: From sequencing to biology. J. Dermatol. 2020, 47, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Schröder, J.M. The role of keratinocytes in defense against infection. Curr. Opin. Infect. Dis. 2010, 23, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Rademacher, F.; Gläser, R.; Harder, J. Antimicrobial peptides and proteins: Interaction with the skin microbiota. Exp. Dermatol. 2021, 30, 1496–1508. [Google Scholar] [CrossRef] [PubMed]
- Kabashima, K.; Honda, T.; Ginhoux, F.; Egawa, G. The immunological anatomy of the skin. Nat. Rev. Immunol. 2019, 19, 19–30. [Google Scholar] [CrossRef]
- Kobayashi, T.; Naik, S.; Nagao, K. Choreographing immunity in the skin epithelial barrier. Immunity 2019, 50, 552–565. [Google Scholar] [CrossRef]
- Haley, K.P.; Janson, E.M.; Heilbronner, S.; Foster, T.J.; Skaar, E.P. Staphylococcus lugdunensis IsdG liberates iron from host heme. J. Bacteriol. 2011, 193, 4749–4757. [Google Scholar] [CrossRef] [PubMed]
- Lyles, K.V.; Eichenbaum, Z. From host heme to iron: The expanding spectrum of heme degrading enzymes used by pathogenic bacteria. Front. Cell. Infect. Microbiol. 2018, 8, 198. [Google Scholar] [CrossRef]
- Ibraim, I.C.; Parise, M.T.D.; Parise, D.; Sfeir, M.Z.T.; de Paula Castro, T.L.; Wattam, A.R.; Ghosh, P.; Barh, D.; Souza, E.M.; Góes-Neto, A.; et al. Transcriptome profile of Corynebacterium pseudotuberculosis in response to iron limitation. BMC Genom. 2019, 20, 663. [Google Scholar] [CrossRef]
- Ge, R.; Sun, X. Iron acquisition and regulation systems in Streptococcus species. Metallomics 2014, 6, 996–1003. [Google Scholar] [CrossRef]
- Kintarak, S.; Whawell, S.A.; Speight, P.M.; Packer, S.; Nair, S.P. Internalization of Staphylococcus aureus by human keratinocytes. Infect. Immun. 2004, 72, 5668–5675. [Google Scholar] [CrossRef]
- Schaible, U.E.; Kaufmann, S.H. Iron and microbial infection. Nat. Rev. Microbiol. 2004, 2, 946–953. [Google Scholar] [CrossRef]
- Hou, C.; Liu, L.; Ju, X.; Xiao, Y.; Li, B.; You, C. Revisiting Fur Regulon Leads to a Comprehensive Understanding of Iron and Fur Regulation. Int. J. Mol. Sci. 2023, 24, 9078. [Google Scholar] [CrossRef] [PubMed]
- Horsburgh, M.J.; Ingham, E.; Foster, S.J. In Staphylococcus aureus, fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J. Bacteriol. 2001, 183, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Torres, V.J.; Attia, A.S.; Mason, W.J.; Hood, M.I.; Corbin, B.D.; Beasley, F.C.; Anderson, K.L.; Stauff, D.L.; McDonald, W.H.; Zimmerman, L.J.; et al. Staphylococcus aureus fur regulates the expression of virulence factors that contribute to the pathogenesis of pneumonia. Infect. Immun. 2010, 78, 1618–1628. [Google Scholar] [CrossRef] [PubMed]
- Athanasopoulos, A.N.; Economopoulou, M.; Orlova, V.V.; Sobke, A.; Schneider, D.; Weber, H.; Augustin, H.G.; Eming, S.A.; Schubert, U.; Linn, T.; et al. The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms. Blood 2006, 107, 2720–2727. [Google Scholar] [CrossRef]
- Abdulbaqi, A.; Ibrahim, A.S. Molecular analysis of Staphylococcus aureus isolated from clinical samples and natural flora. Cell. Mol. Biol. (Noisy-le-Grand) 2023, 69, 145–149. [Google Scholar] [CrossRef]
- Bretl, D.J.; Elfessi, A.; Watkins, H.; Schwan, W.R. Regulation of the Staphylococcal superantigen-like protein 1 gene of community-associated methicillin-resistant Staphylococcus aureus in murine abscesses. Toxins 2019, 11, 391. [Google Scholar] [CrossRef]
- Broome, A.M.; Ryan, D.; Eckert, R.L. S100 protein subcellular localization during epidermal differentiation and psoriasis. J. Histochem. Cytochem. 2003, 51, 675–685. [Google Scholar] [CrossRef]
- Matsunaga, Y.; Hashimoto, Y.; Ishiko, A. Stratum corneum levels of calprotectin proteins S100A8/A9 correlate with disease activity in psoriasis patients. J. Dermatol. 2021, 48, 1518–1525. [Google Scholar] [CrossRef]
- Grimbaldeston, M.A.; Geczy, C.L.; Tedla, N.; Finlay-Jones, J.J.; Hart, P.H. S100A8 induction in keratinocytes by ultraviolet A irradiation is dependent on reactive oxygen intermediates. J. Investig. Dermatol. 2003, 121, 1168–1174. [Google Scholar] [CrossRef]
- Nakashige, T.G.; Zhang, B.; Krebs, C.; Nolan, E.M. Human calprotectin is an iron-sequestering host-defense protein. Nat. Chem. Biol. 2015, 11, 765–7171. [Google Scholar] [CrossRef] [PubMed]
- Obisesan, A.O.; Zygiel, E.M.; Nolan, E.M. Bacterial responses to iron withholding by calprotectin. Biochemistry 2021, 60, 3337–3346. [Google Scholar] [CrossRef] [PubMed]
- Zygiel, E.M.; Nolan, E.M. Transition metal sequestration by the host-defense protein calprotectin. Annu. Rev. Biochem. 2018, 87, 621–643. [Google Scholar] [CrossRef]
- Zygiel, E.M.; Obisesan, A.O.; Nelson, C.E.; Oglesby, A.G.; Nolan, E.M. Heme protects Pseudomonas aeruginosa and Staphylococcus aureus from calprotectin-induced iron starvation. J. Biol. Chem. 2021, 296, 100160. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, T. Experimental hemosiderosis: Relationship between skin pigmentation and hemosiderin. Acta Derm. Venereol. 1980, 60, 109–114. [Google Scholar] [CrossRef]
- Caggiati, A.; Rosi, C.; Casini, A.; Cirenza, M.; Petrozza, V.; Acconcia, M.C.; Zamboni, P. Skin iron deposition characterises lipodermatosclerosis and leg ulcer. Eur. J. Vasc. Endovasc. Surg. 2010, 40, 777–782. [Google Scholar] [CrossRef]
- Pinnell, S.R.; Krane, S.M.; Kenzora, J.E.; Glimcher, M.J. A heritable disorder of connective tissue. Hydroxylysine-deficient collagen disease. N. Engl. J. Med. 1972, 286, 1013–1020. [Google Scholar] [CrossRef]
- Xiao, G.; Zhou, B. ZIP13: A study of Drosophila offers an alternative explanation for the corresponding human disease. Front. Genet. 2018, 8, 234. [Google Scholar] [CrossRef]
- Wlaschek, M.; Singh, K.; Sindrilaru, A.; Crisan, D.; Scharffetter-Kochanek, K. Iron and iron-dependent reactive oxygen species in the regulation of macrophages and fibroblasts in non-healing chronic wounds. Free Radic. Biol. Med. 2019, 133, 262–275. [Google Scholar] [CrossRef]
- Wu, X.; Jin, S.; Yang, Y.; Lu, X.; Dai, X.; Xu, Z.; Zhang, C.; Xiang, L.F. Altered expression of ferroptosis markers and iron metabolism reveals a potential role of ferroptosis in vitiligo. Pigment Cell Melanoma Res. 2022, 35, 328–341. [Google Scholar] [CrossRef]
- Wang, S.; Yi, X.; Wu, Z.; Guo, S.; Dai, W.; Wang, H.; Shi, Q.; Zeng, K.; Guo, W.; Li, C. CAMKK2 defines ferroptosis sensitivity of melanoma cells by regulating AMPK–NRF2 pathway. J. Investig. Dermatol. 2022, 142, 189–200. [Google Scholar] [CrossRef]
- Hu, X.M.; Zheng, S.Y.; Mao, R.; Zhang, Q.; Wan, X.X.; Zhang, Y.Y.; Li, J.; Yang, R.H.; Xiong, K. Pyroptosis-related gene signature elicits immune response in rosacea. Exp. Dermatol. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Wagner, T.; Beer, L.; Gschwandtner, M.; Eckhart, L.; Kalinina, P.; Laggner, M.; Ellinger, A.; Gruber, R.; Kuchler, U.; Golabi, B.; et al. The differentiation-associated keratinocyte protein cornifelin contributes to cell-cell adhesion of epidermal and mucosal keratinocytes. J. Investig. Dermatol. 2019, 139, 2292–2301. [Google Scholar] [CrossRef] [PubMed]
- Sachslehner, A.P.; Surbek, M.; Golabi, B.; Geiselhofer, M.; Jäger, K.; Hess, C.; Kuchler, U.; Gruber, R.; Eckhart, L. Transglutaminase activity is conserved in stratified epithelia and skin appendages of mammals and birds. Int. J. Mol. Sci. 2023, 24, 2193. [Google Scholar] [CrossRef] [PubMed]
- Argyris, P.P.; Slama, Z.M.; Ross, K.F.; Khammanivong, A.; Herzberg, M.C. Calprotectin and the initiation and progression of head and neck cancer. J. Dent. Res. 2018, 97, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Y. Perception of iron deficiency from oral mucosa alterations that show a high prevalence of Candida infection. J. Formos. Med. Assoc. 2016, 115, 619–627. [Google Scholar] [CrossRef]
- Solis, N.V.; Wakade, R.S.; Filler, S.G.; Krysan, D.J. Candida albicans oropharyngeal infection is an exception to iron-based nutritional immunity. mBio 2023, 14, e0009523. [Google Scholar] [CrossRef]
- Nikawa, H.; Samaranayake, L.P.; Tenovuo, J.; Pang, K.M.; Hamada, T. The fungicidal effect of human lactoferrin on Candida albicans and Candida krusei. Arch. Oral. Biol. 1993, 38, 1057–1063. [Google Scholar] [CrossRef]
- Gruden, Š.; Poklar Ulrih, N. Diverse mechanisms of antimicrobial activities of lactoferrins, lactoferricins, and other lactoferrin-derived peptides. Int. J. Mol. Sci. 2021, 22, 11264. [Google Scholar] [CrossRef]
- Muto, T.; Miyoshi, K.; Horiguchi, T.; Noma, T. Dissection of morphological and metabolic differentiation of ameloblasts via ectopic SP6 expression. J. Med. Investig. 2012, 59, 59–68. [Google Scholar] [CrossRef]
- Wen, X.; Paine, M.L. Iron deposition and ferritin heavy chain (Fth) localization in rodent teeth. BMC Res. Notes 2013, 6, 1–11. [Google Scholar] [CrossRef]
- Yanagawa, T.; Itoh, K.; Uwayama, J.; Shibata, Y.; Yamaguchi, A.; Sano, T.; Ishii, T.; Yoshida, H.; Yamamoto, M. Nrf2 deficiency causes tooth decolourization due to iron transport disorder in enamel organ. Genes Cells 2004, 9, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.M.; Cohen, M.J.; MacRenaris, K.W.; Pasteris, J.D.; Seda, T.; Joester, D. Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel. Science 2015, 347, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, Y.; Sakai, H.; Shibata, Y.; Shibata, M.; Mataki, S.; Kato, Y. Expression and localization of ferritin mRNA in ameloblasts of rat incisor. Arch. Oral. Biol. 1998, 43, 367–378. [Google Scholar] [CrossRef]
- Sukseree, S.; Schwarze, U.Y.; Gruber, R.; Gruber, F.; Quiles Del Rey, M.; Mancias, J.D.; Bartlett, J.D.; Tschachler, E.; Eckhart, L. ATG7 is essential for secretion of iron from ameloblasts and normal growth of murine incisors during aging. Autophagy 2020, 16, 1851–1857. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Ou, Y.J.; Zhu, Y.X.; Liang, Y.D.; Zhou, Y.; Wang, Y.N. Lif deficiency leads to iron transportation dysfunction in ameloblasts. J. Dent. Res. 2022, 101, 63–72. [Google Scholar] [CrossRef]
- Poss, K.D.; Tonegawa, S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc. Natl. Acad. Sci. USA 1997, 94, 10919–10924. [Google Scholar] [CrossRef]
- Hirayama, T. Fluorescent probes for the detection of catalytic Fe(II) ion. Free Radic. Biol. Med. 2019, 133, 38–45. [Google Scholar] [CrossRef]
- Mund, A.; Brunner, A.D.; Mann, M. Unbiased spatial proteomics with single-cell resolution in tissues. Mol. Cell 2022, 82, 2335–2349. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surbek, M.; Sukseree, S.; Eckhart, L. Iron Metabolism of the Skin: Recycling versus Release. Metabolites 2023, 13, 1005. https://doi.org/10.3390/metabo13091005
Surbek M, Sukseree S, Eckhart L. Iron Metabolism of the Skin: Recycling versus Release. Metabolites. 2023; 13(9):1005. https://doi.org/10.3390/metabo13091005
Chicago/Turabian StyleSurbek, Marta, Supawadee Sukseree, and Leopold Eckhart. 2023. "Iron Metabolism of the Skin: Recycling versus Release" Metabolites 13, no. 9: 1005. https://doi.org/10.3390/metabo13091005
APA StyleSurbek, M., Sukseree, S., & Eckhart, L. (2023). Iron Metabolism of the Skin: Recycling versus Release. Metabolites, 13(9), 1005. https://doi.org/10.3390/metabo13091005