Stable Isotope Dilution Analysis (SIDA) to Determine Metabolites of Furan and 2-Methylfuran in Human Urine Samples: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Syntheses
2.2.1. Synthesis of l-2-Amino-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)hexanoic acid (Lys-BDA) and [13C6,15N2]-l-2-Amino-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)hexanoic acid ([13C6,15N2]-Lys-BDA)
2.2.2. Synthesis of l-2-(acetylamino)-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)hexanoic acid (Nα-AcLys-BDA) and [13C6,15N2]-l-2-(acetylamino)-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)hexanoic acid ([13C6,15N2]-Nα-AcLys-BDA)
2.2.3. Synthesis of N-[4-carboxy-4-(2-or3-mercapto-1H-pyrrol-1-yl)-1-oxobutyl]-l-cysteinylglycine cyclic sulfide (GSH-BDA) and [Gly-13C2,15N]-N-[4-carboxy-4-(2-or3-mercapto-1H-pyrrol-1-yl)-1-oxobutyl]-l-cysteinylglycine cyclic sulfide ([Gly-13C2,15N]-GSH-BDA)
2.2.4. Synthesis of l-2-Amino-6-(2,5-dihydro-5-methyl-2-oxo-1H-pyrrol-1-yl)hexanoic acid (Lys-AcA) and [13C6,15N2]-l-2-Amino-6-(2,5-dihydro-5-methyl-2-oxo-1H-pyrrol-1-yl)hexanoic acid ([13C6,15N2]-Lys-AcA)
2.2.5. Synthesis of l-2-(acetylamino)-6-(2,5-dihydro-2-oxo-5-methyl-1H-pyrrol-1-yl)hexanoic acid (AcLys-AcA) and [13C6,15N2]-l-2-(acetylamino)-6-(2,5-dihydro-2-oxo-5-methyl-1H-pyrrol-1-yl)hexanoic acid ([13C6,15N2]-AcLys-AcA)
2.3. Stability Study
2.4. Human Intervention Study
2.5. Sample Preparation
2.6. UPLC-ESI-MS/MS
2.7. Data Analysis/Statistics
3. Results
3.1. Synthesis
3.2. Urine Sample Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moro, S.; Chipman, J.K.; Wegener, J.-W.; Hamberger, C.; Dekant, W.; Mally, A. Furan in heat-treated foods: Formation, exposure, toxicity, and aspects of risk assessment. Mol. Nutr. Food Res. 2012, 56, 1197–1211. [Google Scholar] [CrossRef]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. Risks for public health related to the presence of furan and methylfurans in food. EFSA J. 2017, 15, e05005. [Google Scholar] [CrossRef] [PubMed]
- Perez Locas, C.; Yaylayan, V.A. Origin and mechanistic pathways of formation of the parent furan—A food toxicant. J. Agric. Food Chem. 2004, 52, 6830–6836. [Google Scholar] [CrossRef] [PubMed]
- Crews, C.; Castle, L. A review of the occurrence, formation and analysis of furan in heat-processed foods. Trends Food Sci. Technol. 2007, 18, 365–372. [Google Scholar] [CrossRef]
- EFSA. Update on furan levels in food from monitoring years 2004–2010 and exposure assessment. EFSA J. 2011, 9, 2347. [Google Scholar] [CrossRef]
- Guenther, H.; Hoenicke, K.; Biesterveld, S.; Gerhard-Rieben, E.; Lantz, I. Furan in coffee: Pilot studies on formation during roasting and losses during production steps and consumer handling. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Rahn, A.; Yeretzian, C. Impact of consumer behavior on furan and furan-derivative exposure during coffee consumption. A comparison between brewing methods and drinking preferences. Food Chem. 2019, 272, 514–522. [Google Scholar] [CrossRef]
- Altaki, M.S.; Santos, F.J.; Galceran, M.T. Occurrence of furan in coffee from Spanish market: Contribution of brewing and roasting. Food Chem. 2011, 126, 1527–1532. [Google Scholar] [CrossRef]
- Becalski, A.; Hayward, S.; Krakalovich, T.; Pelletier, L.; Roscoe, V.; Vavasour, E. Development of an analytical method and survey of foods for furan, 2-methylfuran and 3-methylfuran with estimated exposure. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 764–775. [Google Scholar] [CrossRef]
- Becalski, A.; Halldorson, T.; Hayward, S.; Roscoe, V. Furan, 2-methylfuran and 3-methylfuran in coffee on the Canadian market. J. Food Compos. Anal. 2016, 47, 113–119. [Google Scholar] [CrossRef]
- IARC. Dry cleaning, some chlorinated solvents and other industrial chemicals. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1995; pp. 393–407. [Google Scholar]
- National Toxicology Program. Toxicology and Carcinogenesis Studies of Furan (CAS No. 110-00-9) in F344 Rats and B6C3F1 Mice (Gavage Studies). Natl. Toxicol. Program Tech. Rep. Ser. 1993, 402, 1–286. [Google Scholar]
- Rietjens, I.M.C.M.; Dussort, P.; Günther, H.; Hanlon, P.; Honda, H.; Mally, A.; O’Hagan, S.; Scholz, G.; Seidel, A.; Swenberg, J.; et al. Exposure assessment of process-related contaminants in food by biomarker monitoring. Arch. Toxicol. 2018, 92, 15–40. [Google Scholar] [CrossRef] [PubMed]
- Burka, L.T.; Washburn, K.D.; Irwin, R.D. Disposition of 14Cfuran in the male F344 rat. J. Toxicol. Environ. Health 1991, 34, 245–257. [Google Scholar] [CrossRef]
- Chen, L.J.; Hecht, S.S.; Peterson, L.A. Identification of cis-2-butene-1,4-dial as a microsomal metabolite of furan. Chem. Res. Toxicol. 1995, 8, 903–906. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.A.; Cummings, M.E.; Chan, J.Y.; Vu, C.C.; Matter, B.A. Identification of a cis-2-butene-1,4-dial-derived glutathione conjugate in the urine of furan-treated rats. Chem. Res. Toxicol. 2006, 19, 1138–1141. [Google Scholar] [CrossRef] [PubMed]
- Kellert, M.; Wagner, S.; Lutz, U.; Lutz, W.K. Biomarkers of furan exposure by metabolic profiling of rat urine with liquid chromatography-tandem mass spectrometry and principal component analysis. Chem. Res. Toxicol. 2008, 21, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Sullivan, M.M.; Phillips, M.B.; Peterson, L.A. Degraded protein adducts of cis-2-butene-1,4-dial are urinary and hepatocyte metabolites of furan. Chem. Res. Toxicol. 2009, 22, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Peterson, L.A. Identification of furan metabolites derived from cysteine-cis-2-butene-1,4-dial-lysine cross-links. Chem. Res. Toxicol. 2010, 23, 142–151. [Google Scholar] [CrossRef]
- Karlstetter, D.; Mally, A. Biomonitoring of heat-induced food contaminants: Quantitative analysis of furan dependent glutathione- and lysine-adducts in rat urine as putative biomarkers of exposure. Food Chem. Toxicol. 2020, 143, 111562. [Google Scholar] [CrossRef]
- Peterson, L.A.; Cummings, M.E.; Vu, C.C.; Matter, B.A. Glutathione trapping to measure microsomal oxidation of furan to cis-2-butene-1,4-dial. Drug Metab. Dispos. 2005, 33, 1453–1458. [Google Scholar] [CrossRef]
- Hamberger, C.; Kellert, M.; Schauer, U.M.; Dekant, W.; Mally, A. Hepatobiliary toxicity of furan: Identification of furan metabolites in bile of male f344/n rats. Drug Metab. Dispos. 2010, 38, 1698–1706. [Google Scholar] [CrossRef]
- Grill, A.E.; Schmitt, T.; Gates, L.A.; Lu, D.; Bandyopadhyay, D.; Yuan, J.-M.; Murphy, S.E.; Peterson, L.A. Abundant rodent furan-derived urinary metabolites are associated with tobacco smoke exposure in humans. Chem. Res. Toxicol. 2015, 28, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Kassem, N.O.F.; Peterson, L.A.; Liles, S.; Kassem, N.O.; Zaki, F.K.; Lui, K.-J.; Vevang, K.R.; Dodder, N.G.; Hoh, E.; Hovell, M.F. Urinary metabolites of furan in waterpipe tobacco smokers compared to non-smokers in home settings in the US. Toxicol. Lett. 2020, 333, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, V.; McMenamin, M.G.; Dees, J.H.; Boyd, M.R. 2-Methylfuran toxicity in rats--role of metabolic activation in vivo. Toxicol. Appl. Pharmacol. 1986, 85, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, V.; Burka, L.T.; Boyd, M.R. Reactive metabolites from the bioactivation of toxic methylfurans. Science 1984, 224, 884–886. [Google Scholar] [CrossRef] [PubMed]
- Stegmüller, S.; Beißmann, N.; Kremer, J.I.; Mehl, D.; Baumann, C.; Richling, E. A New UPLC-qTOF approach for elucidating furan and 2-methylfuran metabolites in human urine samples after coffee consumption. Molecules 2020, 25, 5104. [Google Scholar] [CrossRef]
- Mochalski, P.; Unterkofler, K. Quantification of selected volatile organic compounds in human urine by gas chromatography selective reagent ionization time of flight mass spectrometry (GC-SRI-TOF-MS) coupled with head-space solid-phase microextraction (HS-SPME). Analyst 2016, 141, 4796–4803. [Google Scholar] [CrossRef]
- Alves, J.C.F. Preliminary studies towards the preparation of reactive 3-pyrrolin-2-ones in conjugate addition reactions for the syntheses of potentially bioactive 2-pyrrolidinones and pyrrolidines. J. Braz. Chem. Soc. 2007, 18, 855–859. [Google Scholar] [CrossRef]
- Kremer, J.I.; Pickard, S.; Stadlmair, L.F.; Glaß-Theis, A.; Buckel, L.; Bakuradze, T.; Eisenbrand, G.; Richling, E. Alkylpyrazines from coffee are extensively metabolized to pyrazine carboxylic acids in the human body. Mol. Nutr. Food Res. 2019, 63, e1801341. [Google Scholar] [CrossRef]
- Kremer, J.I.; Gömpel, K.; Bakuradze, T.; Eisenbrand, G.; Richling, E. Urinary excretion of niacin metabolites in humans after coffee consumption. Mol. Nutr. Food Res. 2018, 62, e1700735. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci 2011, 2, 21. [Google Scholar] [CrossRef]
- Peterson, L.A.; Naruko, K.C.; Predecki, D.P. A reactive metabolite of furan, cis -2-butene-1,4-dial, is mutagenic in the Ames assay. Chem. Res. Toxicol. 2000, 13, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Byrns, M.C.; Vu, C.C.; Peterson, L.A. The formation of substituted 1,N6-etheno-2’-deoxyadenosine and 1,N2-etheno-2’-deoxyguanosine adducts by cis-2-butene-1,4-dial, a reactive metabolite of furan. Chem. Res. Toxicol. 2004, 17, 1607–1613. [Google Scholar] [CrossRef] [PubMed]
- Mondelli, R.; Bocchi, V.; Gardini, G.P.; Chierici, L. NMR spectra of Δ3- and Δ4-pyrrolin-2-one. Org. Magn. Reson. 1971, 3, 7–22. [Google Scholar] [CrossRef]
- Alves, J.C.F. 2-Pyrrolidinones and 3-pyrrolin-2-ones: A study on the chemical reactivity of these structural moieties. Org. Chem. Int. 2011, 2011, 803120. [Google Scholar] [CrossRef]
- Chen, L.J.; Hecht, S.S.; Peterson, L.A. Characterization of amino acid and glutathione adducts of cis-2-butene-1,4-dial, a reactive metabolite of furan. Chem. Res. Toxicol. 1997, 10, 866–874. [Google Scholar] [CrossRef]
- Whelton, A.; Watson, A.J.; Rock, R.C. Tietz Textbook of Clinical Chemistry, 2nd ed.; Burtis, C.A., Ashwood, E.R., Tietz, N.W., Eds.; Saunders: Philadelphia, PA, USA, 1994; pp. 1513–1575. ISBN 0721644724. [Google Scholar]
Compound-Specific Parameters | Rt (min) | Q1/Q3 (m/z) | Dwell (msec) | DP (V) | EP (V) | CE (V) | CXP (V) | |
---|---|---|---|---|---|---|---|---|
Period 1 | Lys-AcA | 1.39 | 226.921/146.1 * | 150 | 106 | 13 | 31 | 14 |
226.921/181.2 | 75 | 106 | 13 | 17 | 18 | |||
Lys-AcA-IS | 234.887/90.0 * | 150 | 86 | 10 | 27 | 10 | ||
234.887/188.1 | 100 | 86 | 10 | 17 | 28 | |||
Lys-BDA | 1.51 | 212.847/84.1 * | 125 | 31 | 8 | 29 | 8 | |
212.847/132.0 | 125 | 31 | 7 | 29 | 20 | |||
Lys-BDA-IS | 221.037/90.0 * | 125 | 11 | 10 | 29 | 14 | ||
221.037/174.1 | 125 | 11 | 10 | 17 | 20 | |||
Period 2 | AcLys-AcA | 2.98 | 268.859/164.0 * | 90 | 131 | 13 | 25 | 16 |
268.859/82.0 | 70 | 131 | 7 | 31 | 12 | |||
AcLys-AcA-IS | 276.944/170.1 * | 90 | 136 | 11 | 33 | 14 | ||
276.944/88.0 | 70 | 136 | 11 | 37 | 18 | |||
GSH-BDA | 3.16 | 355.953/210.0 * | 175 | 36 | 10 | 31 | 16 | |
355.953/136.0 | 125 | 36 | 8 | 73 | 14 | |||
GSH-BDA-IS | 358.829/209.8 * | 175 | 36 | 10 | 37 | 16 | ||
358.829/136.0 | 125 | 36 | 10 | 71 | 8 | |||
AcLys-BDA | 3.62 | 254.962/84.0 * | 90 | 56 | 12 | 39 | 10 | |
254.962/209.1 | 70 | 56 | 10 | 17 | 28 | |||
AcLys-BDA-IS | 262.946/90.1 * | 90 | 41 | 10 | 35 | 10 | ||
262.946/216.0 | 70 | 41 | 10 | 17 | 18 | |||
MS-specific parameters | Duration (min) | CUR (psi) | IS (V) | TEM (°C) | GS1 (psi) | GS2 (psi) | CAD | |
Period 1 | 2.55 | 20 | 1500 | 550 | 45 | 55 | −2 | |
Period 2 | 3.45 | 20 | 5500 | 550 | 45 | 55 | −3 |
LOD (nM) | LOQ (nM) | Standard conc. (nM) | Recovery (%) | |
---|---|---|---|---|
Lys-BDA | 0.14 | 0.47 | 1.2 | 102 |
AcLys-BDA | 0.13 | 0.44 | 2.4 | 103 |
GSH-BDA | 1.2 | 4.0 | 10 | 99 |
Lys-AcA | 0.26 | 0.85 | 1.6 | 101 |
AcLys-AcA | 0.21 | 0.70 | 2.0 | 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kremer, J.I.; Karlstetter, D.; Kirsch, V.; Bohlen, D.; Klier, C.; Rotermund, J.; Thomas, H.; Lang, L.; Becker, H.; Bakuradze, T.; et al. Stable Isotope Dilution Analysis (SIDA) to Determine Metabolites of Furan and 2-Methylfuran in Human Urine Samples: A Pilot Study. Metabolites 2023, 13, 1011. https://doi.org/10.3390/metabo13091011
Kremer JI, Karlstetter D, Kirsch V, Bohlen D, Klier C, Rotermund J, Thomas H, Lang L, Becker H, Bakuradze T, et al. Stable Isotope Dilution Analysis (SIDA) to Determine Metabolites of Furan and 2-Methylfuran in Human Urine Samples: A Pilot Study. Metabolites. 2023; 13(9):1011. https://doi.org/10.3390/metabo13091011
Chicago/Turabian StyleKremer, Jonathan Isaak, Dorothea Karlstetter, Verena Kirsch, Daniel Bohlen, Carina Klier, Jan Rotermund, Hannah Thomas, Lukas Lang, Hanna Becker, Tamara Bakuradze, and et al. 2023. "Stable Isotope Dilution Analysis (SIDA) to Determine Metabolites of Furan and 2-Methylfuran in Human Urine Samples: A Pilot Study" Metabolites 13, no. 9: 1011. https://doi.org/10.3390/metabo13091011
APA StyleKremer, J. I., Karlstetter, D., Kirsch, V., Bohlen, D., Klier, C., Rotermund, J., Thomas, H., Lang, L., Becker, H., Bakuradze, T., Stegmüller, S., & Richling, E. (2023). Stable Isotope Dilution Analysis (SIDA) to Determine Metabolites of Furan and 2-Methylfuran in Human Urine Samples: A Pilot Study. Metabolites, 13(9), 1011. https://doi.org/10.3390/metabo13091011