Metabolomic Signatures Associated with Radiation-Induced Lung Injury by Correlating Lung Tissue to Plasma in a Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Animals, Irradiation and Sample Collection
2.3. Histology
2.4. LC-MS Pseudotargeted Metabolomics Analysis
2.5. Urea Detection
2.6. Quantitative Real-Time Polymerase Chain Reaction (q-RT-PCR)
2.7. Data Processing and Statistical Analysis
2.8. Metabolic Correlation Network Analysis
3. Results
3.1. Histological Destruction of Rat Lung Tissues in Response to WTI
3.2. Ratlung Metabolic Signatures Exposed to WTI
3.3. Plasma Metabolic Signatures Exposed to WTI
3.4. Potential Plasma Metabolite Markers of Radiation-Induced Lung Injury
3.5. Metabolic Correlation Network Analysis
3.6. CPT1 Gene Expression Level and Enzyme Activity in the Lung Samples of Rats Exposed to WTI
4. Discussion
4.1. Amino Acids
4.2. Bile Acids
4.3. Lipids and Fatty Acid β-Oxidation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanania, A.N.; Mainwaring, W.; Ghebre, Y.T.; Hanania, N.A.; Ludwig, M. Radiation-Induced Lung Injury: Assessment and Management. Chest 2019, 156, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A.; Kunitoh, H.; Sekine, I.; Sumi, M.; Tokuuye, K.; Saijo, N. Radiation pneumonitis in lung cancer patients: A retrospective study of risk factors and the long-term prognosis. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 649–655. [Google Scholar] [CrossRef]
- Liu, X.; Shao, C.; Fu, J. Promising Biomarkers of Radiation-Induced Lung Injury: A Review. Biomedicines 2021, 9, 1181. [Google Scholar] [CrossRef]
- Sunil Gowda, N.S.; Raviraj, R.; Nagarajan, D.; Zhao, W. Radiation-induced lung injury: Impact on macrophage dysregulation and lipid alteration—A review. Immunopharmacol. Immunotoxicol. 2019, 41, 370–379. [Google Scholar] [CrossRef]
- Yan, Y.; Fu, J.; Kowalchuk, R.O.; Wright, C.M.; Zhang, R.; Li, X.; Xu, Y. Exploration of radiation-induced lung injury, from mechanism to treatment: A narrative review. Transl. Lung Cancer Res. 2022, 11, 307–322. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Z.; Wen, L.; Shan, C.; Lai, M.; Liao, J.; Zeng, X.; Yan, G.; Cai, L.; Zhou, M.; et al. Gene Signatures for Latent Radiation-Induced Lung Injury Post X-ray Exposure in Mouse. Dose Response 2023, 21, 15593258231178146. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Bao, Z.X.; Zhao, P.J.; Li, G.H. Advances in the Study of Metabolomics and Metabolites in Some Species Interactions. Molecules 2021, 26, 3311. [Google Scholar] [CrossRef]
- Di Minno, A.; Gelzo, M.; Caterino, M.; Costanzo, M.; Ruoppolo, M.; Castaldo, G. Challenges in Metabolomics-Based Tests, Biomarkers Revealed by Metabolomic Analysis, and the Promise of the Application of Metabolomics in Precision Medicine. Int. J. Mol. Sci. 2022, 23, 5213. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, D.K.; Hollywood, K.A.; Goodacre, R. Metabolomics for the masses: The future of metabolomics in a personalized world. NewHoriz. Transl. Med. 2017, 3, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Laiakis, E.C.; Mak, T.D.; Anizan, S.; Amundson, S.A.; Barker, C.A.; Wolden, S.L.; Brenner, D.J.; Fornace, A.J., Jr. Development of a metabolomic radiation signature in urine from patients undergoing total body irradiation. Radiat. Res. 2014, 181, 350–361. [Google Scholar] [CrossRef]
- Pannkuk, E.L.; Laiakis, E.C.; Authier, S.; Wong, K.; Fornace, A.J., Jr. Targeted Metabolomics of Nonhuman Primate Serum after Exposure to Ionizing Radiation: Potential Tools for High-throughput Biodosimetry. RSC Adv. 2016, 6, 51192–51202. [Google Scholar] [CrossRef]
- Feurgard, C.; Bayle, D.; Guezingar, F.; Serougne, C.; Mazur, A.; Lutton, C.; Aigueperse, J.; Gourmelon, P.; Mathe, D. Effects of ionizing radiation (neutrons/gamma rays) on plasma lipids and lipoproteins in rats. Radiat. Res. 1998, 150, 43–51. [Google Scholar] [CrossRef]
- Hong, X.; Tian, L.; Wu, Q.; Gu, L.; Wang, W.; Wu, H.; Zhao, M.; Wu, X.; Wang, C. Plasma metabolomic signatures from patients following high-dose total body irradiation. Mol. Omics 2023, 19, 492–503. [Google Scholar] [CrossRef]
- Pannkuk, E.L.; Fornace, A.J., Jr.; Laiakis, E.C. Metabolomic applications in radiation biodosimetry: Exploring radiation effects through small molecules. Int. J. Radiat. Biol. 2017, 93, 1151–1176. [Google Scholar] [CrossRef] [PubMed]
- Stirling, E.R.; Cook, K.L.; Roberts, D.D.; Soto-Pantoja, D.R. Metabolomic Analysis Reveals Unique Biochemical Signatures Associated with Protection from Radiation Induced Lung Injury by Lack of cd47 Receptor Gene Expression. Metabolites 2019, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, X.; Gao, J.; Zhang, Z.; Feng, Y.; Nie, J.; Zhu, W.; Zhang, S.; Cao, J. Metabolomic Analysis of Radiation-Induced Lung Injury in Rats: The Potential Radioprotective Role of Taurine. Dose Response 2019, 17, 1559325819883479. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Gao, Y.; Tu, W.; Feng, Y.; Cao, J.; Zhang, S. Serum Metabolomic Analysis of Radiation-Induced Lung Injury in Rats. Dose Response 2022, 20, 15593258211067060. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Jia, W.; Ni, Y.; Chen, T. MCEE: A data preprocessing approach for metabolic confounding effect elimination. Anal. Bioanal. Chem. 2018, 410, 2689–2699. [Google Scholar] [CrossRef]
- Slupsky, C.M.; Rankin, K.N.; Wagner, J.; Fu, H.; Chang, D.; Weljie, A.M.; Saude, E.J.; Lix, B.; Adamko, D.J.; Shah, S.; et al. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal. Chem. 2007, 79, 6995–7004. [Google Scholar] [CrossRef]
- Cross, A.J.; Moore, S.C.; Boca, S.; Huang, W.Y.; Xiong, X.; Stolzenberg-Solomon, R.; Sinha, R.; Sampson, J.N. A prospective study of serum metabolites and colorectal cancer risk. Cancer 2014, 120, 3049–3057. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Zhao, X.; Zeng, Z.; Wang, L.; Lv, W.; Wang, Q.; Xu, G. Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography-mass spectrometry. Nat. Protoc. 2020, 15, 2519–2537. [Google Scholar] [CrossRef]
- Tang, X.X.; Zheng, M.C.; Zhang, Y.Y.; Fan, S.J.; Wang, C. Estimation value of plasma amino acid target analysis to the acute radiation injury early triage in the rat model. Metabolomics 2013, 9, 853–863. [Google Scholar] [CrossRef]
- Yao, X.T.; Xu, C.; Cao, Y.R.; Lin, L.; Wu, H.X.; Wang, C. Early metabolic characterization of brain tissues after whole body radiation based on gas chromatography-mass spectrometry in a rat model. Biomed. Chromatogr. 2019, 33, e4448. [Google Scholar] [CrossRef]
- Bonelli, R.; Woods, S.M.; Ansell, B.R.E.; Heeren, T.F.C.; Egan, C.A.; Khan, K.N.; Guymer, R.; Trombley, J.; Friedlander, M.; Bahlo, M.; et al. Systemic lipid dysregulation is a risk factor for macular neurodegenerative disease. Sci. Rep-UK 2020, 10, 12165. [Google Scholar] [CrossRef]
- Wang, L.; Hou, E.T.; Wang, L.J.; Wang, Y.J.; Yang, L.J.; Zheng, X.H.; Xie, G.Q.; Sun, Q.; Liang, M.Y.; Tian, Z.M. Reconstruction and analysis of correlation networks based on GC-MS metabolomics data for young hypertensive men. Anal. Chim. Acta 2015, 854, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sadri, H.; Prehn, C.; Adamski, J.; Rehage, J.; Danicke, S.; Saremi, B.; Sauerwein, H. Acylcarnitine profiles in serum and muscle of dairy cows receiving conjugated linoleic acids or a control fat supplement during early lactation. J. Dairy. Sci. 2019, 102, 754–767. [Google Scholar] [CrossRef] [PubMed]
- Fingerhut, R.; Roschinger, W.; Muntau, A.C.; Dame, T.; Kreischer, J.; Arnecke, R.; Superti-Furga, A.; Troxler, H.; Liebl, B.; Olgemoller, B.; et al. Hepatic carnitine palmitoyltransferase I deficiency: Acylcarnitine profiles in blood spots are highly specific. Clin. Chem. 2001, 47, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Laplante, M.; Sabatini, D.M. mTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef]
- Blomstrand, E.; Eliasson, J.; Karlsson, H.K.R.; Kohnke, R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J. Nutr. 2006, 136, 269s–273s. [Google Scholar] [CrossRef]
- Holecek, M.; Skopec, F.; Sprongl, L.; Mraz, J.; Skalska, H.; Pecka, M. Effect of alanyl-glutamine on leucine and protein metabolism in irradiated rats. Amino Acids 2002, 22, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.R.; Rana, P.; Devi, M.M.; Chaturvedi, S.; Javed, S.; Tripathi, R.P.; Khushu, S. Nuclear magnetic resonance spectroscopy-based metabonomic investigation of biochemical effects in serum of gamma-irradiated mice. Int. J. Radiat. Biol. 2011, 87, 91–97. [Google Scholar] [CrossRef]
- Holecek, M. Why Are Branched-Chain Amino Acids Increased in Starvation and Diabetes? Nutrients 2020, 12, 3087. [Google Scholar] [CrossRef]
- Crowley, G.; Kwon, S.; Haider, S.H.; Caraher, E.J.; Lam, R.; St-Jules, D.E.; Liu, M.; Prezant, D.J.; Nolan, A. Metabolomics of World Trade Center-Lung Injury: A machine learning approach. BMJ Open Respir. Res. 2018, 5, e000274. [Google Scholar] [CrossRef] [PubMed]
- Engelen, M.P.K.J.; Rutten, E.P.A.; De Castro, C.L.N.; Wouters, E.F.M.; Schols, A.M.W.J.; Deutz, N.E.P. Supplementation of soy protein with branched-chain amino acids alters protein metabolism in healthy elderly and even more in patients with chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2007, 85, 431–439. [Google Scholar] [CrossRef]
- Rogers, R.M.; Donahoe, M.; Costantino, J. Physiological-Effects of Oral Supplemental Feeding in Malnourished Patients with Chronic Obstructive Pulmonary-Disease—A Randomized Control Study. Am. Rev. Respir. Dis. 1992, 146, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Kutsuzawa, T.; Shioya, S.; Kurita, D.; Haida, M. Plasma branched-chain amino acid levels and muscle energy metabolism in patients with chronic obstructive pulmonary disease. Clin. Nutr. 2009, 28, 203–208. [Google Scholar] [CrossRef]
- Wang, L.L.; Tang, Y.F.; Liu, S.; Mao, S.T.; Ling, Y.; Liu, D.; He, X.Y.; Wang, X.G. Metabonomic Profiling of Serum and Urine by H-1 NMR-Based Spectroscopy Discriminates Patients with Chronic Obstructive Pulmonary Disease and Healthy Individuals. PLoS ONE 2013, 8, e65675. [Google Scholar] [CrossRef]
- Li, J.; Chen, M.; Lu, L.; Wang, J.; Tan, L. Branched-chain amino acid transaminase 1 inhibition attenuates childhood asthma in mice by effecting airway remodeling and autophagy. Respir. Physiol. Neurobiol. 2022, 306, 103961. [Google Scholar] [CrossRef]
- Lawrence, J.; Nho, R. The Role of the Mammalian Target of Rapamycin (mTOR) in Pulmonary Fibrosis. Int. J. Mol. Sci. 2018, 19, 778. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.J.; Sowers, A.; Thetford, A.; McKay-Corkum, G.; Chung, S.I.; Mitchell, J.B.; Citrin, D.E. Mammalian Target of Rapamycin Inhibition with Rapamycin Mitigates Radiation-Induced Pulmonary Fibrosis in a Murine Model. Int. J. Radiat. Oncol. 2016, 96, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Scibior, D.; Czeczot, H. Arginine--metabolism and functions in the human organism. Postepy. Hig. Med. Dosw. 2004, 58, 321–332. [Google Scholar]
- van Rijn, J.; van den Berg, J.; Teerlink, T.; Kruyt, F.A.; Schor, D.S.; Renardel de Lavalette, A.C.; van den Berg, T.K.; Jakobs, C.; Slotman, B.J. Changes in the ornithine cycle following ionising radiation cause a cytotoxic conditioning of the culture medium of H35 hepatoma cells. Br. J. Cancer 2003, 88, 447–454. [Google Scholar] [CrossRef]
- Moroz, B.B.; Vasil’ev, P.S.; Fedorovskii, L.L.; Grozdov, S.P.; Morozova, N.V. Effect of local x-ray irradiation of the abdominal area on the amino acid content of the blood plasma and their urinary excretion in dogs and rats. Radiobiologiia 1987, 27, 332–338. [Google Scholar] [PubMed]
- Stuehr, D.J. Enzymes of the L-arginine to nitric oxide pathway. J. Nutr. 2004, 134, 2748S–2751S, discussion 2765S–2767S. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, Y.; Jiang, D.; Yang, Y.; Wu, G.; Wu, Z. Protective Effects of Functional Amino Acids on Apoptosis, Inflammatory Response, and Pulmonary Fibrosis in Lipopolysaccharide-Challenged Mice. J. Agric. Food Chem. 2019, 67, 4915–4922. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jin, Y.; Yang, Y.; Wu, Z.; Wu, G. Epithelial Dysfunction in Lung Diseases: Effects of Amino Acids and Potential Mechanisms. Adv. Exp. Med. Biol. 2020, 1265, 57–70. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, J.H.; Chen, X.X.; Ren, H.L.; Feng, X.L.; Wang, J.L.; Xiao, J.H. Combination of L-Arginine and L-Norvaline protects against pulmonary fibrosis progression induced by bleomycin in mice. Biomed. Pharmacother. 2019, 113, 108768. [Google Scholar] [CrossRef]
- Song, L.; Wang, D.; Cui, X.; Hu, W. The protective action of taurine and L-arginine in radiation pulmonary fibrosis. J. Environ. Pathol. Toxicol. Oncol. 1998, 17, 151–157. [Google Scholar]
- Reeds, P.J.; Fjeld, C.R.; Jahoor, F. Do the differences between the amino acid compositions of acute-phase and muscle proteins have a bearing on nitrogen loss in traumatic states? J. Nutr. 1994, 124, 906–910. [Google Scholar] [CrossRef]
- Speelman, T.; Dale, L.; Louw, A.; Verhoog, N.J.D. The Association of Acute Phase Proteins in Stress and Inflammation-Induced T2D. Cells 2022, 11, 2163. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Mu, C.L.; Farzi, A.; Zhu, W.Y. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv. Nutr. 2020, 11, 709–723. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Xiao, H.W.; Dong, J.L.; Li, Y.; Wang, B.; Fan, S.J.; Cui, M. Gut Microbiota-Derived PGF2alpha Fights against Radiation-Induced Lung Toxicity through the MAPK/NF-kappaB Pathway. Antioxidants 2021, 11, 65. [Google Scholar] [CrossRef]
- Budden, K.F.; Gellatly, S.L.; Wood, D.L.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 2017, 15, 55–63. [Google Scholar] [CrossRef]
- Li, Z.; Shen, Y.; Xin, J.; Xu, X.; Ding, Q.; Chen, W.; Wang, J.; Lv, Y.; Wei, X.; Wei, Y.; et al. Cryptotanshinone alleviates radiation-induced lung fibrosis via modulation of gut microbiota and bile acid metabolism. Phytother. Res. 2023. [Google Scholar] [CrossRef]
- Hang, S.; Paik, D.; Yao, L.; Kim, E.; Trinath, J.; Lu, J.; Ha, S.; Nelson, B.N.; Kelly, S.P.; Wu, L.; et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature 2019, 576, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Hendrick, S.M.; Mroz, M.S.; Greene, C.M.; Keely, S.J.; Harvey, B.J. Bile acids stimulate chloride secretion through CFTR and calcium-activated Cl- channels in Calu-3 airway epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 307, L407–L418. [Google Scholar] [CrossRef]
- Wu, J.N.; Chen, J.R.; Chen, J.L. Role of Farnesoid X Receptor in the Pathogenesis of Respiratory Diseases. Can. Respir. J. 2020, 2020, 9137251. [Google Scholar] [CrossRef]
- van der Lugt, B.; Vos, M.C.P.; Grootte Bromhaar, M.; Ijssennagger, N.; Vrieling, F.; Meijerink, J.; Steegenga, W.T. The effects of sulfated secondary bile acids on intestinal barrier function and immune response in an inflammatory in vitro human intestinal model. Heliyon 2022, 8, e08883. [Google Scholar] [CrossRef]
- Benderitter, M.; Vincent-Genod, L.; Pouget, J.P.; Voisin, P. The cell membrane as a biosensor of oxidative stress induced by radiation exposure: A multiparameter investigation. Radiat. Res. 2003, 159, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Laiakis, E.C.; Wang, Y.W.; Young, E.F.; Harken, A.D.; Xu, Y.; Smilenov, L.; Garty, G.Y.; Brenner, D.J.; Fornace, A.J., Jr. Metabolic Dysregulation after Neutron Exposures Expected from an Improvised Nuclear Device. Radiat. Res. 2017, 188, 21–34. [Google Scholar] [CrossRef]
- Gould, R.G.; Bell, V.L.; Lilly, E.H. Stimulation of cholesterol biosynthesis from acetate in rat liver and adrenals by whole body x-irradiation. Am. J. Physiol. 1959, 196, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Feliste, R.; Dousset, N.; Carton, M.; Douste-Blazy, L. Changes in plasma apolipoproteins following whole-body irradiation in rabbit. Radiat. Res. 1981, 87, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, A.; Chakravarty, K.; Fogle, H.; Fazelinia, H.; Silveira, W.A.D.; Boyko, V.; Polo, S.L.; Saravia-Butler, A.M.; Hardiman, G.; Taylor, D.; et al. Multi-omics analysis of multiple missions to space reveal a theme of lipid dysregulation in mouse liver. Sci. Rep. 2019, 9, 19195. [Google Scholar] [CrossRef]
- Gao, F.; Liu, C.; Guo, J.; Sun, W.; Xian, L.; Bai, D.; Liu, H.; Cheng, Y.; Li, B.; Cui, J.; et al. Radiation-driven lipid accumulation and dendritic cell dysfunction in cancer. Sci. Rep. 2015, 5, 9613. [Google Scholar] [CrossRef]
- Levis, G.M.; Efstratiadis, A.A.; Mantzos, J.D.; Miras, C.J. The effect of ionizing radiation on lipid metabolism in bone marrow cells. Radiat. Res. 1975, 61, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Calzada, E.; Onguka, O.; Claypool, S.M. Phosphatidylethanolamine Metabolism in Health and Disease. Int. Rev. Cell Mol. Biol. 2016, 321, 29–88. [Google Scholar] [CrossRef]
- Vazquez-de-Lara, L.G.; Tlatelpa-Romero, B.; Romero, Y.; Fernandez-Tamayo, N.; Vazquez-de-Lara, F.; Justo-Janeiro, J.-M.; Garcia-Carrasco, M.; de-la-Rosa Paredes, R.; Cisneros-Lira, J.G.; Mendoza-Milla, C.; et al. Phosphatidylethanolamine Induces an Antifibrotic Phenotype in Normal Human Lung Fibroblasts and Ameliorates Bleomycin-Induced Lung Fibrosis in Mice. Int. J. Mol. Sci. 2018, 19, 2758. [Google Scholar] [CrossRef]
- Vishwanath, V.A. Fatty Acid Beta-Oxidation Disorders: A Brief Review. Ann. Neurosci. 2016, 23, 51–55. [Google Scholar] [CrossRef]
- Batchuluun, B.; Al Rijjal, D.; Prentice, K.J.; Eversley, J.A.; Burdett, E.; Mohan, H.; Bhattacharjee, A.; Gunderson, E.P.; Liu, Y.; Wheeler, M.B. Elevated Medium-Chain Acylcarnitines Are Associated with Gestational Diabetes Mellitus and Early Progression to Type 2 Diabetes and Induce Pancreatic beta-Cell Dysfunction. Diabetes 2018, 67, 885–897. [Google Scholar] [CrossRef]
- Tarasenko, T.N.; Cusmano-Ozog, K.; McGuire, P.J. Tissue acylcarnitine status in a mouse model of mitochondrial beta-oxidation deficiency during metabolic decompensation due to influenza virus infection. Mol. Genet. Metab. 2018, 125, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, M.; Weber, W.M.; Mak, T.D.; Chung, J.; Doyle-Eisele, M.; Melo, D.R.; Brenner, D.J.; Guilmette, R.A.; Fornace, A.J., Jr. Metabolomic and lipidomic analysis of serum from mice exposed to an internal emitter, cesium-137, using a shotgun LC-MS(E) approach. J. Proteome Res. 2015, 14, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.X.; Lu, X.; Zhao, H.; Li, S.; Gao, L.; Tian, M.; Liu, Q.J. Enhancement of Acylcarnitine Levels in Small Intestine of Abdominal Irradiation Rats Might Relate to Fatty Acid beta-Oxidation Pathway Disequilibration. Dose Response 2022, 20, 15593258221075118. [Google Scholar] [CrossRef]
Triage | Control | Mild | Moderate | Severe |
---|---|---|---|---|
Accuracy of classification at 1 d | 72.7% | 90.0% | 58.3% | 91.7% |
Accuracy of classification at 2 d | 92.3% | 50.0% | 72.7% | 66.7% |
Accuracy of classification at 3 d | 100.0% | 90.0% | 100.0% | 100.0% |
Accuracy of classification at 5 d | 100.0% | 80.0% | 81.8% | 100.0% |
Enzymes | Control | 10 Gy | 20 Gy | 35 Gy |
---|---|---|---|---|
CPT1 | 155.4 (139.5–197.4) | 129.4 * (109.6–140.2) | 112.4 ** (100.2–128.7) | 104.1 ** (94.9–112.3) |
CPT2 | 0.004 (0.003–0.004) | 0.005 * (0.004–0.005) | 0.005 ** (0.005–0.006) | 0.006 ***,# (0.005–0.006) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, L.; Wang, W.; Gu, Y.; Cao, J.; Wang, C. Metabolomic Signatures Associated with Radiation-Induced Lung Injury by Correlating Lung Tissue to Plasma in a Rat Model. Metabolites 2023, 13, 1020. https://doi.org/10.3390/metabo13091020
Gu L, Wang W, Gu Y, Cao J, Wang C. Metabolomic Signatures Associated with Radiation-Induced Lung Injury by Correlating Lung Tissue to Plasma in a Rat Model. Metabolites. 2023; 13(9):1020. https://doi.org/10.3390/metabo13091020
Chicago/Turabian StyleGu, Liming, Wenli Wang, Yifeng Gu, Jianping Cao, and Chang Wang. 2023. "Metabolomic Signatures Associated with Radiation-Induced Lung Injury by Correlating Lung Tissue to Plasma in a Rat Model" Metabolites 13, no. 9: 1020. https://doi.org/10.3390/metabo13091020
APA StyleGu, L., Wang, W., Gu, Y., Cao, J., & Wang, C. (2023). Metabolomic Signatures Associated with Radiation-Induced Lung Injury by Correlating Lung Tissue to Plasma in a Rat Model. Metabolites, 13(9), 1020. https://doi.org/10.3390/metabo13091020