Effects of Exercise on Functional Recovery in Patients with Bipolar Depression: A Study Protocol for a Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Flowchart (Figure 1)
2.2. Participants
Patients
- -
- Diagnosis of BD according to the DSM-5 [52];
- -
- Current depressive episode;
- -
- A total of 6–15 points on the Quick Inventory of Depressive Symptomatology-Self-Report (QIDS-SR);
- -
- Age between 20 and 65 years.
- -
- Intellectual disability (assessed based on the DSM-5);
- -
- History of cranial trauma with loss of consciousness;
- -
- Physical diseases that cause mental health problems;
- -
- Pervasive developmental disorders;
- -
- Pregnancy or breastfeeding;
- -
- Severe or uncontrolled cardiovascular risk factors, such as unstable coronary artery disease, uncontrolled hypertension, malignant ventricular arrhythmia, atrial fibrillation, exercise-induced ischemia, and ventricular failure;
- -
- Other significant medical conditions, including, but not limited to, chronic or recurrent respiratory, gastrointestinal, neuromuscular, or musculoskeletal problems that interfere with exercise;
- -
- Inflammatory diseases;
- -
- Clinical variables.
2.3. Recruitment
2.4. Sociodemographic Variables
2.5. Psychosocial Functioning
2.6. Depressive Symptoms
2.7. Neurocognition
2.8. Quality of Life
2.9. Personal Recovery
2.10. ActiGraph®
2.11. Biological Variables
2.12. Exercise vs. Stretching Groups
2.12.1. Exercise Group
2.12.2. Stretching Group
2.13. Procedures
2.14. Statistical Analyses
2.15. Sample Size
2.16. Ethical Consideration
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Mental Disorder Fact Sheet; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Vigo, D.; Thornicroft, G.; Atun, R. Estimating the true global burden of mental illness. Lancet Psychiatry 2016, 3, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Lu, L.; Zhang, L.; Zhang, Q.; Ungvari, G.S.; Ng, C.H.; Yuan, Z.; Xiang, Y.; Wang, G.; Xiang, Y.T. Prevalence of suicide attempts in bipolar disorder: A systematic review and meta-analysis of observational studies. Epidemiol. Psychiatr. Sci. 2019, 29, e63. [Google Scholar] [CrossRef]
- Plans, L.; Barrot, C.; Nieto, E.; Rios, J.; Schulze, T.G.; Papiol, S.; Mitjans, M.; Vieta, E.; Benabarre, A. Association between completed suicide and bipolar disorder: A systematic review of the literature. J. Affect. Disord. 2019, 242, 111–122. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Yang, Y.; Zou, H. Prevalence and risk factors for non-suicidal self-injury among patients with depression or bipolar disorder in China. BMC Psychiatry 2021, 21, 389. [Google Scholar] [CrossRef]
- Hayes, J.F.; Pitman, A.; Marston, L.; Walters, K.; Geddes, J.R.; King, M.; Osborn, D.P. Self-harm, Unintentional Injury, and Suicide in Bipolar Disorder During Maintenance Mood Stabilizer Treatment: A UK Population-Based Electronic Health Records Study. JAMA Psychiatry 2016, 73, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Aran, A.; Vieta, E.; Torrent, C.; Sanchez-Moreno, J.; Goikolea, J.M.; Salamero, M.; Malhi, G.S.; Gonzalez-Pinto, A.; Daban, C.; Alvarez-Grandi, S.; et al. Functional outcome in bipolar disorder: The role of clinical and cognitive factors. Bipolar Disord. 2007, 9, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Grande, I.; Goikolea, J.M.; de Dios, C.; González-Pinto, A.; Montes, J.M.; Saiz-Ruiz, J.; Prieto, E.; Vieta, E. Occupational disability in bipolar disorder: Analysis of predictors of being on severe disablement benefit (PREBIS study data). Acta Psychiatr. Scand. 2013, 127, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Takaesu, Y. Circadian rhythm in bipolar disorder: A review of the literature. Psychiatry Clin. Neurosci. 2018, 72, 673–682. [Google Scholar] [CrossRef]
- Akers, N.; Lobban, F.; Hilton, C.; Panagaki, K.; Jones, S.H. Measuring social and occupational functioning of people with bipolar disorder: A systematic review. Clin. Psychol. Rev. 2019, 74, 101782. [Google Scholar] [CrossRef]
- Durand, D.; Strassnig, M.T.; Moore, R.C.; Depp, C.A.; Ackerman, R.A.; Pinkham, A.E.; Harvey, P.D. Self-reported social functioning and social cognition in schizophrenia and bipolar disorder: Using ecological momentary assessment to identify the origin of bias. Schizophr. Res. 2021, 230, 17–23. [Google Scholar] [CrossRef]
- Gardner, H.H.; Kleinman, N.L.; Brook, R.A.; Rajagopalan, K.; Brizee, T.J.; Smeeding, J.E. The economic impact of bipolar disorder in an employed population from an employer perspective. J. Clin. Psychiatry 2006, 67, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Judd, L.L.; Akiskal, H.S.; Schettler, P.J.; Coryell, W.; Endicott, J.; Maser, J.D.; Solomon, D.A.; Leon, A.C.; Keller, M.B. A prospective investigation of the natural history of the long-term weekly symptomatic status of bipolar II disorder. Arch. Gen. Psychiatry 2003, 60, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Judd, L.L.; Akiskal, H.S.; Schettler, P.J.; Endicott, J.; Maser, J.; Solomon, D.A.; Leon, A.C.; Rice, J.A.; Keller, M.B. The long-term natural history of the weekly symptomatic status of bipolar I disorder. Arch. Gen. Psychiatry 2002, 59, 530–537. [Google Scholar] [CrossRef]
- Tokumitsu, K.; Yasui-Furukori, N.; Adachi, N.; Kubota, Y.; Watanabe, Y.; Miki, K.; Azekawa, T.; Edagawa, K.; Katsumoto, E.; Hongo, S.; et al. Real-world clinical features of and antidepressant prescribing patterns for outpatients with bipolar disorder. BMC Psychiatry 2020, 20, 555. [Google Scholar] [CrossRef]
- Rhee, T.G.; Olfson, M.; Nierenberg, A.A.; Wilkinson, S.T. 20-Year Trends in the Pharmacologic Treatment of Bipolar Disorder by Psychiatrists in Outpatient Care Settings. Am. J. Psychiatry 2020, 177, 706–715. [Google Scholar] [CrossRef]
- Lyall, L.M.; Penades, N.; Smith, D.J. Changes in prescribing for bipolar disorder between 2009 and 2016: National-level data linkage study in Scotland. Br. J. Psychiatry J. Ment. Sci. 2019, 215, 415–421. [Google Scholar] [CrossRef]
- Brondino, N.; Rocchetti, M.; Fusar-Poli, L.; Codrons, E.; Correale, L.; Vandoni, M.; Barbui, C.; Politi, P. A systematic review of cognitive effects of exercise in depression. Acta Psychiatr. Scand. 2017, 135, 285–295. [Google Scholar] [CrossRef]
- Brupbacher, G.; Gerger, H.; Zander-Schellenberg, T.; Straus, D.; Porschke, H.; Gerber, M.; von Känel, R.; Schmidt-Trucksäss, A. The effects of exercise on sleep in unipolar depression: A systematic review and network meta-analysis. Sleep Med. Rev. 2021, 59, 101452. [Google Scholar] [CrossRef]
- Krogh, J.; Hjorthøj, C.; Speyer, H.; Gluud, C.; Nordentoft, M. Exercise for patients with major depression: A systematic review wieth meta-analysis and trial sequential analysis. BMJ Open 2017, 7, e014820. [Google Scholar] [PubMed]
- Yoshimura, R.; Nakano, Y.; Hori, H.; Ikenouchi, A.; Ueda, N.; Nakamura, J. Effect of risperidone on plasma catecholamine metabolites and brain-derived neurotrophic factor in patients with bipolar disorders. Hum. Psychopharmacol. 2006, 21, 433–438. [Google Scholar] [CrossRef]
- Atake, K.; Hori, H.; Kageyama, Y.; Koshikawa, Y.; Igata, R.; Tominaga, H.; Katsuki, A.; Bando, H.; Sakai, S.; Nishida, K.; et al. Pre-treatment plasma cytokine levels as potential predictors of short-term remission of depression. World J. Biol. Psychiatry 2022, 23, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Hori, H.; Yoshimura, R.; Katsuki, A.; Atake, K.; Igata, R.; Konishi, Y.; Nakamura, J. Relationships between serum brain-derived neurotrophic factor, plasma catecholamine metabolites, cytokines, cognitive function and clinical symptoms in Japanese patients with chronic schizophrenia treated with atypical antipsychotic monotherapy. World J. Biol. Psychiatry 2017, 18, 401–408. [Google Scholar] [CrossRef]
- Hori, H.; Yoshimura, R.; Yamada, Y.; Ikenouchi, A.; Mitoma, M.; Ida, Y.; Nakamura, J. Effects of olanzapine on plasma levels of catecholamine metabolites, cytokines, and brain-derived neurotrophic factor in schizophrenic patients. Int. Clin. Psychopharmacol. 2007, 22, 21–27. [Google Scholar] [PubMed]
- Fernandes, B.S.; Molendijk, M.L.; Köhler, C.A.; Soares, J.C.; Leite, C.M.; Machado-Vieira, R.; Ribeiro, T.L.; Silva, J.C.; Sales, P.M.; Quevedo, J.; et al. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: A meta-analysis of 52 studies. BMC Med. 2015, 13, 289. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.T.; Andreazza, A.C.; Rej, S.; Rajji, T.K.; Gildengers, A.G.; Lafer, B.; Young, L.T.; Mulsant, B.H. Decreased Brain-Derived Neurotrophic Factor in Older Adults with Bipolar Disorder. Am. J. Geriatr. Psychiatry Off. J. Am. Assoc. Geriatr. Psychiatry 2016, 24, 596–601. [Google Scholar] [CrossRef]
- Phillips, C. Physical Activity Modulates Common Neuroplasticity Substrates in Major Depressive and Bipolar Disorder. Neural Plast. 2017, 2017, 7014146. [Google Scholar] [CrossRef]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef]
- Marosi, K.; Mattson, M.P. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol. Metab. 2014, 25, 89–98. [Google Scholar] [CrossRef]
- Martinez-Cengotitabengoa, M.; MacDowell, K.S.; Alberich, S.; Diaz, F.J.; Garcia-Bueno, B.; Rodriguez-Jimenez, R.; Bioque, M.; Berrocoso, E.; Parellada, M.; Lobo, A.; et al. BDNF and NGF Signalling in Early Phases of Psychosis: Relationship With Inflammation and Response to Antipsychotics After 1 Year. Schizophr. Bull. 2016, 42, 142–151. [Google Scholar] [CrossRef]
- Wrann, C.D.; White, J.P.; Salogiannnis, J.; Laznik-Bogoslavski, D.; Wu, J.; Ma, D.; Lin, J.D.; Greenberg, M.E.; Spiegelman, B.M. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013, 18, 649–659. [Google Scholar] [CrossRef]
- Bai, Y.M.; Su, T.P.; Chen, M.H.; Chen, T.J.; Chang, W.H. Risk of developing diabetes mellitus and hyperlipidemia among patients with bipolar disorder, major depressive disorder, and schizophrenia: A 10-year nationwide population-based prospective cohort study. J. Affect. Disord. 2013, 150, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.H.; Chien, I.C.; Lin, C.H. Increased risk of hyperlipidemia in patients with bipolar disorder: A population-based study. Gen. Hosp. Psychiatry 2015, 37, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Vancampfort, D.; Correll, C.U.; Galling, B.; Probst, M.; De Hert, M.; Ward, P.B.; Rosenbaum, S.; Gaughran, F.; Lally, J.; Stubbs, B. Diabetes mellitus in people with schizophrenia, bipolar disorder and major depressive disorder: A systematic review and large scale meta-analysis. World Psychiatry 2016, 15, 166–174. [Google Scholar] [CrossRef]
- Vancampfort, D.; Vansteelandt, K.; Correll, C.U.; Mitchell, A.J.; De Herdt, A.; Sienaert, P.; Probst, M.; De Hert, M. Metabolic syndrome and metabolic abnormalities in bipolar disorder: A meta-analysis of prevalence rates and moderators. Am. J. Psychiatry 2013, 170, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Steffen, B.T.; Lemaitre, R.N.; Wu, J.H.Y.; Tanaka, T.; Manichaikul, A.; Foy, M.; Rich, S.S.; Wang, L.; Nettleton, J.A.; et al. Genome-wide association study of plasma N6 polyunsaturated fatty acids within the cohorts for heart and aging research in genomic epidemiology consortium. Circulation. Cardiovasc. Genet. 2014, 7, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Takahashi, A.; Kamatani, Y.; Okahisa, Y.; Kunugi, H.; Mori, N.; Sasaki, T.; Ohmori, T.; Okamoto, Y.; Kawasaki, H.; et al. A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol. Psychiatry 2018, 23, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Mullins, N.; Forstner, A.J.; O’Connell, K.S.; Coombes, B.; Coleman, J.R.I.; Qiao, Z.; Als, T.D.; Bigdeli, T.B.; Børte, S.; Bryois, J.; et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 2021, 53, 817–829. [Google Scholar] [CrossRef]
- Stahl, E.A.; Breen, G.; Forstner, A.J.; McQuillin, A.; Ripke, S.; Trubetskoy, V.; Mattheisen, M.; Wang, Y.; Coleman, J.R.I.; Gaspar, H.A.; et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 2019, 51, 793–803. [Google Scholar] [CrossRef]
- Yamamoto, H.; Lee-Okada, H.C.; Ikeda, M.; Nakamura, T.; Saito, T.; Takata, A.; Yokomizo, T.; Iwata, N.; Kato, T.; Kasahara, T. GWAS-identified bipolar disorder risk allele in the FADS1/2 gene region links mood episodes and unsaturated fatty acid metabolism in mutant mice. Mol. Psychiatry, 2023; online ahead of print. [Google Scholar] [CrossRef]
- Cunha, A.B.; Frey, B.N.; Andreazza, A.C.; Goi, J.D.; Rosa, A.R.; Gonçalves, C.A.; Santin, A.; Kapczinski, F. Serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. Neurosci. Lett. 2006, 398, 215–219. [Google Scholar] [CrossRef]
- Saccaro, L.F.; Schilliger, Z.; Dayer, A.; Perroud, N.; Piguet, C. Inflammation, anxiety, and stress in bipolar disorder and borderline personality disorder: A narrative review. Neurosci. Biobehav. Rev. 2021, 127, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Saccaro, L.F.; Gasparini, S.; Rutigliano, G. Applications of Mendelian randomization in psychiatry: A comprehensive systematic review. Psychiatr. Genet. 2022, 32, 199–213. [Google Scholar] [CrossRef]
- Wium-Andersen, M.K.; Ørsted, D.D.; Nordestgaard, B.G. Elevated C-reactive protein and late-onset bipolar disorder in 78 809 individuals from the general population. Br. J. Psychiatry J. Ment. Sci. 2016, 208, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Saccaro, L.F.; Crokaert, J.; Perroud, N.; Piguet, C. Structural and functional MRI correlates of inflammation in bipolar disorder: A systematic review. J. Affect. Disord. 2023, 325, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Aronica, R.; Enrico, P.; Squarcina, L.; Brambilla, P.; Delvecchio, G. Association between Diffusion Tensor Imaging, inflammation and immunological alterations in unipolar and bipolar depression: A review. Neurosci. Biobehav. Rev. 2022, 143, 104922. [Google Scholar] [CrossRef]
- Chesnokova, V.; Pechnick, R.N.; Wawrowsky, K. Chronic peripheral inflammation, hippocampal neurogenesis, and behavior. Brain Behav. Immun. 2016, 58, 1–8. [Google Scholar] [CrossRef]
- Saccaro, L.F.; Gaviria, J.; Ville, D.V.; Piguet, C. Dynamic functional hippocampal markers of residual depressive symptoms in euthymic bipolar disorder. Brain Behav. 2023, 13, e3010. [Google Scholar] [CrossRef]
- Firth, J.; Siddiqi, N.; Koyanagi, A.; Siskind, D.; Rosenbaum, S.; Galletly, C.; Allan, S.; Caneo, C.; Carney, R.; Carvalho, A.F.; et al. The Lancet Psychiatry Commission: A blueprint for protecting physical health in people with mental illness. Lancet. Psychiatry 2019, 6, 675–712. [Google Scholar] [CrossRef]
- Gabriel, B.M.; Zierath, J.R. The Limits of Exercise Physiology: From Performance to Health. Cell Metab. 2017, 25, 1000–1011. [Google Scholar] [CrossRef]
- Armstrong, A.; Jungbluth Rodriguez, K.; Sabag, A.; Mavros, Y.; Parker, H.M.; Keating, S.E.; Johnson, N.A. Effect of aerobic exercise on waist circumference in adults with overweight or obesity: A systematic review and meta-analysis. Obes. Rev. 2022, 23, e13446. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Rosa, A.R.; Sanchez-Moreno, J.; Martinez-Aran, A.; Salamero, M.; Torrent, C.; Reinares, M.; Comes, M.; Colom, F.; Van Riel, W.; Ayuso-Mateos, J.L.; et al. Validity and reliability of the Functioning Assessment Short Test (FAST) in bipolar disorder. Clin. Pract. Epidemiol. Ment Health 2007, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Rush, A.J.; Trivedi, M.H.; Ibrahim, H.M.; Carmody, T.J.; Arnow, B.; Klein, D.N.; Markowitz, J.C.; Ninan, P.T.; Kornstein, S.; Manber, R.; et al. The 16-Item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): A psychometric evaluation in patients with chronic major depression. Biol. Psychiatry 2003, 54, 573–583. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.S.; Best, M.W.; Bowie, C.R.; Carmona, N.E.; Cha, D.S.; Lee, Y.; Subramaniapillai, M.; Mansur, R.B.; Barry, H.; Baune, B.T.; et al. The THINC-Integrated Tool (THINC-it) Screening Assessment for Cognitive Dysfunction: Validation in Patients With Major Depressive Disorder. J. Clin. Psychiatry 2017, 78, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Tazaki, M.N.Y. A Guide to WHOQOL26 (Revised Edition); Kk. Kaneko Shobo Press: Tokyo, Japan, 2007. (In Japanese) [Google Scholar]
- Shawyer, F.; Enticott, J.C.; Brophy, L.; Bruxner, A.; Fossey, E.; Inder, B.; Julian, J.; Kakuma, R.; Weller, P.; Wilson-Evered, E.; et al. The PULSAR Specialist Care protocol: A stepped-wedge cluster randomized control trial of a training intervention for community mental health teams in recovery-oriented practice. BMC Psychiatry 2017, 17, 172. [Google Scholar] [CrossRef]
- Cellini, N.; Buman, M.P.; McDevitt, E.A.; Ricker, A.A.; Mednick, S.C. Direct comparison of two actigraphy devices with polysomnographically recorded naps in healthy young adults. Chronobiol. Int. 2013, 30, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Knight, M.J.; Lyrtzis, E.; Fourrier, C.; Aboustate, N.; Sampson, E.; Hori, H.; Cearns, M.; Morgan, J.; Toben, C.; Baune, B.T. Psychological training to improve psychosocial function in patients with major depressive disorder: A randomised clinical trial. Psychiatry Res. 2021, 300, 113906. [Google Scholar] [CrossRef]
- Solé, B.; Vieta, E. What else is needed for a full functional recovery in bipolar disorder? Bipolar Disord. 2020, 22, 411–412. [Google Scholar] [CrossRef]
- Hori, H.; Ikenouchi-Sugita, A.; Yoshimura, R.; Nakamura, J. Does subjective sleep quality improve by a walking intervention? A real-world study in a Japanese workplace. BMJ Open 2016, 6, e011055. [Google Scholar] [CrossRef]
- Harvey, S.B.; Øverland, S.; Hatch, S.L.; Wessely, S.; Mykletun, A.; Hotopf, M. Exercise and the Prevention of Depression: Results of the HUNT Cohort Study. Am. J. Psychiatry 2018, 175, 28–36. [Google Scholar] [CrossRef]
- Cooney, G.M.; Dwan, K.; Greig, C.A.; Lawlor, D.A.; Rimer, J.; Waugh, F.R.; McMurdo, M.; Mead, G.E. Exercise for depression. Cochrane Database Syst. Rev. 2013, 9, Cd004366. [Google Scholar] [CrossRef]
- Archer, T.; Josefsson, T.; Lindwall, M. Effects of physical exercise on depressive symptoms and biomarkers in depression. CNS Neurol. Disord. Drug Targets 2014, 13, 1640–1653. [Google Scholar] [CrossRef] [PubMed]
- Murawska-Ciałowicz, E.; Wiatr, M.; Ciałowicz, M.; Gomes de Assis, G.; Borowicz, W.; Rocha-Rodrigues, S.; Paprocka-Borowicz, M.; Marques, A. BDNF Impact on Biological Markers of Depression-Role of Physical Exercise and Training. Int. J. Environ. Res. Public Health 2021, 18, 7553. [Google Scholar] [CrossRef] [PubMed]
- Agudelo, L.Z.; Femenía, T.; Orhan, F.; Porsmyr-Palmertz, M.; Goiny, M.; Martinez-Redondo, V.; Correia, J.C.; Izadi, M.; Bhat, M.; Schuppe-Koistinen, I.; et al. Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 2014, 159, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, C.C.; Valiengo, L.L.; Carvalho, A.F.; Santos-Silva, P.R.; Missio, G.; de Sousa, R.T.; Di Natale, G.; Gattaz, W.F.; Moreno, R.A.; Machado-Vieira, R. Antidepressant Efficacy of Adjunctive Aerobic Activity and Associated Biomarkers in Major Depression: A 4-Week, Randomized, Single-Blind, Controlled Clinical Trial. PLoS ONE 2016, 11, e0154195. [Google Scholar] [CrossRef] [PubMed]
Screening | 0 w | 4 w | 6 w | 10 w | 26 w | |
---|---|---|---|---|---|---|
Bipolarity index | O | |||||
FAST | O | O | O | O | ||
QIDS-SR, HAM-D | O | O | O | O | O | O |
THINC-it® | O | O | O | O | ||
Blood sampling (general blood sampling, genes, and biomarkers) | O | O | O | |||
Physical measurements (height, weight) | O | O | O | |||
WHO-QOL (quality-of-life assessment) | O | O | O | O | ||
Personal recovery scale (condition assessment) | O | O | O | O | ||
Physical checkup (grip strength test, repetitive side jumping) | O | O | O |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamada, F.; Hori, H.; Iida, H.; Yokoyama, H.; Sugawara, H.; Hatanaka, A.; Gotoh, L.; Ogata, M.; Kumagai, H.; Yano, R.; et al. Effects of Exercise on Functional Recovery in Patients with Bipolar Depression: A Study Protocol for a Randomized Controlled Trial. Metabolites 2023, 13, 981. https://doi.org/10.3390/metabo13090981
Hamada F, Hori H, Iida H, Yokoyama H, Sugawara H, Hatanaka A, Gotoh L, Ogata M, Kumagai H, Yano R, et al. Effects of Exercise on Functional Recovery in Patients with Bipolar Depression: A Study Protocol for a Randomized Controlled Trial. Metabolites. 2023; 13(9):981. https://doi.org/10.3390/metabo13090981
Chicago/Turabian StyleHamada, Fumito, Hikaru Hori, Hitoshi Iida, Hiroyuki Yokoyama, Hiroko Sugawara, Akito Hatanaka, Leo Gotoh, Muneaki Ogata, Hiroki Kumagai, Rika Yano, and et al. 2023. "Effects of Exercise on Functional Recovery in Patients with Bipolar Depression: A Study Protocol for a Randomized Controlled Trial" Metabolites 13, no. 9: 981. https://doi.org/10.3390/metabo13090981
APA StyleHamada, F., Hori, H., Iida, H., Yokoyama, H., Sugawara, H., Hatanaka, A., Gotoh, L., Ogata, M., Kumagai, H., Yano, R., Tomiyama, Y., Yoshida, T., Yamaguchi, Y., Asada, R., Masuda, M., Okamoto, Y., & Kawasaki, H. (2023). Effects of Exercise on Functional Recovery in Patients with Bipolar Depression: A Study Protocol for a Randomized Controlled Trial. Metabolites, 13(9), 981. https://doi.org/10.3390/metabo13090981