Diagnostics of Thyroid Cancer Using Machine Learning and Metabolomics
Abstract
:1. Introduction
1.1. Artificial Intelligence, Computer-Aided Diagnostics, and Machine Learning in Cancer Therapy
1.2. Radiomics and AI for Diagnostics of TC
1.3. Metabolomics in Cancer Diagnosis
2. Materials and Methods
2.1. Approaches Overview
2.2. PubChem
2.3. The Human Metabolome Database
2.4. PaDEL-Descriptor
2.5. Waikato Environment for Knowledge Analysis
2.6. MetaboAnalyst
3. Results
3.1. Metabolite Set
3.2. Metabolic Pathways
3.2.1. Pyrimidine Metabolism
3.2.2. Tyrosine Metabolism
3.2.3. Glycine, Serine, and Threonine Metabolism
3.2.4. Pantothenate and CoA Biosynthesis
3.2.5. Arginine Biosynthesis
3.2.6. Phenylalanine Metabolism
3.2.7. Phenylalanine, Tyrosine, and Tryptophan Biosynthesis
3.3. Machine-Learning Classifiers
3.4. Receiver Operating Characteristics
3.5. Independent Testing
4. Discussion
Limitations
5. Conclusions
6. Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ogun, G.O. Fine needle aspiration biopsy (FNAB) in the initial evaluation anddiagnosis of palpable soft tissue lesions and with histologic correlation. Pan Afr. Med. J. 2015, 20, 44. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, B.; Ha, J.; Steinberg, I.; Hooper, S.M.; Jeong, C.; Park, E.Y.; Choi, W.; Liang, T.; Bae, J.S.; et al. Multiparametric photoacoustic analysis of human thyroid cancers in vivo. Cancer Res. 2021, 81, 4849–4860. [Google Scholar] [CrossRef] [PubMed]
- Hadjiiski, L.; Sahiner, B.; Chan, H.P. Advances in computer-aided diagnosis for breast cancer. Curr. Opin. Obstet. Gynecol. 2006, 18, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Brattain, L.J.; Telfer, B.A.; Dhyani, M.; Grajo, J.R.; Samir, A.E. Machine learning for medical ultrasound: Status, methods, and future opportunities. Abdom. Radiol. 2018, 43, 786–799. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.J.; Baek, J.H. Applications of machine learning and deep learning to thyroid imaging: Where do we stand? Ultrasonography 2021, 40, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Daniels, K.; Gummadi, S.; Zhu, Z. Machine learning by ultrasonography for genetic risk stratification. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.A.; Wishart, D.S. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2007, 2, 59–77. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Zhang, Q.; Wei, X.; Pan, Y.; Zhao, J.; Xin, X.; Qin, C.; Wang, X.; Li, J.; et al. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: A retrospective, multicohort, diagnostic study. Lancet Oncol. 2019, 20, 193–201. [Google Scholar] [CrossRef]
- Jaber, N. Can Artificial Intelligence Help See Cancer in New Ways? National Cancer Institute; 2022. Available online: www.cancer.gov/news-events/cancer-currents-blog/2022/artificial-intelligence-cancer-imaging (accessed on 23 July 2023).
- Simes, R.J. Treatment selection for cancer patients: Application of statistical decision theory to the treatment of advanced ovarian cancer. J. Chronic Dis. 1985, 38, 171–186. [Google Scholar] [CrossRef]
- Maclin, P.S.; Dempsey, J.; Brooks, J.; Rand, J. Using neural networks to diagnose cancer. J. Med. Syst. 1991, 15, 11–19. [Google Scholar] [CrossRef]
- Astion, M.L.; Wilding, P. Application of neural networks to the interpretation of laboratory data in cancer diagnosis. Clin. Chem. 1992, 28, 34–38. [Google Scholar] [CrossRef]
- Fielding, L.P.; Fenoglio-Preiser, C.M.; Freedman, L.S. The future of prognostic factors in outcome prediction for patients with cancer. Cancer 1992, 70, 2367–2377. [Google Scholar] [CrossRef] [PubMed]
- Cochran, A.J. Prediction of outcome for patients with cutaneous melanoma. Pigment Cell Res. 1997, 10, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Burke, H.B.; Bostwick, D.G.; Meiers, I.; Montrioni, R. Prostate cancer outcome: Epidemiology and biostatistics. Anal. Quant. Cytol. Histol. 2005, 27, 211–217. [Google Scholar] [PubMed]
- Sun, R.; Fei, F.; Wang, M.; Jiang, J.; Yang, G.; Yang, N.; Jin, D.; Xu, Z.; Cao, B.; Li, J. Integration of metabolomics and machine learning revealed tryptophan metabolites are sensitive biomarkers of pemetrexed efficacy in non-small cell lung cancer. Cancer Med. 2023, 12, 19245–19259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Shi, H.; Wang, H. Machine learning and AI in cancer prognosis, prediction, and treatment selection: A critical approach. J. Multidiscip. Healthc. 2023, 16, 1779–1791. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.J.; Javed, Z.; Sadia, H.; Qureshi, I.A.; Irshad, A.; Ahmed, R.; Malik, K.; Raza, S.; Abbas, A.; Pezzani, R.; et al. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: Looking into the future. Cancer Cell Int. 2021, 21, 270. [Google Scholar] [CrossRef]
- Tran, K.A.; Kondrashova, O.; Bradley, A.; Williams, E.D.; Pearson, J.V.; Waddell, N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med. 2021, 13, 152. [Google Scholar] [CrossRef]
- Ryu, H.S.; Jin, M.S.; Park, J.H.; Lee, S.; Cho, J.; Oh, S.; Kwak, T.Y.; Woo, J.I.; Mun, Y.; Kim, S.W.; et al. Automated Gleason scoring and tumor quantification in prostate core needle biopsy images using deep neural networks and its comparison with pathologist-based assessment. Cancers 2019, 11, 1860. [Google Scholar] [CrossRef]
- Pavlidis, N.; Pentheroudakis, G. Cancer of unknown primary site. Lancet 2012, 379, 1428–1435. [Google Scholar] [CrossRef]
- Nagendra, L.; Pappachan, J.M.; Fernandez, C.J. Artificial intelligence in the diagnosis of thyroid cancer: Recent advances and future directions. Artif. Intell. Cancer 2023, 4, 1–10. [Google Scholar] [CrossRef]
- Lam, C.W.; Law, C.Y. Untargeted mass spectrometry-based metabolomic profiling of pleural effusions: Fatty acids as novel cancer biomarkers for malignant pleural effusions. J. Proteome Res. 2014, 13, 4040–4046. [Google Scholar] [CrossRef] [PubMed]
- Aboud, O.; Liu, Y.A.; Fiehn, O.; Brydges, C.; Fragoso, R.; Lee, H.S.; Riess, J.; Hodeify, R.; Bloch, O. Application of machine learning to metabolomic profile characterization in glioblastoma patients undergoing concurrent chemoradiation. Metabolites 2023, 13, 299. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Meng, W.Y.; Li, R.Z.; Wang, Y.W.; Qian, X.; Chan, C.; Yu, Z.F.; Fan, X.X.; Pan, H.D.; Xie, C.; et al. Early lung cancer diagnostic biomarker discovery by machine learning methods. Transl. Oncol. 2021, 14, 100907. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J. Clin. 2021, 71, 333–358. [Google Scholar] [CrossRef] [PubMed]
- Kouznetsova, V.L.; Kim, E.; Romm, E.L.; Zhu, A.; Tsigelny, I.F. Recognition of early and late stages of bladder cancer using metabolites and machine learning. Metabolomics 2019, 15, 94. [Google Scholar] [CrossRef] [PubMed]
- Kouznetsova, V.L.; Li, J.; Romm, E.; Tsigelny, I.F. Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning. Oral Dis. 2021, 27, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Xu, D.; Zhang, Q.; Zhang, J.; Ngai, S.M.; Shao, J. Classification of lung cancer using ensemble-based feature selection and machine learning methods. Mol. Biosyst. 2015, 11, 791–800. [Google Scholar] [CrossRef]
- Murata, T.; Yanagisawa, T.; Kurihara, T.; Kaneko, M.; Ota, S.; Enomoto, A.; Tomita, M.; Sugimoto, M.; Sunamura, M.; Hayashida, T.; et al. Salivary metabolomics with alternative decision tree-based machine learning methods for breast cancer discrimination. Breast Cancer Res. Treat. 2019, 177, 591–601. [Google Scholar] [CrossRef]
- Yao, J.Z.; Tsigelny, I.F.; Kesari, S.; Kouznetsova, V.L. Diagnostics of ovarian cancer via metabolite analysis and machine learning. Integr. Biol. 2023, 15, zyad005. [Google Scholar] [CrossRef]
- Huang, L.; Wang, L.; Hu, X.; Chen, S.; Tao, Y.; Su, H.; Yang, J.; Xu, W.; Vedarethinam, V.; Wu, S.; et al. Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma. Nat. Commun. 2020, 11, 3556. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res 2021, 49, D1388–D1395. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521–D526. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011, 32, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Frank, E.; Hall, M.A.; Witten, I.H. Appendix B: The WEKA Workbench. In Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann: Cambridge, MA, USA, 2016; pp. 573–600. [Google Scholar]
- MetaboAnalyst 5.0—User-Friendly, Streamlined Metabolomics Data Analysis. Available online: https://www.metaboanalyst.ca/ (accessed on 13 July 2023).
- Lu, Y.; Pang, Z.; Xia, J. Comprehensive investigation of pathway enrichment methods for functional interpretation of LC-MS global metabolomics data. Brief. Bioinform. 2023, 24, bbac553. [Google Scholar] [CrossRef]
- Du, Y.; Fan, P.; Zou, L.; Jiang, Y.; Gu, X.; Yu, J.; Zhang, C. Serum metabolomics study of papillary thyroid carcinoma based on HPLC-Q-TOF-MS/MS. Front. Cell Dev. Biol. 2021, 9, 593510. [Google Scholar] [CrossRef]
- Davidson, C.D.; Carr, F.E. Review of pharmacological inhibition of thyroid cancer metabolism. J. Cancer Metastasis Treat. 2021, 7, 45. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Xu, L.; Zhang, J.; Cao, H. High expression levels of pyrimidine metabolic rate–limiting enzymes are adverse prognostic factors in lung adenocarcinoma: A study based on The Cancer Genome Atlas and Gene Expression Omnibus datasets. Purinergic Signal 2020, 16, 347–366. [Google Scholar] [CrossRef]
- Lai, H.S.; Lee, J.C.; Lee, P.H.; Wang, S.T.; Chen, W.J. Plasma free amino acid profile in cancer patients. Semin Cancer Biol. 2005, 15, 267–276. [Google Scholar] [CrossRef]
- Wiggins, T.; Kumar, S.; Markar, S.R.; Antonowicz, S.; Hanna, G.B. Tyrosine, phenylalanine, and tryptophan in gastroesophageal malignancy: A systematic review. Cancer Epidemiol. Biomark. Prev. 2015, 24, 32–38. [Google Scholar] [CrossRef]
- Watanabe, A.; Higashi, T.; Sakata, T.; Nagashima, H. Serum amino acid levels in patients with hepatocellular carcinoma. Cancer 1984, 54, 1875–1882. [Google Scholar] [CrossRef] [PubMed]
- Nguen, T.N.; Nguen, H.Q.; Le, D.H. Unveiling prognostics biomarkers of tyrosine metabolism reprogramming in liver cancer by cross-platform gene expression analyses. PLoS ONE 2020, 15, e0229276. [Google Scholar] [CrossRef] [PubMed]
- Ciavardelli, D.; Bellomo, M.; Consalvo, A.; Crescimanno, C.; Vella, V. Metabolic alterations of thyroid cancer as potential therapeutic targets. Biomed Res. Int. 2017, 2017, 2545031. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.Y.; Kim, H.M.; Jung, W.H.; Koo, J.S. Expression of serine/glycine metabolism-related proteins is different according to the thyroid cancer subtype. J. Transl. Med. 2016, 14, 168. [Google Scholar] [CrossRef] [PubMed]
- Czumaj, A.; Szrok-Jurga, S.; Hebanowska, A.; Turyn, J.; Swierczynski, J.; Sledzinski, T.; Stelmanska, E. The pathophysiological role of CoA. Int. J. Mol. Sci. 2020, 21, 9057. [Google Scholar] [CrossRef] [PubMed]
- McAllister, R.A.; Fixter, L.M.; Campbell, E.H. The effect of tumour growth on liver pantothenate, CoA, and fatty acid synthetase activity in the mouse. Br. J. Cancer 1988, 57, 83–86. [Google Scholar] [CrossRef]
- Chen, C.L.; Hsu, S.C.; Ann, D.K.; Yen, Y.; Kung, H.J. Arginine signaling and cancer metabolism. Cancers 2021, 13, 3541. [Google Scholar] [CrossRef]
- Qiu, F.; Chen, Y.R.; Liu, X.; Chu, C.Y.; Shen, L.J.; Xu, J.; Gaur, S.; Forman, H.J.; Zhang, H.; Zheng, S.; et al. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci. Signal 2014, 7, ra31. [Google Scholar] [CrossRef]
- Zou, S.; Wang, X.; Liu, P.; Ke, C.; Xu, S. Arginine metabolism and deprivation in cancer therapy. Biomed. Pharmacother. 2019, 118, 109210. [Google Scholar] [CrossRef]
- Kapalka, G.M. Depression. In Nutritional and Herbal Therapies for Children and Adolescents: A Handbook for Mental Health Clinicians; Academic Press: London, UK, 2010; Chapter 6; pp. 141–188. [Google Scholar]
- Abasov, I.T. Chromatographic analysis of free amino acids of gastric juice in patients with cancer and other stomach diseases. Gastroenterol. Jpn. 1969, 4, 269–273. [Google Scholar] [CrossRef]
- Wang, T.; Sun, Z.; Wang, Y.; Li, F.; Zhou, X.; Tian, X.; Wang, S. Diagnosis of papillary thyroid carcinoma by 1H NMR spectroscopy-based metabolomic analysis of whole blood. Drug Discov. Ther. 2020, 14, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Wojakowska, A.; Chekan, M.; Marczak, Ł.; Polanski, K.; Lange, D.; Pietrowska, M.; Widlak, P. Detection of metabolites discriminating subtypes of thyroid cancer: Molecular profiling of FFPE samples using the GC/MS approach. Mol. Cell Endocrinol. 2015, 417, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Obermeyer, Z.; Emanuel, E.J. Predicting the Future-Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016, 375, 1216–1219. [Google Scholar] [CrossRef] [PubMed]
- Ferro, M.; Falagario, U.G.; Barone, B.; Maggi, M.; Crocetto, F.; Busetto, G.M.; Giudice, F.D.; Terracciano, D.; Lucarelli, G.; Lasorsa, F.; et al. Artificial Intelligence in the Advanced Diagnosis of Bladder Cancer-Comprehensive Literature Review and Future Advancement. Diagnostics 2023, 13, 2308. [Google Scholar] [CrossRef]
- Teng, X.; Gong, Y. Research on application of machine learning in Data Mining. IOP Conf. Ser. Mater. Sci. Eng. 2018, 392, 062202. [Google Scholar] [CrossRef]
- Chen, P.; Pan, C. Diabetes classification model based on boosting algorithms. BMC Bioinform. 2018, 19, 109. [Google Scholar] [CrossRef]
Metabolite Name | FC | log(FC) |
---|---|---|
Quillaic Acid 3-[galactosyl-(1->2)-glucuronide] | 0.33217 | −1.59000 |
Quillaic acid 3-[xylosyl-(1->3)-[galactosyl-(1->2)]-glucuronide] | 0.32061 | −1.64110 |
L-Aspartyl-L-phenylalanine | 0.27591 | −1.85770 |
L-Histidine | 0.40090 | −1.31870 |
Pyridinoline | 0.40468 | −1.30510 |
5-hydroxylysine | 0.47622 | −1.07003 |
L-glutamic acid | 0.51228 | −0.96499 |
Hydrogencarbonate | 0.58709 | −0.76835 |
L-phenylalanine | 2.09010 | 1.06360 |
Trans,trans-muconic acid | 0.53257 | −0.90896 |
Taurocholic acid | 2.21440 | 1.14690 |
Disulfiram | 0.61107 | −0.71060 |
Citric acid | 0.54732 | −0.86954 |
Dimercaprol | 0.52417 | −0.93190 |
Argininic acid | 0.57260 | −0.80439 |
Ursocholic acid | 1.84740 | 0.88546 |
Methylmalonic acid | 0.42889 | −1.22130 |
Nicotine glucuronide | 2.22150 | 1.15150 |
L-Kynurenine | 0.46308 | −1.11070 |
2-Hydroxyethinylestradiol | 2.97520 | 1.57300 |
Oleoylcarnitine | 2.03350 | 1.02400 |
Retinyl beta-glucuronide | 2.06240 | 1.04430 |
N-Acetyl-L-arginine | 0.53088 | −0.91355 |
Cyanate | 1.86650 | 0.90033 |
10-Hydroxy-octadec-12Z-enoate-9-beta-D-glucuronide | 2.06310 | 1.04480 |
Biotin | 0.60751 | −0.71902 |
2-Arachidonylglycerol | 0.55461 | −0.85046 |
Beta-alanine | 0.55975 | −0.83715 |
3-Indoleacetic acid | 0.48593 | −1.04120 |
Acitretin | 2.69310 | 1.42930 |
Hippuric acid | 0.55416 | −0.85163 |
L-Tryptophan | 0.61765 | −0.69513 |
Ribothymidine | 0.49838 | −1.00470 |
3-Hydroxy-cis-5-tetradecenoylcarnitine | 0.61797 | −0.69440 |
N-Acetylornithine | 0.39628 | −1.33540 |
Threonic acid | 1.92510 | 0.94496 |
Oxalic acid | 0.50332 | −0.99047 |
Alpha-tocotrienol | 1.98070 | 0.98599 |
Acetone | 0.54805 | −0.86763 |
4’-O-Methylcatechin | 1.67120 | 0.74089 |
Glucosylgalactosylhydroxylysine | 1.63340 | 0.70790 |
L-Tyrosine | 0.65647 | −0.60719 |
1-Methylguanosine | 0.60407 | −0.72721 |
Azelaic acid | 0.36788 | −1.44270 |
4-hydroxybenzaldehyde | 0.47227 | −1.08230 |
(S)-3,4-Dihydroxybutyric acid | 0.62090 | −0.68756 |
Heparan sulfate | 1.64210 | 0.71556 |
4-glutathionyl cyclophosphamide | 0.62610 | −0.67553 |
Uric acid | 0.54884 | −0.86554 |
Thiamine pyrophosphate | 1.80870 | 0.85496 |
Phenylalanylphenylalanine | 0.60089 | −0.73483 |
Farnesyl pyrophosphate | 0.55865 | −0.83999 |
p-Cresol sulfate | 0.44465 | −1.16930 |
3-hydroxyhexadecadienoylcarnitine | 1.87230 | 0.90484 |
Hesperetin 3’,7-O-diglucuronide | 1.61650 | 0.69291 |
Glucose 6-phosphate | 0.54630 | −0.87223 |
Proline betaine | 3.83720 | 1.94010 |
Dopamine | 0.66314 | −0.59262 |
3’-hydroxy-e,e-caroten-3-one | 1.52140 | 0.60537 |
8-hydroxy-deoxyguanosine | 0.63158 | −0.66296 |
12(13)ep-9-KODE | 1.68180 | 0.75004 |
8-isoprostane | 0.58342 | −0.77739 |
Maltotetraose | 0.52038 | −0.94235 |
Oxypurinol | 0.54446 | −0.87710 |
Metabolite | |
---|---|
Lauric acid propyl ester | 2-monostearin |
Pentadeconic acid, glycerine-(1)-monoester | Decanoic acid decylester |
Ricinoleic acid | Myo-inositol phosphate |
Heptadecanoic acid, glycerine-(1)-monoester | D-gluconic acid |
Nonadecanoic acid-glycerine-(1)-monoester | Succinic acid |
Eicosanoic acid propyl ester | Citric acid |
Hexadecanoic acid propyl ester |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, A.; Kouznetsova, V.L.; Kesari, S.; Tsigelny, I.F. Diagnostics of Thyroid Cancer Using Machine Learning and Metabolomics. Metabolites 2024, 14, 11. https://doi.org/10.3390/metabo14010011
Kuang A, Kouznetsova VL, Kesari S, Tsigelny IF. Diagnostics of Thyroid Cancer Using Machine Learning and Metabolomics. Metabolites. 2024; 14(1):11. https://doi.org/10.3390/metabo14010011
Chicago/Turabian StyleKuang, Alyssa, Valentina L. Kouznetsova, Santosh Kesari, and Igor F. Tsigelny. 2024. "Diagnostics of Thyroid Cancer Using Machine Learning and Metabolomics" Metabolites 14, no. 1: 11. https://doi.org/10.3390/metabo14010011
APA StyleKuang, A., Kouznetsova, V. L., Kesari, S., & Tsigelny, I. F. (2024). Diagnostics of Thyroid Cancer Using Machine Learning and Metabolomics. Metabolites, 14(1), 11. https://doi.org/10.3390/metabo14010011