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Abstract: Recent data described that patients with lysosomal storage disorders (LSDs) may have
clinical schizophrenia (SCZ) features. Disruption of lipid metabolism in SCZ pathogenesis was found.
Clinical features of schizophrenia (SCZ) have been demonstrated in patients with several lysosomal
storage disorders (LSDs). Taking into account the critical role of lysosomal function for neuronal
cells’ lysosomal dysfunction could be proposed in SCZ pathogenesis. The current study analyzed
lysosomal enzyme activities and the alpha-synuclein level in the blood of patients with late-onset SCZ.
In total, 52 SCZ patients with late-onset SCZ, 180 sporadic Parkinson’s disease (sPD) patients, and
176 controls were recruited. The enzymatic activity of enzymes associated with mucopolysaccharido-
sis (alpha-L-Iduronidase (IDUA)), glycogenosis (acid alpha-glucosidase (GAA)) and sphingolipidosis
(galactosylceramidase (GALC), glucocerebrosidase (GCase), alpha-galactosidase (GLA), acid sph-
ingomyelinase (ASMase)) and concentration of lysosphingolipids (hexosylsphingosine (HexSph),
globotriaosylsphingosine (LysoGb3), and lysosphingomyelin (LysoSM)) were measured using LC-
MS/MS. The alpha-synuclein level was estimated in magnetically separated CD45+ blood cells using
the enzyme-linked immunosorbent assay (ELISA). Additionally, NGS analysis of 11 LSDs genes
was conducted in 21 early-onset SCZ patients and 23 controls using the gene panel PGRNseq-NDD.
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Decreased ASMase, increased GLA activities, and increased HexSpn, LysoGb3, and LysoSM con-
centrations along with an accumulation of the alpha-synuclein level were observed in late-onset
SCZ patients in comparison to the controls (p < 0.05). Four rare deleterious variants among LSDs
genes causing mucopolysaccharidosis type I (IDUA (rs532731688, rs74385837) and type III (HGSNAT
(rs766835582)) and sphingolipidosis (metachromatic leukodystrophy (ARSA (rs201251634)) were
identified in five patients from the group of early-onset SCZ patients but not in the controls. Our find-
ings supported the role of sphingolipid metabolism in SCZ pathogenesis. Aberrant enzyme activities
and compounds of sphingolipids associated with ceramide metabolism may lead to accumulation of
alpha-synuclein and may be critical in SCZ pathogenesis.

Keywords: schizophrenia; Parkinson’s disease; hydrolase activity; sphingolipids; alpha-synuclein;
lysosomal storage disorder genes

1. Introduction

Schizophrenia (SCZ) is a mental disorder with a prevalence of 0.7–1% in the general
population [1]. SCZ is attributed to hyperactive dopamine transmission that comprises an
increase in dopamine synthesis capacity, higher synaptic dopamine levels, and augmented
dopamine release [2]. The heritability of SCZ is estimated to be 70–90% [3]. Polymorphism
heritability estimates suggest that less than 30% of genetic variations of SCZ are variants
with minor allele frequency (MAF) of <1% in the population [4]. However, known genetic
risk factors cannot explain the molecular mechanisms underlying the pathogenesis of SCZ.
Recent advances from genome-wide association studies (GWAS) point to a broad polygenic
network of brain-expressed genes contributing to SCZ pathogenesis [5–7].

The association of lysosomal storage disorders (LSDs) genes with a group of neu-
rodegenerative disorders, namely synucleinopathies such as Parkinson’s disease (PD),
dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), is now widely
discussed [8–14]. Previously, we and other research groups revealed alterations in lysoso-
mal enzyme activities and sphingolipid concentrations in blood and brain tissues of patients
with PD and also in DLB and MSA patients [15,16]. Transcriptome analysis of post-mortem
brain tissues of SCZ patients demonstrated the dysregulation of genes involved in lysoso-
mal function and cytoskeleton remodeling, suggesting the role of lysosomal dysfunction
in SCZ pathogenesis [17]. Lipidomic analysis revealed alterations in lipid composition in
SCZ patients compared to controls in the brain, biofluids (blood, cerebrospinal fluid (CSF),
urea, plasma, and serum [18]. However, the assessment of lysosomal enzyme activities
in the blood of SCZ patients has not been conducted. However, SCZ and PD do coexist
rarely in clinical practice [2]. A recent study demonstrated that an increased genetic risk
of PD may be associated with an increased risk of SCZ [19]. This association supports the
intrinsic nature of the psychotic symptom of PD rather than medication or environmental
effects [19]. Further studies are needed to support possible comorbidity in these diseases.

Given the above, the aim of the present study was to estimate the lysosomal hydrolases
activities, lysosphingolipids concentrations, and alpha-synuclein level in blood cells of SCZ
patients along with searching for rare pathogenic variants in LSDs genes using NGS analysis.

2. Materials and Methods

All samples had been deposited at the Moscow Branch of the Biobank “All-Russian
Collection of Biological Samples of Hereditary Diseases” (Research Centre for Medical
Genetics, Moscow, Russia).

2.1. Samples

In total, 52 late-onset SCZ patients, 180 sporadic PD patients with no family history
of the disease (sPD), and 176 individuals without neurological disorders were included
in the study of lysosomal hydrolase activities. Patients with SCZ were diagnosed at two
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clinic centers of Saint Petersburg, St. Petersburg Psychiatric Hospital No. 1, named after P.
P. Kashchenko, and V.M. Bekhterev National Medical Research Center for Psychiatry and
Neurology. Standard neurologic clinical examination was performed for all participants,
and the diagnosis of SCZ was based on the International Classification of Diseases, 10th
revision (ICD-10).

Additionally, 23 male patients with early-onset SCZ and the first episode of SCZ (age
at exam: 30.95 ± 8.82 y.o.) and also 21 neurological healthy male individuals (age at exam:
35.86 ± 9.02 y.o.) without bipolar disorder or SCZ (Controls_NGS) were enrolled into the
analysis with targeted NGS to search for rare variants among LSDs genes. Unrelated healthy
individuals with no family history of the neurological disorders were recruited as controls.
A group of sPD patients was generated in three neurological clinic centers of St. Petersburg:
Pavlov First Saint-Petersburg State Medical University, Institute of experimental university,
Institute of the Human Brain of RAS. The demographic characteristics of the studied groups
are presented in Table 1.

Table 1. Demographic and clinical characteristics of the compared groups.

Groups Age at Exam,
Mean ± SD, Years

Age at Onset,
Mean ± SD, Years

Sex
(Male–Female)

Positive and
Negative Syndrome

Scale (PANSS)

Montreal Cognitive
Assessment (MoCA)

Patients with SCZ with
late-onset
(N = 52)

61.0 ± 11.1 51.1 ± 11.5 20:32 75.9 ± 15.8 25.9 ± 2.39

Patients with sPD
(N = 180)

63.5 ± 9.2 57.6 ± 10.2 75:105 - -

Controls (N = 176) 62.4 ± 8.9 - 70:106 - -
Patients with SCZ with

early-onset_NGS (N = 23) 31.4 ± 8.75 NA 23:0 NA NA

Controls_NGS (N = 21) 35.5 ± 9.06 - 21:0 - -

NA—not applicable.

2.2. Assessment of Enzyme Activities and Lysosphingolipid Concentrations in Blood

From each of the study participants, fresh venous blood samples were collected in
EDTA tubes. Dry blood spots (DBS) cards were prepared by pipetting 40 µL of whole blood
on each spot. DBS were allowed to dry in open air at room temperature for 2 h and then
were stored at −20 ◦C until extraction. Enzyme activities of alpha-L-Iduronidase (IDUA, EC
3.2.1.76, deficient in Mucopolysaccharidosis Type I) and also galactosylceramidase (GALC,
EC 3.2.1.46, deficient in Krabbe disease), glucocerebrosidase (GCase, EC 3.2.1.45, deficient
in Gaucher disease), alpha-galactosidase A (GLA, EC 3.2.1.22 deficient in Fabry disease),
acid sphingomyelinase (ASMase, EC 3.1.4.12, deficient in Niemann-Pick disease types A
and B), and acid alpha-glucosidase (GAA, EC 3.2.1.20, deficient in Pompe disease), and
concentrations of lysosphingolipids (hexosylsphingosine (HexSph) (glucosylsphingosine
(GlcSph) + galactosylsphingosine (GalSph)), globotriaosylsphingosine (LysoGb3), and
lysosphingomyelin (LysoSM)) were estimated by liquid chromatography tandem-mass
spectrometry (LC-MS/MS) in dry blood spots (DBS) as described earlier [20].

2.3. Detection of Alpha-Synuclein Level in CD45+ Blood Cells

CD45+-cells were isolated from 8 mL fresh peripheral blood by density gradient
centrifugation (Ficoll-Paque PLUS, GE Healthcare, Chicago, IL, USA) followed by mag-
netic sorting using CD45+ MicroBeads and miniMACS columns type MS (Miltenyi Biotec,
Bergisch Gladbach, Germany) according to the manufacturer’s instructions. The cell sus-
pension was aliquoted and frozen at −70 ◦C. Alpha-synuclein level in CD45+-cells was
determined by ELISA using Human alpha-synuclein ELISA kit (Thermo Fisher Scientific,
Waltham, MA, USA). The cells were lysed with Total Protein Extraction Kit (Chemicon (Mil-
lipore, Burlington, MA, USA). The total protein concentration was measured with Pierce
BSA Protein Assay kit (ThermoScientific, Waltham, MA, USA). Samples adjusted to 6 µg of
total protein were used in experiments. Each sample was evaluated in triplicate. Optical
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density was measured using microplate spectrophotometer xMark (Bio-Rad, Hercules, CA,
USA). Homogeneous cell fraction of CD45+ cells was used because the red blood cells may
distort the results because they contain more than 99% of alpha-synuclein in the total blood
fraction [21].

2.4. Next Generation Sequencing and Variant Calling Analysis of LSDs Genes

After sample collection, blood DNA samples were isolated from each individual
included in the current study. An amount of 100 ng of DNA was used to generate sequenc-
ing libraries using the KAPA HyperPlus kit (Roche, Basel, Switzerland) using enzymatic
fragmentation according to manufacturer’s instructions. The size of library fragment
was evaluated using Agilent 2100 Bioanalyzer (Agilent technologies, Santa Clara, CA,
USA). The NimbleGen SeqCap EZ Choice kit (Roche, Basel, Switzerland) was used for
target enrichment. The gene panel PGRNseq-NDD was specifically designed for targeted
sequencing of genes implicated in inflammation, immunoreactivity, neurodegeneration,
metabolism, and detoxification of drugs, xenobiotics, and endogenous substances and
was described in our previous study [22]. Sequencing was performed using Illumina
MiSeq platform with generation sequence reads, producing paired-end reads spanning
250 bases on average. Sequencing of controls 1 was carried out on the Illumina Hiseq 1500
NGS platform with libraries prepared using Illumina exome kits. Quality control for each
sample was performed by FastQC (v0.11.9). In this step, clean reads were obtained by
pre-processing the raw reads with Trimmomatic (v0.36). All downstream analyses, such as
alignment and variant calling, were based on the high-quality clean data.

To map paired-end reads passing the pre-processing onto the human reference genome
build GRCh37 (Gencode, https://www.gencodegenes.org, accessed on 10 January 2023),
the Burrows–Wheeler Aligner (BWA) (v0.7.17) was used [23]. The identification of single
nucleotide variants (SNVs) and small insertions/deletions (indels) in individual BAM files
was performed using the Genome Analysis Toolkit (GATK) (v 4.2.6.1) [24]. SNVs and indels
were annotated using the ANNOVAR tool [25]. The pathogenicity of variants was tested
using prediction algorithms such as SIFT, PolyPhen-2-HDIV, Mutation taster, Mutation
assessor, and LRT and scores to measure predicted pathogenicity, as was described earlier
by Ganesh and colleagues [26]. Deleterious variants were selected and their prioritization
was carried out as follows: Variant predicted as deleterious by all five prediction algorithms
or by one or more of the five prediction algorithms. Identified variants were filtered for false
positives by removing variants not passing all filters as residing in intronic and intergenic
regions, and causing a synonymous, non-frameshift change. Finally, variants were removed
from analysis if their MAF was more than 1% in Exome Aggregation Consortium—ALL
(ExAC-ALL) and non-Finnish European ExAC (ExAC-NFE) [27], read depth ≤ 80, and
variant quality value ≤ 20. All determined variants were completely absent from our
controls. The block diagram of pipeline is presented on supplementary Figure S1. The
variants of genes associated with inherited metabolic disorders were validated by Sanger
sequencing. Sequences of primers are available in Supplementary Table S1.

2.5. Statistical Analysis

Conformity of findings to normal distribution was tested using the Shapiro–Wilk test.
Activity of each enzyme was compared between studied groups using the nonparametric
Mann–Whitney u-test. Significance with Bonferroni correction for multiple comparisons
was established at p < 0.05. For odds ratio, logistic regression analysis was used, in which
SCZ status was the outcome and enzymatic activities, lysosphingolipid concentrations, and
alpha-synuclein level were the predictors, adjusted for age and sex, and disease duration.
Next, we divided SCZ patients into four groups based on quartiles of enzymatic activities,
lysosphingolipid concentrations, and alpha-synuclein level measured in the control group,
and ANOVA was performed to examine the association between enzymatic activities
and AAO of disease, as was performed earlier [16,28]. Statistical analysis was performed

https://www.gencodegenes.org
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using R software (version 4.1.2). Clinical data and experimental data are expressed as the
mean ± SD.

3. Results
3.1. Lysosomal Enzymatic Activities, Lysosphingolipid Concentrations, and Alpha-Synuclein Level
in Patients with Late-Onset SCZ

In our study, the enzymatic activities of GCase, ASMase, GLA, GALC, GAA, and IDUA
lysosomal enzymes were estimated by means of multiplex assay based on LC-MS/MS, as
described earlier [20].

The estimated enzymatic activities of lysosomal enzymes (GCase, ASMase, GLA,
GALC, GAA, IDUA) in the blood of patients with late-onset SCZ, sPD patients, and controls
are presented in Table 2 and Supplementary Figure S2. ASMase activity was decreased in
patients with late-onset SCZ in comparison to the sPD patients and controls (p < 0.00001).
GAA activity was decreased in the blood of patients with late-onset SCZ compared to sPD
(p = 0.019). GALC activity was increased in the blood of patients with late-onset SCZ and
sPD compared to controls (p < 0.05). Unexpectedly, GLA activity was increased in the late-
onset SCZ patients compared to sPD patients and controls (p < 0.00001). Also, decreased
IDUA activity was found in the late-onset SCZ patients compared to the sPD patients and
controls. However, the difference did not reach statistical significance (p = 0.085, p = 0.074,
respectively) (Table 2, Supplementary Figure S2). No significant differences in GCase and
IDUA activities between all studied groups were found (p > 0.05).

Lysosphingolipid concentrations (HexSph, LysoGb3, LysoSM) in the blood were esti-
mated by means of multiplex assay based on LC-MS/MS, as described earlier [29,30]. The
concentrations of all studied lysosphingolipids were increased in patients with late-onset
SCZ compared to sPD and controls (p < 0.00001) (Table 2, Supplementary Figure S3). As
was reported earlier, sPD patients were characterized by decreased LysoSM concentration
compared to controls (p = 0.00021). HexSph and LysoGb3 did not differ between sPD
patients and controls (p > 0.05) [16] (Table 2, Supplementary Figure S3).

The alpha-synuclein level in CD45+ blood cells was measured using ELISA in the
studied groups. As was reported earlier, the alpha-synuclein level was increased in sPD
patients compared to controls (p = 0.024) [31]. Interestingly, the patients with late-onset
SCZ (10.24 ± 0.99) were also characterized by elevated alpha-synuclein levels compared to
controls (8.19 ± 0.55) (p = 0.017) (Figure 1).
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Table 2. Lysosomal enzyme activities and lysosphingolipid concentrations in blood cells of studied groups.

Groups

Estimated Parameters, Mean ± SE

Enzyme Activity in the Whole Blood,
Mmol/L/h Substrate Concentration in the Whole Blood, ng/mL

ASMase GCase GLA GALC IDUA GAA LysoSM HexSph LysoGb3

Patients with
late-onset SCZ (N

= 52)

2.79 ± 0.13
p = 3.2 × 10−8 *

p = 1.8 × 10−11 **
6.78 ± 0.32

6.63 ± 0.45
p = 2.2 × 10−6 *
p = 7.9 × 10−5 **

2.49 ± 0.13
p = 0.0054 * 6.71 ± 0.34 7.21 ± 0.45

p = 0.019 **

6.76 ± 0.58
p = 1.3 × 10−7 *

p = 1.1 × 10−12 **

6.03 ± 0.36
p = 1.6 × 10−9 *

p = 5.8 × 10−11 **

1.24 ± 0.06
p = 1.4 × 10−10 *
p = 1.4 × 10−8 **

sPD (N = 180) 4.94 ± 0.17 7.65 ± 0.30 45.01 ± 0.26 2.50 ± 0.12
p = 0.011 * 7.53 ± 0.24 8.63 ± 0.33 3.53 ± 0.09

p = 0.00021 * 3.49 ± 0.19 0.86 ± 0.04

Controls
(N = 176) 44.71 ± 0.18 7.42 ± 0.34 4.66 ± 0.18 2.15 ± 0.09 7.94 ± 0.28 8.30 ± 0.30 4.11 ± 0.12 3.59 ± 0.19 0.82 ± 0.03

*—compared to controls. **—compared to sPD.
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3.2. Correlation Analysis of Lysosomal Enzyme Activities, Lysosphingolipid Concentrations, and
Alpha-Synuclein Level in Patients with Late-Onset SCZ

Correlation analysis was performed in order to assess whether there was an associa-
tion among enzymes activities, lysosphingolipid concentrations, and alpha-synuclein level
in SCZ patients (Supplementary Figure S4). At first, correlation analysis was conducted.
Positive correlations between all enzymes were found in the group of SCZ patients (Supple-
mentary Figure S4). For lysosphingolipid concentrations, a negative correlation between
HexSph concentration and LysoSM concentration (p = 0.022, r = 0.35) was found in the SCZ
patients. Although, HexSph concentration was positively correlated with GALC activity
(p = 0.01, r = 0.35) in the SCZ patients. Despite an elevation in the alpha-synuclein level
in the SCZ patients, no correlations with lysosphingolipid concentrations and enzyme
activities were found (p > 0.05) (Supplementary Figure S4).

Because correlations between activities of lysosomal enzymes were found, multivari-
able logistic regression analysis was performed to identify the contribution of enzymatic
activities to SCZ status in patients, adjusted for age and sex (Table 3). Higher ASMase
activity was associated with lower odds of SCZ status (OR = 0.349, 95%CI: 0.204–0.599;
p = 0.0001). Surprisingly, increased GLA activity was found to be associated with an in-
creased SCZ risk in SCZ patients (OR = 1.162; 95%CI: 1.818–1.809; p = 0.0004) (Table 3).
There was no association among GCase, GALC, GAA, and SCZ status.

Table 3. The association among lysosomal enzymes activities, lysosphingolipid concentrations,
alpha-synuclein level, and SCZ status.

Group Parameters Odds
Ratio 95% CI p-Value

Enzymatic activities

Patients with SCZ with
late- onset

GCase 0.994 0.971–1.018 0.6621

GLA 1.051 1.025–1.077 0.0001

ASMase 0.925 0.889–0.963 0.0002

GALC 1.016 0.958–1.078 0.5786

IDUA 0.998 0.970–1.027 0.9124

GAA 1.004 0.980–1.0295 0.7201

Age 1.000 0.993–1.007 0.8792

Sex 0.999 0.871–1.145 0.9887

Substrate concentrations

HexSph 1.072 1.047–1.098 4.53 × 10−8

LysoGb3 1.290 1.092–1.523 0.0032

LysoSM 1.059 1.037–1.081 1.95 × 10−7

Age 0.997 0.991–1.004 0.4540

Sex 0.976 0.862–1.106 0.7071

Alpha-synuclein level

Alpha-synuclein 1.017 1.006–1.028 0.0027

Age 1.093 0.989–1.004 0.4657

Sex 0.997 0.944–1.264 0.2344

The same analysis was conducted for lysosphingolipid concentrations and alpha-
synuclein levels. A strong association between SCZ status and increased concentrations
of ASMase and GLA substrates, LysoSM, and LysoGb3, respectively (OR = 1.059, 95%CI:
1.037–1.081; p = 1.95 × 10−7; OR = 1.290, 95%CI: 1.092–1.523; p = 0.0032, respectively) and
also of substrates GCase and HexSph (OR = 1.072, 95%CI: 1.047–1.098; p = 4.53 × 10−8)
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were found. A higher alpha-synuclein level was associated with higher odds of SCZ status
(OR = 1.017, 95%CI: 1.006–1.028; p = 0.0027) (Table 3).

Additionally, the association of the studied parameters with the value of the PANSS
scale, adjusted for sex and age, was assessed using regression analysis. However, the
association was not identified (p > 0.05). Data are not provided. Correlation analysis also
did not reveal any difference in PANSS values and all studied parameters (Figure S4).
Multiple regression analysis did not show any association between the values of the MoCA
scale and all studied parameters as well. However, correlation analysis showed a negative
correlation between GLA, GAA activities, and HexSph concentration and MoCA value
(p = 0.014, r = −0.34, p = 0.011, r = −0.35, p = 0.032, r = 0.30, respectively) and a positive
correlation between LysoSM concentration and the MoCA value (p = 0.007, r = 0.37) (Figure S4).

3.3. Enzyme Activities, Lysosphingolipid Concentrations, and Alpha-Synuclein Level Are
Associated with the Age at Onset of SCZ

We divided SCZ patients to four groups, based on the enzymatic activities, lysosphin-
golipid concentrations, and the alpha-synuclein level quartiles in controls (Supplementary
Table S2). Enzymatic activities of IDUA, GCase, GAA, ASMase, and GLA were not asso-
ciated with age at onset (AAO). Surprisingly, we revealed that increased GALC activity
was associated with an earlier AAO, with significant differences of more than 11 years in
patients with late-onset SCZ (p = 0.029) (Supplementary Table S2). No associations among
lysosphingolipid concentrations, alpha-synuclein level, and AAO of patients with SCZ
were found (p > 0.05) (Supplementary Table S2).

3.4. Selection of Rare Deleterious Variants in Patients with Early-Onset SCZ

Additionally, target sequencing analysis was conducted for 23 early-onset SCZ patients
and 21 neurological healthy individuals (Controls_NGS).

Four variants of eleven LSDs genes were selected in group 1 using the pipelines
described in Section 2, namely IDUA (rs532731688, rs74385837), ARSA (rs201251634), and
HGSNAT (rs766835582) (Supplementary Table S3).

Variants of ARSA (rs201251634) and HGSNAT (rs766835582) were selected because they
were determined as deleterious by all five predictors (SIFT, PolyPhen-2 HDIV, Mutation
taster, Mutation assessor, and LRT); IDUA (rs74385837) was determined as deleterious by
three predictors (PolyPhen-2 HDIV, Mutation taster, Mutation assessor, LRT), and IDUA
(rs532731688). All variants were detected in a heterozygous state. Mutations in IDUA and
HGSNAT cause mucopolysaccharidosis I and III types, respectively; mutations in ARSA
cause metachromatic leukodystrophy (MLD) that belongs to the sphingolipidosis group.
All selected genes are expressed in brain tissues and in others (https://www.proteinatlas.
org, accessed on 1 November 2023). No variants of all LSDs genes [11] were found in
Controls_NGS as all selected variants were located in the genes (IDUA, HGSNAT and
ARSA) linked with mucopolysaccharidosis and sphingolipidosis, respectively.

4. Discussion

The results of our study highlight the role of lysosomal dysfunction in SCZ patho-
genesis. We first focused on an estimation of enzymatic activities of lysosomal hydrolases
encoded by genes causing the mucopolysaccharidosis (IDUA) and sphingolipidoses (GCase,
ASMase, GALC, GLA) and additional glycogen storage disorders (glycogenosis) (GAA)
in patients with late-onset SCZ. Among all studied enzymes, the impaired activities of
ASMase, GLA, GALC, and GAA and the increased concentration of lysosphingolipids
(HexSph, LysoGb3, LysoSM) were shown in late-onset SCZ patients compared to controls.
It is interesting to note that all enzymes and lysosphingolipids are involved in ceramide
metabolism (Figure 2).

https://www.proteinatlas.org
https://www.proteinatlas.org
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It is well known that ceramides are enriched in neural tissues and are important for
brain functioning [32]. The disturbances in sphingolipid metabolism in neurodegeneration
is now widely discussed [33]. Altered enzymatic activities of hydrolyzes and sphingolipid
compounds taking part in ceramide metabolism were demonstrated in the blood of sPD
patients as well as in patients with other synucleinopathies (DLB, MSA) by us and others
in previous studies [15,16]. In a postmortem study, Moors and coauthors demonstrated a
decrease in GCase activity in the substantia nigra of sPD and DLB patients [15]. Several
studies demonstrated decreased GCase activity in the blood of sPD patients.

It is interesting to note that synucleinopathies could in some cases be presumed as
a comorbid condition in patients with SCZ [2,34–36]. Earlier, the postmortem studies
demonstrated an increase in ceramides as hydroxyceramides, phytoceramides, hexosyl-
ceramides, lactosylceramides, and ceramide phosphoethanolamines and others in white
matter and on the frontal cortex of SCZ patients [37,38]. Recently, in blood plasma, the
increase in Cer (d18: 1/16: 0), Cer (d18: 1/18: 0), and Cer (d18: 1/24: 1) was demonstrated
in SCZ patients compared to controls [32]. Abnormalities of ceramides were associated
with cognitive impairments in SCZ patients [39]. So, ceramide is involved in different phys-
iological and pathological cellular processes [40] and may be a part of SCZ pathogenesis, in
particular, due to the impairment of myelin formation and oligodendrocyte dysfunction
and neuroinflammation [41,42].

In the present study, we first revealed decreased ASMase and increased GLA activities
which were accompanied by the accumulation of appropriate substrates (LysoSM, LysoGb3,
respectively) in the blood of late-onset SCZ patients compared to controls and sPD patients.

ASMase is a lysosomal hydrolase responsible for the breakdown of sphingomyelin
into ceramide and phosphocholine in the lysosome and on the plasma membrane [43,44].
In our previous study, we demonstrated a decrease in ASMse activity in the blood of MSA
patients [16]. Interestingly, a recent review discussed the abnormalities of the ASMase–
ceramide signaling pathway in SCZ patients [45]. This review discusses that the aberrations
in the ASMase/ceramide system, especially ASMase activity and the levels of ceramide,
may alter the cerebral microdomain structure and neuronal metabolism, leading to neu-
rotransmitter dysfunction as dopamine neurotransmission and neuroinflammation [45].
Sphingomyelin is a critical component of the myelin sheath. Previously, an aberrant level
of sphingomyelin and its metabolite, such as ceramide, was associated with cognitive
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impairments in SCZ patients [39]. And oppositely, several LSGs are characterized by
psychotic behavior. Thus, Niemann-Pick disease (NPD) types A and B is an LSD caused
by ASMase deficiency, which catalyzes the hydrolysis of sphingomyelin (SM) to ceramide
and phosphocholine. Niemann-Pick disease type C (NPC) is a rare progressive genetic
disorder characterized by an inability of the body to transport cholesterol and lipids inside
of cells. NPC may be characterized by psychotic behavior, such as somatic hallucinations
leading to the diagnosis of schizophrenia-like psychosis. However, earlier research has
described a broad range of neurological manifestations also for NPD including severe
ataxia, cognitive deficits, and psychiatric disorders [46]. Zhuo and coauthors suggested
that normalization of the aberrant ASMase/ceramide system or ceramide reduction using
approved functional inhibitors of ASMase, such as fluvoxamine and rosuvastatin, may
improve clinical outcomes of SCZ patients [45].

At the same time, we first found increased GLA activity in SCZ patients compared
to sPD patients and controls, and also, elevated GLA activity and its substrate (LysoGb3)
concentration were associated with an increased risk of SCZ. GLA deficiency due to
mutations in the GLA gene causes Fabry disease and leads to an accumulation of neutral
glycosphingolipids in lysosomes within various tissues including the nervous system [47].

The reason for increased GLA activity and decreased ASMase activity and the accu-
mulation of LysoGb3 and LysoSM in SCZ patients is currently unclear. GLA and ASMase
and their substrates LysoGb3 and LysoSM are directly involved in ceramide metabolism
(Figure 2). A decrease in ASMase activity and an increase in the activity of GLA, along
with changes in the concentrations of their substrates (LysoSM, LysoGb3, respectively)
may reflect a disturbance in ceramide metabolism in patients with SCZ. According to
our results and the hypothesis of Zhuo and colleagues, it is likely that not only may the
ASMase-ceramide signaling pathway be involved in SCZ, but aberrant GLA-ceramide
signaling pathways may also be associated with SCZ. Further studies are needed to test
these results.

Additionally, we first revealed elevated GALC activity in SCZ patients compared to
controls. An increase in GALC activity was associated with decreased AAO in SCZ patients.
Galactosylceramide (GalCer) is synthesized when galactose is added to the 1-hydroxyl
moiety of ceramide. GALC catalyzes the hydrolysis of GalCer and galactosylsphingosine. A
deficiency of activity of lysosomal enzyme GALC in patients with the homozygous GALC
mutation leading to Krabbe disease results in the rapid accumulation of galactosylsphingo-
sine (or psychosine), a neurotoxic sphingolipid to neurons and myelinating cells [48]. GALC
as ASMase and GLA is involved in sphingolipid and ceramide metabolisms (Figure 2).
An increase in GALC activity in SCZ patients may correlate with an increase in myelin
level [49]. Recently, it was shown that GALC interacts with sphingolipid activator proteins
(SapA) with the formation of the heterotetramer complex mediated lipid catabolism in
the lysosome [50]. SapA lipoprotein can solubilize phospholipids, sphingolipids, and
cholesterol into discrete, monodisperse particles [51]. Alteration of GALC activity may
influence lipid metabolism, in particular, phospholipid metabolism [52].

As well, here, decreased GAA activity in the blood of patients with SCZ compared
to patients with sPD was found. A deficiency of GAA causes an autosomal recessive
disease, Pompe disease, which belongs to the group of glycogen storage disorders. GAA
catalyzes the hydrolysis of glycogen. GAA is expressed in skeletal muscle, heart, kidneys,
and CNS [53]. Glucose derived from glycogen hydrolyzed by GAA enters the glycolytic
pathway to generate pyruvate and subsequently acetyl-CoA, the fundamental building
block of cholesterol and fatty acids. Fatty acids are needed for de novo synthesis of ceramide,
cerebrosides, sphingolipids, and glycosphingolipids [53]. Pompe disease is characterized
by myelin abnormalities that may occur due to impaired ceramide metabolism [54,55].
So, GAA is important for sphingolipid metabolism, and as a consequence, for ceramide
metabolism.

We did not reveal an alteration in GCase activity in SCZ patients, although the activity
of this hydrolase positively correlated with the activity of other enzymes included in the
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study of SCZ patients (Supplementary Figure S4). GCase hydrolyses glucosylceramide
to ceramide and glucose. Gaucher disease (GD) is a rare LSD caused by mutations in
the GBA1 gene, which results in deficient lysosomal enzyme glucocerebrosidase (GCase)
activity. Previously, decreased GCase activity was demonstrated in blood and brain samples
of PD and DLB patients compared to controls [15,56], and at the same time, we and
other researchers did not reveal a decrease in GCase activity in blood samples of PD
patients [20,57]. Nevertheless, in the current study, increased HexSph concentration, which
is a substrate of GCase, was found in late-onset SCZ patients compared to sPD patients
and controls which supports the data about the role of ceramide metabolism in SCZ
pathogenesis (Figure 2) [58]. Our data support the role of ceramide metabolism in SCZ
pathogenesis. Eventually, the described alterations were more pronounced in SCZ than
in PD.

In the second part, we assessed the CD45+ alpha-synuclein level in SCZ patients and
controls. Elevated alpha-synuclein levels were found in CD45+ blood cells of late-onset
SCZ patients compared to controls. Alpha-synuclein protein encoded by the SNCA gene
plays a pivotal role in PD pathogenesis and is one of the most abundant proteins in the
nervous system and regulates the key stages of dopamine homeostasis [59,60]. In turn,
dysregulation of dopamine homeostasis is implicated in neurodegenerative diseases such
as PD, drug addiction, and neuropsychiatric disorders such as SCZ [61]. Earlier, we and
others found alpha-synuclein accumulation in blood mononuclear cells in patients with
PD compared to controls [31,62–64]. The role of alpha-synuclein in SCZ pathogenesis
remains controversial [65–68]. In one study, the expression level of alpha-synuclein did not
differ between controls and SCZ patients in peripheral blood lymphocytes [65]. In another
study, serum alpha-synuclein levels were reduced in patients with SCZ compared to con-
trols [68]. Interesting, one case study found that ten years after SCZ onset, the disease pro-
gressed to mild parkinsonism in patients with a duplication of the SNCA gene [69]. SNCA
dosage is responsible for parkinsonism and leads to an increased level of alpha-synuclein
protein [70–72]. However, studies evaluating alpha-synuclein included SCZ patients with
an AAO of 30 years, which refers to early-onset SCZ. Similar studies evaluating the level of
alpha-synuclein in a group of late-onset SCZ patients have not been previously conducted.

Taken together, the alteration in the activity of enzymes (ASMase, GLA, GALC) and the
concentration of lysisiphingolipids (HexSph, LysoGb3, LysoSM) involved in sphingolipid
metabolism may affect the degradation of the alpha-synuclein protein, as a consequence of
its accumulation in the cell [58,73]. Moreover, the direct influence of lysosphingolipids on
alpha-synuclein aggregation was shown in in vitro studies [74]. However, it is important to
mention that GlcCer was shown to induce mild aggregation of monomeric alpha-synuclein,
but it primarily acts on alpha-synuclein oligomeric species and directly converts them into
toxic oligomers with more compact conformation [75].

Additionally, we conducted a search for rare pathogenic variants in the LSD genes of
a group of patients with early-onset SCZ. All rare variants of LSDs genes in the present
study were found in a heterozygous state in SCZ patients and were not found in controls.
Despite the fact that most LSDs are autosomal-recessive disorders, even one pathogenic
variant in LSDs genes could highly increase the risk, for example, of neurodegenerative
disorders. Thus, mutations in the GBA1 gene causing GD as well as in the SMPD1 gene
causing Nieman-Pick A/B (NPC A/B) can increase the risk of PD by 5-10 times [12,76–79].
Moreover, the cumulative impact of the mutations in LSDs genes on PD was proposed in
burden analyses [11,14]. Our results supported the role of the ARSA gene in SCZ risk, as
shown in the study of Trakadis and coauthors [80]. The ARSA gene (mapped at 22q13.33)
encodes arylsulfatase. Mutations in the ARSA gene cause the autosomal-recessive disorder
metachromatic leukodystrophy (MLD) (OMIM #250100) due to a deficiency of arylsulfa-
tase A activity. A partial or complete deficiency of arylsulfatase A activity results in an
accumulation of sulfatides in the central and peripheral nervous systems that leads to the
demyelination of axons and peripheral nerves [81]. Interestingly, patients with MLD are
often diagnosed with SCZ [82]. It is worth noting that in the above-mentioned study of
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Trakadis and coauthors, among the thirteen IEM genes associated with SCZ, five of them
belong to LSDs genes, and four of them (HEXA, NCP1, NCP2, ARSA) are causative of
sphingolipidosis [80]. We first described the rare deleterious variants of the HGSNAT and
IDUA genes in SCZ patients. Mutations in the HGSNAT gene cause mucopolysaccharidoses
III type or Sanfilippo syndrome type C due to a deficiency of acetyl-CoA a-glucosaminide
N-acetyltransferase (EC 2.3.1.78) that catalyzes the degradation of heparan N-sulfatase
(sulfamidase). Patients with Sanfilippo syndrome have psychiatric manifestations. Mu-
tations in the IDUA gene cause mucopolysaccharidosis I (MPS I) due to a deficiency of
a-L-iduronidase (IDUA) that leads to defective catabolism of the glycosaminoglycans such
as heparan and dermatan sulphate [83,84]. MPSI manifests as varying degrees of intellec-
tual impairment, neuropathology, and neurological manifestations [85]. Here, the tendency
for decreased IDUA activity in the blood of late-onset SCZ patients compared to sPD
patients and controls was observed (Table 2, Supplementary Figure S2). Thus, our results
are in agreement with the association of LSD genes with SCZ. Mutations in the ARSA,
HGSNAT, and IDUA genes were also found in patients with PD which co-occurs with
SCZ [11,86].

The limitations of the current study are the sample size of the studied groups of
patients with SCZ and the controls for NGS analysis. Larger cohorts are needed to robustly
identify genes that putatively contribute to SCZ risk in the Russian population and in
others. The next limitation is the fact that NGS sequencing and an estimation of lysosomal
enzymes activities and lysosphingolipid concentrations were conducted in different groups
of SCZ patients. The groups were different in terms of sex and age. Further studies on
lysosomal enzyme activities in a group of early-onset SCZ patients are needed. Another
limitation is the lack of information on treatment and body mass index for the late-onset
SCZ patients.

5. Conclusions

The results of the current study suggest an association between metabolic pathways
and LSDs and SCZ. Pronounced aberrant activities of ASMase and GLA and accumulation
of their substrates (LysoSM, LysoGb3) and also HexSph may play a role in late-onset SCZ
pathogenesis and support the interruption of ceramide metabolism in SCZ that, in turn, may
be associated with the identified accumulation of alpha-synuclein protein. Rare variants
in genes causing sphingolipidosis (ARSA (rs201251634) and HGSNAT (rs766835582)) and
mucopolysaccharidosis (IDUA (rs532731688, rs74385837) were revealed in SCZ patients
but not in controls. Further studies are needed to confirm our results.
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