The Effect of Yucca schidigera Extract on Serum Metabolites of Angus Crossbreed Steers with Metabolomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Diets, Animals, and Experimental Design
2.3. Feces Sampling and Processing
2.4. Serum Biochemical and Antioxidant Indices
2.5. LC-MS/MS-Based Untargeted Metabolomics Analysis
2.6. Statistical Analysis and Annotation
3. Results
3.1. Growth Performance
3.2. Nutrient Digestibility
3.3. Serum Biochemical and Antioxidant Indices
3.4. Serum Metabolites and Metabolic Pathway
3.4.1. Multivariate Analysis of Serum Metabolome
3.4.2. Screening and Identification of Differential Metabolites
3.4.3. Correlation between Serum Metabolites and Growth Performance and Digestibility
4. Discussion
4.1. Growth Performance
4.2. Nutrient Digestibility
4.3. Serum Biochemical and Antioxidant Indices
4.4. Serum Metabolites and Metabolic Pathway
4.4.1. Glycerophospholipid Metabolism
4.4.2. Bile Acid Metabolism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
ADG | average daily gain |
ALB | albumin |
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
CA | cholic acid |
CPD | apparent digestibility of crude protein |
DCA | deoxycholic acid |
DMD | apparent digestibility of dry matter |
DMI | dry matter intake |
FCR | feed conversion ratio |
GCA | glycocholic acid |
GLB | globulin |
GLU | blood glucose |
LysoPC | lysophospholipid |
MDA | malondialdehyde |
PC | phosphatidylcholine |
PE | phosphatidylethanolamine |
T-AOC | total antioxidant capacity |
TBIL | total bilirubin |
TC | total cholesterol |
TGs | triglycerides |
TMR | total mixed ration |
TP | total protein |
YSE | Yucca schidigera extract |
References
- Saeed, M.; Arain, M.A.; Naveed, M.; Alagawany, M.; Abd El-Hack, M.E.; Bhutto, Z.A.; Bednarczyk, M.; Kakar, M.U.; Abdel-Latif, M.; Chao, S. Yucca schidigera can mitigate ammonia emissions from manure and promote poultry health and production. Environ. Sci. Pollut. Res. 2018, 25, 35027–35033. [Google Scholar] [CrossRef]
- Dai, Z.; Wang, H.; Liu, J.; Zhang, H.; Li, Q.; Yu, X.; Zhang, R.; Yang, C. Comparison of the Effects of Yucca saponin, Yucca schidigera, and Quillaja saponaria on Growth Performance, Immunity, Antioxidant Capability, and Intestinal Flora in Broilers. Animals 2023, 13, 1447. [Google Scholar] [CrossRef]
- Fan, X.; Xiao, X.; Chen, D.; Yu, B.; He, J.; Yu, J.; Luo, J.; Luo, Y.; Wang, J.; Yan, H.; et al. Yucca schidigera extract decreases nitrogen emission via improving nutrient utilisation and gut barrier function in weaned piglets. J. Anim. Physiol. Anim. 2022, 106, 1036–1045. [Google Scholar] [CrossRef]
- Alagawany, M.; Abd El-Hack, M.E.; El-Kholy, M.S. Productive performance, egg quality, blood constituents, immune functions, and antioxidant parameters in laying hens fed diets with different levels of Yucca schidigera extract. Environ. Sci. Pollut. Res. Int. 2016, 23, 6774–6782. [Google Scholar] [CrossRef]
- Liu, W.H.; La Teng Zhu La, A.; Evans, A.C.O.; Gao, S.T.; Yu, Z.T.; Ma, L.; Bu, D.P. Supplementation with Yucca schidigera improves antioxidant capability and immune function and decreases fecal score of dairy calves before weaning. J. Dairy Sci. 2021, 104, 4317–4325. [Google Scholar] [CrossRef]
- de Sousa, O.A.; Cooke, R.F.; Brandão, A.P.; Schubach, K.M.; Schumaher, T.F.; Bohnert, D.W.; Marques, R.S. Productive and physiological responses of feeder cattle supplemented with Yucca schidigera extract during feedlot receiving1. J. Anim. Sci. 2019, 97, 208–219. [Google Scholar] [CrossRef]
- Zúñiga-Serrano, A.; Barrios-García, H.B.; Anderson, R.C.; Hume, M.E.; Ruiz-Albarrán, M.; Bautista-Martínez, Y.; Sánchez-Guerra, N.A.; Vázquez-Villanueva, J.; Infante-Rodríguez, F.; Salinas-Chavira, J. Antimicrobial and Digestive Effects of Yucca schidigera Extracts Related to Production and Environment Implications of Ruminant and Non-Ruminant Animals: A Review. Agriculture 2022, 12, 1198. [Google Scholar] [CrossRef]
- Cheeke, P.R.; Piacente, S.; Oleszek, W. Anti-inflammatory and anti-arthritic effects of Yucca schidigera: A review. J. Inflamm. 2006, 3, 6. [Google Scholar] [CrossRef]
- Narvaez, N.; Wang, Y.; McAllister, T. Effects of extracts of Humulus lupulus (hops) and Yucca schidigera applied alone or in combination with monensin on rumen fermentation and microbial populations in vitro. J. Sci. Food Agric. 2013, 93, 2517–2522. [Google Scholar] [CrossRef]
- Trotta, R.J.; Kreikemeier, K.K.; Foote, S.; McLeod, K.R.; Harmon, D.L. Influence of Anti-Coccidial Compounds and Phytogenic Saponin Extracts on In Vitro and In Vivo Ruminal Fermentation and Methane Production of Cattle. Animals 2023, 13, 2308. [Google Scholar] [CrossRef]
- Wallace, R.J.; Arthaud, L.; Newbold, C.J. Influence of Yucca shidigera extract on ruminal ammonia concentrations and ruminal microorganisms. Appl. Environ. Microbiol. 1994, 60, 1762–1767. [Google Scholar] [CrossRef]
- Rett, B.; Cooke, R.F.; Brandão, A.P.; Ferreira, V.S.M.; Colombo, E.A.; Wiegand, J.B.; Pohler, K.G.; Rincker, M.J.; Schubach, K.M. Supplementing Yucca schidigera extract to mitigate frothy bloat in beef cattle receiving a high-concentrate diet. J. Anim. Sci. 2020, 98, 1–9. [Google Scholar] [CrossRef]
- Johnson, J.M.; Shreck, A.L.; Nuttelman, B.L.; Burken, D.B.; Erickson, G.E.; Rincker, M.J.; Cecava, M.J.; Klopfenstein, T.J. Effects of twenty percent alkaline-treated corn stover without or with yucca extract on performance and nutrient mass balance of finishing steers fed modified distillers grains-based diets. J. Anim. Sci. 2015, 93, 3034–3043. [Google Scholar] [CrossRef]
- Abdel-Raheem, S.M.; Farghaly, M.M.; Hassan, E.H. Effect of dietary supplementation with Yucca schidigera powder on nutrient digestibility, rumen fermentation, ruminal enzyme activities and growth performance of buffalo calves. Biol. Rhythm. Res. 2022, 53, 854–866. [Google Scholar] [CrossRef]
- Liu, C.L.; Li, Z.Q. Effect of Levels of Yucca Schidigera Extract on Ruminal Fermentation Parameters, Digestibility of Nutrients and Growth Performance in Sheep. Adv. Mater. Res. 2011, 343–344, 655–660. [Google Scholar] [CrossRef]
- Dunn, W.B.; Erban, A.; Weber, R.J.M.; Creek, D.J.; Brown, M.; Breitling, R.; Hankemeier, T.; Goodacre, R.; Neumann, S.; Kopka, J.; et al. Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 2013, 9, 44–66. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2006. [Google Scholar]
- Alsubait, I.S.; Alhidary, I.A.; Al-Haidary, A.A. Effects of Different Levels of Yucca Supplementation on Growth Rates, Metabolic Profiles, Fecal Odor Emissions, and Carcass Traits of Growing Lambs. Animals 2023, 13, 755. [Google Scholar] [CrossRef]
- Görgülü, M.; Yurtseven, S.; Ünsal, İ.; Kutlu, H.R. Effect of Dietary Supplemental Yucca schidigera Powder on Fattening Performance of Male Lambs. J. Appl. Anim. Res. 2004, 25, 33–36. [Google Scholar] [CrossRef]
- Kholif, A.E. A Review of Effect of Saponins on Ruminal Fermentation, Health and Performance of Ruminants. Vet. Sci. 2023, 10, 450. [Google Scholar] [CrossRef]
- Wanapat, M.; Phesatcha, K.; Viennasay, B.; Phesatcha, B.; Ampapon, T.; Kang, S. Strategic supplementation of cassava top silage to enhance rumen fermentation and milk production in lactating dairy cows in the tropics. Trop. Anim. Health Prod. 2018, 50, 1539–1546. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr. Res. Rev. 2009, 22, 204–219. [Google Scholar] [CrossRef]
- Widyarini, S.; Sekar Nagari, F.; Hanim, C.; Bachruddin, Z.; Muhlisin, M.; Mira Yusiati, L. Effect of Nigella sativa L. as Saponin Sources on In Vitro Rumen Fermentation, Enzyme Activity and Nutrients Digestibility. Adv. Anim. Vet. Sci. 2021, 9, 2247–2257. [Google Scholar] [CrossRef]
- Alghirani, M.M.; Chung, E.L.T.; Sabri, D.S.M.; Tahir, M.N.J.M.; Kassim, N.A.; Kamalludin, M.H.; Nayan, N.; Jesse, F.F.A.; Sazili, A.Q.; Loh, T.C. Can Yucca schidigera Be Used to Enhance the Growth Performance, Nutrient Digestibility, Gut Histomorphology, Cecal Microflora, Carcass Characteristic, and Meat Quality of Commercial Broilers Raised under Tropical Conditions? Animals 2021, 11, 2276. [Google Scholar] [CrossRef]
- Benamirouche, K.; Baazize-Ammi, D.; Hezil, N.; Djezzar, R.; Niar, A.; Guetarni, D. Effect of probiotics and Yucca schidigera extract supplementation on broiler meat quality. Acta Sci. Anim. Sci. 2020, 42, e48066. [Google Scholar] [CrossRef]
- Wang, Y.; McAllister, T.A.; Newbold, C.J.; Rode, L.M.; Cheeke, P.R.; Cheng, K. Effects of Yucca schidigera extract on fermentation and degradation of steroidal saponins in the rumen simulation technique (RUSITEC). Anim. Feed Sci. Technol. 1998, 74, 143–153. [Google Scholar] [CrossRef]
- Johnson, C.A.; Snelling, T.J.; Huntington, J.A.; Taylor-Pickard, J.; Warren, H.E.; Sinclair, L.A. Effect of feeding Yucca schidigera extract and a live yeast on the rumen microbiome and performance of dairy cows fed a diet excess in rumen degradable nitrogen. Animal 2023, 17, 100967. [Google Scholar] [CrossRef]
- Anele, U.Y.; Crumel, X.; Olagunju, L.; Compart, D.P. Effects of Yucca schidigera Based Feed Additive on In Vitro Dry Matter Digestibility, Efficiency of Microbial Production, and Greenhouse Gas Emissions of Four Dairy Diets. Dairy 2022, 3, 326–332. [Google Scholar] [CrossRef]
- Yi, X.; Wu, B.; Ma, J.; Cui, X.; Deng, Z.; Hu, S.; Li, W.; Li, X.; Meng, Q.; Zhou, Z.; et al. Effects of Dietary Capsaicin and Yucca schidigera Extracts as Feed Additives on Rumen Fermentation and Microflora of Beef Cattle Fed with a Moderate-Energy Diet. Fermentation 2023, 9, 30. [Google Scholar] [CrossRef]
- Purushe, J.; Fouts, D.E.; Morrison, M.; White, B.A.; Mackie, R.I.; Coutinho, P.M.; Henrissat, B.; Nelson, K.E. Comparative Genome Analysis of Prevotella ruminicola and Prevotella bryantii: Insights into Their Environmental Niche. Microb. Ecol. 2010, 60, 721–729. [Google Scholar] [CrossRef]
- Pang, K.; Chai, S.; Yang, Y.; Wang, X.; Liu, S.; Wang, S. Dietary forage to concentrate ratios impact on yak ruminal microbiota and metabolites. Front. Microbiol. 2022, 13, 964564. [Google Scholar] [CrossRef]
- Thomas, F.; Hehemann, J.; Rebuffet, E.; Czjzek, M.; Michel, G. Environmental and Gut Bacteroidetes: The Food Connection. Front. Microbiol. 2011, 2, 93. [Google Scholar] [CrossRef]
- Mao, X.; Dou, Y.; Fan, X.; Yu, B.; He, J.; Zheng, P.; Yu, J.; Luo, J.; Luo, Y.; Yan, H.; et al. The effect of dietary Yucca schidigera extract supplementation on productive performance, egg quality, and gut health in laying hens with Clostridium perfringens and coccidia challenge. Poult. Sci. 2023, 102, 102822. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; He, T.; Ziema Bumbie, G.; Wu, L.; Sun, Z.; Sun, W.; Tang, Z. Effects of Dietary Yucca Schidigera Extract and Oral Candida utilis on Growth Performance and Intestinal Health of Weaned Piglets. Front. Nutr. 2021, 8. [Google Scholar] [CrossRef]
- Mordak, R.; Kupczyński, R.; Kuczaj, M.; Niżański, W. Analysis of Correlations Between Selected Blood Markers of Liver Function and Milk Composition in Cows During Late Lactation Period. Ann. Anim. Sci. 2020, 20, 871–886. [Google Scholar] [CrossRef]
- Ozer, J.; Ratner, M.; Shaw, M.; Bailey, W.; Schomaker, S. The current state of serum biomarkers of hepatotoxicity. Toxicology 2008, 245, 194–205. [Google Scholar] [CrossRef]
- Li, X.; Tao, Y.; Zhang, X.; Lin, W.; Shi, W.; Chen, H.; Ye, D.; Wang, H. Establishment of the Normal Reference Range of Blood Biochemical Parameters for Dairy Cow in Shihezi Area of Xinjiang. China Dairy Cattle 2011, 18, 47–50. [Google Scholar] [CrossRef]
- Shang, X.; Yang, Z.; Lan, J.; Nie, C.; Chen, H.; Qu, M.; Yang, J.; Song, X. Effects of Diets Supplemented with Agastache rugosus Essential Oil on Growth Performance and Serum Biochemical Indexes of Beef Cattle under Heat Stress. Chin. J. Anim. Nutr. 2022, 34, 395–403. [Google Scholar] [CrossRef]
- Chen, F.; Lv, Y.; Zhu, P.; Cui, C.; Wu, C.; Chen, J.; Zhang, S.; Guan, W. Dietary Yucca schidigera Extract Supplementation During Late Gestating and Lactating Sows Improves Animal Performance, Nutrient Digestibility, and Manure Ammonia Emission. Front. Vet. Sci. 2021, 8, 676324. [Google Scholar] [CrossRef]
- Kataria, R.; Khatkar, A. Contribution of Resveratrol in the Development of Novel Urease Inhibitors: Synthesis, Biological Evaluation and Molecular Docking Studies. Comb. Chem. High Throughput Screen. 2019, 22, 245–255. [Google Scholar] [CrossRef]
- Meng, Q.; Li, J.; Wang, C.; Shan, A. Biological function of resveratrol and its application in animal production: A review. J. Anim. Sci. Biotechnol. 2023, 14, 25. [Google Scholar] [CrossRef]
- Naima, S.; Nassim, M.; Abdennasser, B.; Abderrahmane, T.; Djahida, A.; Houria, S.; Djamel, G.; Luc, E.H.J. Impact de Yucca schidigera sur les paramètres plasmatiques lipidiques et le rendement du poulet DE chair. Rev. Agrobiol. 2019, 1, 1435–1438. [Google Scholar]
- Kadiiska, M.B.; Gladen, B.C.; Baird, D.D.; Germolec, D.; Graham, L.B.; Parker, C.E.; Nyska, A.; Wachsman, J.T.; Ames, B.N.; Basu, S.; et al. Biomarkers of Oxidative Stress Study II: Are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic. Biol. Med. 2005, 38, 698–710. [Google Scholar] [CrossRef]
- Sun, D.; Jin, X.; Shi, B.; Su, J.; Tong, M.; Yan, S. Dietary Yucca schidigera extract improved growth performance and liver antioxidative function in broilers. Ital. J. Anim. Sci. 2017, 16, 677–684. [Google Scholar] [CrossRef]
- Athenstaedt, K.; Daum, G. Phosphatidic acid, a key intermediate in lipid metabolism. Eur. J. Biochem. 1999, 266, 1–16. [Google Scholar] [CrossRef]
- Gundermann, K.; Kuenker, A.; Kuntz, E.; Droździk, M. Activity of essential phospholipids (EPL) from soybean in liver diseases. Pharmacol. Rep. 2011, 63, 643–659. [Google Scholar] [CrossRef]
- Zeisel, S.H.; Niculescu, M.D. Perinatal choline influences brain structure and function. Nutr. Rev. 2006, 64, 197–203. [Google Scholar] [CrossRef]
- Alving, C.R. Immunological aspects of liposomes—Presentation and processing of liposomal protein and phospholipid antigens. Biochim. Biophys. ACTA 1992, 1113, 307–322. [Google Scholar] [CrossRef]
- Li, Z.; Agellon, L.B.; Allen, T.M.; Umeda, M.; Jewell, L.; Mason, A.; Vance, D.E. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 2006, 3, 321–331. [Google Scholar] [CrossRef]
- Wang, D.; Fu, J.; Zhou, R.; Li, Z.; Han, Y.; Liu, X. Transcriptome analysis of Sclerotinia ginseng and comparative analysis with the genome of Sclerotinia sclerotiorum. Physiol. Mol. Plant Pathol. 2019, 106, 30–41. [Google Scholar] [CrossRef]
- Wang, C.; Fu, R.; Xu, D.; Zuo, Q.; Liu, J.; Tang, Y. A study integrated metabolomics and network pharmacology to investigate the effects of Shicao in alleviating acute liver injury. J. Ethnopharmacol. 2024, 319, 117369. [Google Scholar] [CrossRef]
- Bernhard, W.; Lange, R.; Graepler-Mainka, U.; Engel, C.; Machann, J.; Hund, V.; Shunova, A.; Hector, A.; Riethmüller, J. Choline Supplementation in Cystic Fibrosis—The Metabolic and Clinical Impact. Nutrients 2019, 11, 656. [Google Scholar] [CrossRef]
- Collins, S.L.; Stine, J.G.; Bisanz, J.E.; Okafor, C.D.; Patterson, A.D. Bile acids and the gut microbiota: Metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 2023, 21, 236–247. [Google Scholar] [CrossRef]
- Li, W.; Hang, S.; Fang, Y.; Bae, S.; Zhang, Y.; Zhang, M.; Wang, G.; McCurry, M.D.; Bae, M.; Paik, D.; et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host Microbe 2021, 29, 1366–1377. [Google Scholar] [CrossRef]
- Lin, S.; Yang, X.; Yuan, P.; Yang, J.; Wang, P.; Zhong, H.; Zhang, X.; Che, L.; Feng, B.; Li, J.; et al. Undernutrition Shapes the Gut Microbiota and Bile Acid Profile in Association with Altered Gut-Liver FXR Signaling in Weaning Pigs. J. Agric. Food Chem. 2019, 67, 3691–3701. [Google Scholar] [CrossRef]
- Cao, A.Z.; Lai, W.Q.; Zhang, W.W.; Dong, B.; Lou, Q.Q.; Han, M.M.; He, D.T.; Gai, X.R.; Sun, Y.B.; Zhang, L.Y. Effects of porcine bile acids on growth performance, antioxidant capacity, blood metabolites and nutrient digestibility of weaned pigs. Anim. Feed Sci. Technol. 2021, 276, 114931. [Google Scholar] [CrossRef]
- Gass, J.; Vora, H.; Hofmann, A.F.; Gray, G.M.; Khosla, C. Enhancement of Dietary Protein Digestion by Conjugated Bile Acids. Gastroenterology 2007, 133, 16–23. [Google Scholar] [CrossRef]
- Hofmann, A.F.; Hagey, L.R. Bile Acids: Chemistry, Pathochemistry, Biology, Pathobiology, and Therapeutics. Cell Mol. Life Sci. 2008, 65, 2461–2483. [Google Scholar] [CrossRef]
- Thomas, C.; Pellicciari, R.; Pruzanski, M.; Auwerx, J.; Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 2008, 7, 678–693. [Google Scholar] [CrossRef]
Item | Content |
---|---|
Yucca schidigera powder | ≥30.0% |
Total saponins | ≥8.0% |
Moisture | ≤7.0% |
Ash | <10.0% |
Item | Day1–59 | Day60–90 |
---|---|---|
Ingredients, % | ||
Corn silage | 24.75 | 19.25 |
Corn stalk | 20.25 | 15.75 |
Soybean meal | 9.35 | 11.05 |
Jujube powder | 8.25 | 9.75 |
Ground corn | 31.90 | 37.70 |
Salt | 1.10 | 1.30 |
Premix 1 | 2.20 | 2.60 |
Calcium hydrophosphate | 1.10 | 1.30 |
Sodium bicarbonate | 1.10 | 1.30 |
Nutritional composition | ||
Metabolizable energy, MJ/kg | 10.42 | 10.59 |
Crude protein, % | 11.33 | 11.94 |
Neutral detergent fiber, % | 41.75 | 33.84 |
Acid detergent fiber, % | 16.20 | 13.89 |
Ether extract, % | 2.82 | 2.83 |
Starch, % | 26.47 | 31.90 |
Calcium, % | 0.50 | 0.52 |
Total phosphorus, % | 0.43 | 0.48 |
Item | Treatments | SEM | p-Value | |
---|---|---|---|---|
CON | YSE | |||
Body weight (kg) | ||||
Day1 | 504.93 | 508.63 | 6.09 | 0.77 |
Day60 | 573.53 | 588.37 | 6.69 | 0.28 |
Day90 | 611.80 | 630.70 | 6.67 | 0.16 |
ADG (kg/d) | ||||
Day1–59 | 1.17 | 1.35 | 0.03 | 0.01 |
Day60–90 | 1.23 | 1.37 | 0.07 | 0.35 |
Day1–90 | 1.19 | 1.36 | 0.03 | <0.01 |
DMI (kg/d) | ||||
Day1–59 | 12.41 | 12.60 | 0.21 | 0.67 |
Day60–90 | 11.89 | 12.52 | 0.24 | 0.20 |
Day1–90 | 12.21 | 12.55 | 0.21 | 0.42 |
FCR | ||||
Day1–59 | 10.16 | 9.34 | 0.25 | 0.09 |
Day60–90 | 9.60 | 9.00 | 0.41 | 0.48 |
Day1–90 | 9.82 | 9.29 | 0.19 | 0.16 |
Item | Treatments | SEM | p-Value | |
---|---|---|---|---|
CON | YSE | |||
ALT (U/L) | 34.34 | 40.92 | 1.09 | <0.01 |
AST (U/L) | 76.55 | 84.66 | 1.26 | <0.01 |
TBIL (μmol/L) | 1.83 | 1.97 | 0.03 | 0.02 |
TP (g/L) | 69.95 | 71.18 | 0.61 | 0.32 |
ALB (g/L) | 37.34 | 37.07 | 0.31 | 0.68 |
GLB (g/L) | 32.61 | 34.11 | 0.55 | 0.17 |
Urea (mmol/L) | 3.53 | 3.31 | 0.05 | 0.03 |
GLU (mmol/L) | 4.95 | 5.07 | 0.05 | 0.29 |
TC (mmol/L) | 2.96 | 3.02 | 0.37 | 0.48 |
TGs (mmol/L) | 0.25 | 0.25 | 0.14 | 0.29 |
T-AOC (U/mL) | 0.23 | 0.24 | 0.00 | 0.02 |
MDA (nmol/mL) | 3.93 | 3.83 | 0.21 | 0.38 |
Metabolite | Formula | RT (min) | M/Z | p-Value | Regulate |
---|---|---|---|---|---|
Phosphocholine | C5H14NO4P | 6.188 | 184.0732 | <0.001 | up |
Glycerophosphocholine | C8H20NO6P | 0.459 | 280.0918 | <0.001 | up |
PC(15:0/18:2(9Z,12Z)) | C41H78NO8P | 6.168 | 788.5465 | 0.018 | up |
PE(18:0/20:3(5Z,8Z,11Z)) | C43H80NO8P | 6.182 | 814.561 | 0.014 | up |
PE(18:3(6Z,9Z,12Z)/P-18:0) | C41H76NO7P | 6.084 | 770.5361 | 0.045 | up |
LysoPC(15:0) | C23H48NO7P | 5.951 | 480.3106 | 0.017 | up |
LysoPC(17:0) | C25H52NO7P | 6.834 | 508.3414 | <0.001 | up |
LysoPC(18:0) | C26H54NO7P | 6.841 | 568.3627 | <0.001 | up |
LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)) | C28H48NO7P | 6.018 | 586.3161 | 0.020 | up |
Cholic acid | C24H40O5 | 5.965 | 407.2808 | <0.001 | up |
Glycocholic acid | C26H43NO6 | 6.231 | 464.302 | <0.001 | up |
Deoxycholic acid | C24H40O4 | 6.018 | 391.2861 | 0.040 | up |
Galactitol | C6H14O6 | 0.697 | 205.068 | 0.023 | up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Z.; Wu, B.; Yi, X.; Ma, J.; Liu, Y.; Nussio, L.G.; Meng, Q.; Zhou, Z.; Wu, H. The Effect of Yucca schidigera Extract on Serum Metabolites of Angus Crossbreed Steers with Metabolomics. Metabolites 2024, 14, 58. https://doi.org/10.3390/metabo14010058
Deng Z, Wu B, Yi X, Ma J, Liu Y, Nussio LG, Meng Q, Zhou Z, Wu H. The Effect of Yucca schidigera Extract on Serum Metabolites of Angus Crossbreed Steers with Metabolomics. Metabolites. 2024; 14(1):58. https://doi.org/10.3390/metabo14010058
Chicago/Turabian StyleDeng, Ziqi, Baoyun Wu, Xin Yi, Jinglei Ma, Yue Liu, Luiz Gustavo Nussio, Qingxiang Meng, Zhenming Zhou, and Hao Wu. 2024. "The Effect of Yucca schidigera Extract on Serum Metabolites of Angus Crossbreed Steers with Metabolomics" Metabolites 14, no. 1: 58. https://doi.org/10.3390/metabo14010058
APA StyleDeng, Z., Wu, B., Yi, X., Ma, J., Liu, Y., Nussio, L. G., Meng, Q., Zhou, Z., & Wu, H. (2024). The Effect of Yucca schidigera Extract on Serum Metabolites of Angus Crossbreed Steers with Metabolomics. Metabolites, 14(1), 58. https://doi.org/10.3390/metabo14010058