The Impact of Different Intensities of Physical Activity on Serum Urate and Gout: A Mendelian Randomization Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Data Source
2.3. Mendelian Randomization
2.4. Sensitivity Analysis
3. Results
3.1. Horizontal Pleiotropy Assessment
3.2. Mendelian Randomization
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalbeth, N.; Choi, H.K.; Joosten, L.A.B.; Khanna, P.P.; Matsuo, H.; Perez-Ruiz, F.; Stamp, L.K. Gout. Nat. Rev. Dis. Primers 2019, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Busso, N.; So, A. Gout. Mechanisms of inflammation in gout. Arthritis Res. Ther. 2010, 12, 206. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.C. Gout: A disease of kings. Uric Acid Chronic Kidney Dis. 2018, 192, 77–81. [Google Scholar]
- Smith, E.; Hoy, D.; Cross, M.; Merriman, T.R.; Vos, T.; Buchbinder, R.; Woolf, A.; March, L. The global burden of gout: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 2014, 73, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Punzi, L.; Scanu, A.; Galozzi, P.; Luisetto, R.; Spinella, P.; Scire, C.A.; Oliviero, F. One year in review 2020: Gout. Clin. Exp. Rheumatol. 2020, 38, 807–821. [Google Scholar] [PubMed]
- Abeles, A.M.; Pillinger, M.H. Gout and cardiovascular disease: Crystallized confusion. Curr. Opin. Rheumatol. 2019, 31, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Chiou, A.; England, B.R.; Sayles, H.; Thiele, G.M.; Duryee, M.J.; Baker, J.F.; Singh, N.; Cannon, G.W.; Kerr, G.S.; Reimold, A. Coexistent hyperuricemia and gout in rheumatoid arthritis: Associations with comorbidities, disease activity, and mortality. Arthritis Care Res. 2020, 72, 950–958. [Google Scholar] [CrossRef]
- Rai, S.K.; Burns, L.C.; De Vera, M.A.; Haji, A.; Giustini, D.; Choi, H.K. The economic burden of gout: A systematic review. Semin. Arthritis Rheum. 2015, 45, 75–80. [Google Scholar] [CrossRef]
- Wertheimer, A.; Morlock, R.; Becker, M.A. A Revised Estimate of the Burden of Illness of Gout. Curr. Ther. Res. 2013, 75, 1–4. [Google Scholar] [CrossRef]
- Saag, K.G.; Choi, H. Epidemiology, risk factors, and lifestyle modifications for gout. Arthritis Res. Ther. 2006, 8, S2. [Google Scholar] [CrossRef] [PubMed]
- Syed, A.A.S.; Fahira, A.; Yang, Q.; Chen, J.; Li, Z.; Chen, H.; Shi, Y. The Relationship between Alcohol Consumption and Gout: A Mendelian Randomization Study. Genes 2022, 13, 557. [Google Scholar] [CrossRef] [PubMed]
- Qaseem, A.; Harris, R.P.; Forciea, M.A.; Clinical Guidelines Committee of the American College of Physicians; Denberg, T.D.; Barry, N.J.; Boyd, C.; Chow, D.; Humphrey, L.L.; Kansagara, D.; et al. Management of acute and recurrent gout: A clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 2017, 166, 58–68. [Google Scholar] [CrossRef]
- Perez-Ruiz, F.; Dalbeth, N.; Bardin, T. A review of uric acid, crystal deposition disease, and gout. Adv. Ther. 2015, 32, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.S.; Bracken, D.; Smith, J.M. Gout: Current insights and future perspectives. J. Pain 2011, 12, 1113–1129. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Zhang, H.; Zhang, S.; Ma, K. Chinese herbal medicine for gout: A review of the clinical evidence and pharmacological mechanisms. Chin. Med. 2020, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Mineo, I.; Kamiya, H.; Tsukuda, A. Practical strategies for lifestyle modification in people with hyperuricemia and gout treatment through diet, physical activity, and reduced alcohol consumption. Nihon Rinsho 2008, 66, 736–741. [Google Scholar]
- Shah, S.; Shinde, S.B. Impact of physical activity on gouty arthritis: A systematic review. DY Patil J. Health Sci. 2021, 9, 140. [Google Scholar]
- Dehlin, M.; Scheepers, L.; Landgren, A.J.; Josefsson, L.; Svensson, K.; Jacobsson, L.T.H. Lifestyle factors and comorbidities in gout patients compared to the general population in Western Sweden: Results from a questionnaire study. Scand. J. Rheumatol. 2022, 51, 390–393. [Google Scholar] [CrossRef]
- Williams, P.T. Effects of diet, physical activity and performance, and body weight on incident gout in ostensibly healthy, vigorously active men. Am. J. Clin. Nutr. 2008, 87, 1480–1487. [Google Scholar] [CrossRef]
- Meldrum, M.L. A Brief History of The Randomized Controlled Trial: From Oranges and Lemons to the Gold Standard. Hematol. Oncol. Clin. N. Am. 2000, 14, 745–760. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.D.; Lawlor, D.A.; Harbord, R.; Timpson, N.; Day, I.; Ebrahim, S. Clustered environments and randomized genes: A fundamental distinction between conventional and genetic epidemiology. PLoS Med. 2007, 4, e352. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Swanson, S.A.; Labrecque, J.A. Are Mendelian randomization investigations immune from bias due to reverse causation? Eur. J. Epidemiol. 2021, 36, 253–257. [Google Scholar] [CrossRef]
- Ebrahim, S.; Davey Smith, G. Mendelian randomization: Can genetic epidemiology help redress the failures of observational epidemiology? Hum. Genet. 2008, 123, 15–33. [Google Scholar] [CrossRef]
- Ten Klooster, P.M.; Vonkeman, H.E.; Oude Voshaar, M.A.; Bode, C.; van de Laar, M.A. Experiences of gout-related disability from the patients’ perspective: A mixed methods study. Clin. Rheumatol. 2014, 33, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Tilling, K.; Davey Smith, G. Triangulation in aetiological epidemiology. Int. J. Epidemiol. 2016, 45, 1866–1886. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Wei, J.; Meng, L.; Li, Y.; Wang, T.; Chen, D.; Qian, Q. Genetically predicted physical activity is associated with lower serum urate concentrations. Genes Genom. 2022, 44, 843–853. [Google Scholar] [CrossRef]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018, 7, e34408. [Google Scholar] [CrossRef]
- Lawlor, D.A. Commentary: Two-sample Mendelian randomization: Opportunities and challenges. Int. J. Epidemiol. 2016, 45, 908–915. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, Y.; Fu, T.; Lin, L.; Zhang, X.; Guo, Q.; Chen, Z.; Liao, B.; Huang, J. Impairment of kidney function and kidney cancer: A bidirectional Mendelian randomization study. Cancer Med. 2023, 12, 3610–3622. [Google Scholar] [CrossRef]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.; Yarmolinsky, J.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Higgins, J.P.; Timpson, N.J.; Dimou, N. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: The STROBE-MR statement. JAMA 2021, 326, 1614–1621. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.J.; Marshall, A.L.; Huang, N. Screening for physical activity in family practice: Evaluation of two brief assessment tools. Am. J. Prev. Med. 2005, 29, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Milton, K.; Bull, F.; Bauman, A. Reliability and validity testing of a single-item physical activity measure. Br. J. Sports Med. 2011, 45, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Hills, A.P.; Byrne, N.M.; Wearing, S.; Armstrong, T. Validation of the intensity of walking for pleasure in obese adults. Prev. Med. 2006, 42, 47–50. [Google Scholar] [CrossRef]
- Köttgen, A.; Albrecht, E.; Teumer, A.; Vitart, V.; Krumsiek, J.; Hundertmark, C.; Pistis, G.; Ruggiero, D.; O’Seaghdha, C.M.; Haller, T.; et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 2013, 45, 145–154. [Google Scholar] [CrossRef]
- Elsworth, B.; Lyon, M.; Alexander, T.; Liu, Y.; Matthews, P.; Hallett, J.; Bates, P.; Palmer, T.; Haberland, V.; Smith, G.D. The MRC IEU OpenGWAS data infrastructure. BioRxiv 2020. [Google Scholar] [CrossRef]
- Boef, A.G.; Dekkers, O.M.; Le Cessie, S. Mendelian randomization studies: A review of the approaches used and the quality of reporting. Int. J. Epidemiol. 2015, 44, 496–511. [Google Scholar] [CrossRef]
- Burgess, S.; Smith, G.D.; Davies, N.M.; Dudbridge, F.; Gill, D.; Glymour, M.M.; Hartwig, F.P.; Holmes, M.V.; Minelli, C.; Relton, C.L. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 2019, 4, 186. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Jiang, H.; Hu, D.; Wang, J.; Zhang, B.; He, C.; Ning, J. Adiponectin and the risk of gastrointestinal cancers in East Asians: Mendelian randomization analysis. Cancer Med. 2022, 11, 2397–2404. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.; Chignon, A.; Li, Z.; Boulanger, M.-C.; Arsenault, B.J.; Bossé, Y.; Thériault, S.; Mathieu, P. A Mendelian randomization study of IL6 signaling in cardiovascular diseases, immune-related disorders and longevity. NPJ Genom. Med. 2019, 4, 23. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wang, Q.; Xue, R.; Liu, X.; Yu, H. Examining the Causal Inference of Leptin and Soluble Plasma Leptin Receptor Levels on Schizophrenia: A Mendelian Randomization Study. Front. Psychiatry 2021, 12, 753224. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Lu, M.; Xu, J.; Zhang, F.; Yang, M.; Luo, P.; Xu, K.; Xu, P. Pulmonary embolism and 529 human blood metabolites: Genetic correlation and two-sample Mendelian randomization study. BMC Genom. Data 2022, 23, 69. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Small, D.S.; Thompson, S.G. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res. 2015, 26, 2333–2355. [Google Scholar] [CrossRef] [PubMed]
- Teumer, A. Common methods for performing Mendelian randomization. Front. Cardiovasc. Med. 2018, 5, 51. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, T.; Wu, M. Depression in systemic lupus erythematosus: Modifiable or inheritable? A two-sample mendelian randomization study. Front. Genet. 2022, 13, 988022. [Google Scholar] [CrossRef]
- Treur, J.L.; Demontis, D.; Smith, G.D.; Sallis, H.; Richardson, T.G.; Wiers, R.W.; Børglum, A.D.; Verweij, K.J.H.; Munafò, M.R. Investigating causality between liability to ADHD and substance use, and liability to substance use and ADHD risk, using Mendelian randomization. Addict. Biol. 2021, 26, e12849. [Google Scholar] [CrossRef]
- Richmond, R.C.; Davey Smith, G. Commentary: Orienting causal relationships between two phenotypes using bidirectional Mendelian randomization. Int. J. Epidemiol. 2019, 48, 907–911. [Google Scholar] [CrossRef]
- Cui, Z.; Tian, Y. Using genetic variants to evaluate the causal effect of serum vitamin D concentration on COVID-19 susceptibility, severity and hospitalization traits: A Mendelian randomization study. J. Transl. Med. 2021, 19, 300. [Google Scholar] [CrossRef]
- Verbanck, M.; Chen, C.-Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.; Knoblauch, N.; Marcus, J.H.; Stephens, M.; He, X. Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat. Genet. 2020, 52, 740–747. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef]
- Ong, J.-S.; MacGregor, S. Implementing MR-PRESSO and GCTA-GSMR for pleiotropy assessment in Mendelian randomization studies from a practitioner’s perspective. Genet. Epidemiol. 2019, 43, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Del Greco, M.F.; Minelli, C.; Davey Smith, G.; Sheehan, N.A.; Thompson, J.R. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: The role of the I2 statistic. Int. J. Epidemiol. 2016, 45, 1961–1974. [Google Scholar] [CrossRef] [PubMed]
- Hemani, G.; Bowden, J.; Davey Smith, G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum. Mol. Genet. 2018, 27, R195–R208. [Google Scholar] [CrossRef]
- Sanderson, E.; Davey Smith, G.; Bowden, J.; Munafò, M.R. Mendelian randomisation analysis of the effect of educational attainment and cognitive ability on smoking behaviour. Nat. Commun. 2019, 10, 2949. [Google Scholar] [CrossRef]
- Zhu, X. Mendelian randomization and pleiotropy analysis. Quant. Biol. 2021, 9, 122–132. [Google Scholar] [CrossRef]
- Hartwig, F.P.; Davey Smith, G.; Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 2017, 46, 1985–1998. [Google Scholar] [CrossRef]
- Wootton, R.E.; Lawn, R.B.; Millard, L.A.; Davies, N.M.; Taylor, A.E.; Munafò, M.R.; Timpson, N.J.; Davis, O.S.; Smith, G.D.; Haworth, C.M. Evaluation of the causal effects between subjective wellbeing and cardiometabolic health: Mendelian randomisation study. BMJ 2018, 362, k3788. [Google Scholar] [CrossRef]
- Vermeulen, J.M.; Wootton, R.E.; Treur, J.L.; Sallis, H.M.; Jones, H.J.; Zammit, S.; van den Brink, W.; Goodwin, G.M.; de Haan, L.; Munafò, M.R. Smoking and the risk for bipolar disorder: Evidence from a bidirectional Mendelian randomisation study. Br. J. Psychiatry 2019, 218, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Nowak, C.; Ärnlöv, J. A Mendelian randomization study of the effects of blood lipids on breast cancer risk. Nat. Commun. 2018, 9, 3957. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Holmes, M.V. Meta-analysis and Mendelian randomization: A review. Res. Synth. Methods 2019, 10, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Richmond, R.C.; Smith, G.D. Mendelian randomization: Concepts and scope. Cold Spring Harb. Perspect. Med. 2022, 12, a040501. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hong, X.; Gao, W.; Luo, S.; Cai, J.; Liu, G.; Huang, Y. Causal relationship between physical activity, leisure sedentary behaviors and COVID-19 risk: A Mendelian randomization study. J. Transl. Med. 2022, 20, 216. [Google Scholar] [CrossRef] [PubMed]
- van de Vegte, Y.J.; Siland, J.E.; Rienstra, M.; van der Harst, P. Atrial fibrillation and left atrial size and function: A Mendelian randomization study. Sci. Rep. 2021, 11, 8431. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-M.; Hu, Q.; Zhang, Q.; Su, G.-Y.; Xiao, H.-M.; Li, B.-Y.; Shen, W.-D.; Qiu, X.; Lv, W.-Q.; Deng, H.-W. Causal effects of genetically predicted cardiovascular risk factors on chronic kidney disease: A two-sample Mendelian randomization study. Front. Genet. 2019, 10, 415. [Google Scholar] [CrossRef]
- Cornish, A.J.; Law, P.J.; Timofeeva, M.; Palin, K.; Farrington, S.M.; Palles, C.; Jenkins, M.A.; Casey, G.; Brenner, H.; Chang-Claude, J.; et al. Modifiable pathways for colorectal cancer: A mendelian randomisation analysis. Lancet Gastroenterol. Hepatol. 2020, 5, 55–62. [Google Scholar] [CrossRef]
- Schlesinger, N.; Jablonski, K.; Schwarz, E.; Young, N. AB0933 Physical Activity Decreases Pain and Inflammation in Gout Patients. Ann. Rheum. Dis. 2020, 79, 1766–1767. [Google Scholar] [CrossRef]
- Elmagboul, N.; Coburn, B.W.; Foster, J.; Mudano, A.; Melnick, J.; Bergman, D.; Yang, S.; Chen, L.; Filby, C.; Mikuls, T.R.; et al. Physical activity measured using wearable activity tracking devices associated with gout flares. Arthritis Res. Ther. 2020, 22, 181. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, N.; Dimou, N.; Tsilidis, K.K.; Banbury, B.; Martin, R.M.; Lewis, S.J.; Kazmi, N.; Robinson, T.M.; Albanes, D.; Aleksandrova, K. Physical activity and risks of breast and colorectal cancer: A Mendelian randomisation analysis. Nat. Commun. 2020, 11, 597. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, X.; Cao, Y.; Zhang, G. Potential protection of computer gaming against mental health issues: Evidence from a Mendelian randomization study. Comput. Hum. Behav. 2023, 144, 107722. [Google Scholar] [CrossRef]
- Wu, M.; Tian, Y.; Wang, Q.; Guo, C. Gout: A disease involved with complicated immunoinflammatory responses: A narrative review. Clin. Rheumatol. 2020, 39, 2849–2859. [Google Scholar] [CrossRef]
- Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440, 237–241. [Google Scholar] [CrossRef]
- Hayashino, Y.; Jackson, J.L.; Hirata, T.; Fukumori, N.; Nakamura, F.; Fukuhara, S.; Tsujii, S.; Ishii, H. Effects of exercise on C-reactive protein, inflammatory cytokine and adipokine in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Metabolism 2014, 63, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K. Anti-inflammatory effects of exercise: Role in diabetes and cardiovascular disease. Eur. J. Clin. Investig. 2017, 47, 600–611. [Google Scholar] [CrossRef]
- Jablonski, K.; Young, N.A.; Henry, C.; Caution, K.; Kalyanasundaram, A.; Okafor, I.; Harb, P.; Schwarz, E.; Consiglio, P.; Cirimotich, C.M. Physical activity prevents acute inflammation in a gout model by downregulation of TLR2 on circulating neutrophils as well as inhibition of serum CXCL1 and is associated with decreased pain and inflammation in gout patients. PLoS ONE 2020, 15, e0237520. [Google Scholar] [CrossRef]
- Harrison, S.; Howe, L.; Davies, A.R. Making Sense of Mendelian Randomisation and Its Use in Health Research. 2020. Available online: https://www.bristol.ac.uk/media-library/sites/integrative-epidemiology/documents/PHW%20Mendelian%20Randomisation%20User%20Guide(web)NEW%20(2).pdf (accessed on 1 December 2023).
- Burgess, S.; Davies, N.M.; Thompson, S.G. Bias due to participant overlap in two-sample Mendelian randomization. Genet. Epidemiol. 2016, 40, 597–608. [Google Scholar] [CrossRef]
- Koellinger, P.D.; de Vlaming, R. Mendelian randomization: The challenge of unobserved environmental confounds. Int. J. Epidemiol. 2019, 48, 665–671. [Google Scholar] [CrossRef]
GWAS-ID | Phenotype | Sample Size | SNPs (n) | Ancestry |
---|---|---|---|---|
ukb-b-4886 | Walking | 454,783 | 9,851,867 | European |
ukb-b-4710 | Moderate PA | 440,266 | 9,851,867 | European |
ukb-b-151 | Vigorous PA | 440,512 | 9,851,867 | European |
ieu-a-1055 | Serum urate | 110,347 | 2,450,548 | European |
finn-b-M13_GOUT | Gout | 150,797 (3576 cases and 147,221 controls) | 16,380,152 | European |
Exposure | Outcome | MR-PRESSO | MR-Egger | |
---|---|---|---|---|
p | Intercept | p | ||
Walking | Serum urate | 0.010 | −0.024 | 0.416 |
Gout | 0.008 | 0.033 | 0.770 | |
Moderate PA | Serum urate | 0.004 | 0.011 | 0.002 |
Gout | 0.370 | 0.042 | 0.373 | |
Vigorous PA | Serum urate | 0.207 | 0.051 | 0.084 |
Gout | 0.016 | 0.213 | 0.028 |
Exposure | Estimator | B (95% CI) | p |
---|---|---|---|
Walking | MR-Egger | 0.996 (−1.200, 3.793) | 0.393 |
Weighted median | 0.156 (−0.037, 0.350) | 0.113 | |
IVW | 0.053 (−0.136, 0.240) | 0.584 | |
Simple mode | 0.186 (−0.181, 0.552) | 0.341 | |
Weighted mode | 0.177 (−0.162, 0.515) | 0.236 | |
Moderate PA | MR-Egger | −1.520 (−2.194, 0.847) | 0.001 |
Weighted median | −0.031 (−0.192, 0.129) | 0.704 | |
IVW | −0.143 (−0.312, 0.025) | 0.096 | |
Simple mode | −0.014 (−0.249, 0.221) | 0.907 | |
Weighted mode | −0.011 (−0.223, 0.202) | 0.923 | |
Vigorous PA | MR-Egger | −1.756 (−3.515, 0.002) | 0.098 |
Weighted median | 0.166 (−0.032, 0.364) | 0.100 | |
IVW | 0.094 (−0.079, 0.268) | 0.286 | |
Simple mode | 0.247 (−0.071, 0.566) | 0.172 | |
Weighted mode | 0.226 (−0.103, 0.555) | 0.221 |
Exposure | Estimator | OR (95% CI) | p |
---|---|---|---|
Walking | MR-Egger | 0.451 (0.0001, 1858.276) | 0.854 |
Weighted median | 1.343 (0.629, 2.868) | 0.446 | |
IVW | 1.592 (0.792, 3.202) | 0.192 | |
Simple mode | 0.734 (0.177, 3.044) | 0.675 | |
Weighted mode | 0.681 (0.166, 2.797) | 0.601 | |
Moderate PA | MR-Egger | 0.183 (0.013, 2.653) | 0.231 |
Weighted median | 0.735 (0.409, 1.320) | 0.303 | |
IVW | 0.628 (0.409, 0.967) | 0.034 | |
Simple mode | 0.948 (0.341, 2.633) | 0.920 | |
Weighted mode | 0.936 (0.348, 2.516) | 0.897 | |
Vigorous PA | MR-Egger | 0.0007 (2.59 × 10−6, −0.177) | 0.030 |
Weighted median | 1.634 (0.621, 4.298) | 0.320 | |
IVW | 1.072 (0.446, 2.578) | 0.877 | |
Simple mode | 3.038 (0.561, 16.451) | 0.227 | |
Weighted mode | 2.793 (0.440, 17.752) | 0.302 |
Outcome | Exposure | MR-Egger | IVW | ||
---|---|---|---|---|---|
Q | p | Q | p | ||
Serum urate | Walking | 25.247 | 0.008 | 26.887 | 0.008 |
Moderate PA | 10.798 | 0.378 | 28.441 | 0.002 | |
Vigorous PA | 5.716 | 0.456 | 10.002 | 0.188 | |
Gout | Walking | 33.300 | 0.004 | 33.497 | 0.006 |
Moderate PA | 17.749 | 0.339 | 18.682 | 0.347 | |
Vigorous PA | 12.929 | 0.166 | 22.746 | 0.011 |
Outcome | Exposure | Outlier (n) | Adj-ES | p |
---|---|---|---|---|
Serum urate | Walking | 0 | N.A. | N.A. |
Moderate PA | 2 | −0.036 | 0.506 | |
Vigorous PA | 0 | N.A. | N.A. | |
Gout | Walking | 1 | 0.246 | 0.437 |
Moderate PA | 0 | N.A. | N.A. | |
Vigorous PA | 0 | N.A. | N.A. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Bi, S.; Zhang, X.; Yin, M.; Feng, S.; Li, H. The Impact of Different Intensities of Physical Activity on Serum Urate and Gout: A Mendelian Randomization Study. Metabolites 2024, 14, 66. https://doi.org/10.3390/metabo14010066
Yang T, Bi S, Zhang X, Yin M, Feng S, Li H. The Impact of Different Intensities of Physical Activity on Serum Urate and Gout: A Mendelian Randomization Study. Metabolites. 2024; 14(1):66. https://doi.org/10.3390/metabo14010066
Chicago/Turabian StyleYang, Tangxun, Shilin Bi, Xing Zhang, Mingyue Yin, Siyuan Feng, and Hansen Li. 2024. "The Impact of Different Intensities of Physical Activity on Serum Urate and Gout: A Mendelian Randomization Study" Metabolites 14, no. 1: 66. https://doi.org/10.3390/metabo14010066
APA StyleYang, T., Bi, S., Zhang, X., Yin, M., Feng, S., & Li, H. (2024). The Impact of Different Intensities of Physical Activity on Serum Urate and Gout: A Mendelian Randomization Study. Metabolites, 14(1), 66. https://doi.org/10.3390/metabo14010066